25 research outputs found

    Ratchet Effects for Vortices in Superconductors with Periodic Pinning Arrays

    Full text link
    Using numerical simulations we show that novel transport phenomena can occur for vortices moving in periodic pinning arrays when two external perpendicular ac drives are applied. In particular, we find a ratchet effect where the vortices can have a net dc drift even in the absence of a dc drive. This ratchet effect can occur for ac drives which create orbits that break one or more reflection symmetries.Comment: 4 pages, 4 postscript figures; Proceedings of Third European Conference on Vortex Matter in Superconductor

    Rectification and Flux Reversals for Vortices Interacting with Triangular Traps

    Full text link
    We simulate vortices in superconductors interacting with two-dimensional arrays of triangular traps. We find that, upon application of an ac drive, a net dc flow can occur which shows current reversals with increasing ac drive amplitude for certain vortex densities, in agreement with recent experiments and theoretical predictions. We identify the vortex dynamics responsible for the different rectification regimes. We also predict the occurrence of a novel transverse rectification effect in which a dc flow appears that is transverse to the direction of the applied ac drive.Comment: 4 pages, 4 postscript figure

    Temperature and ac Effects on Charge Transport in Metallic Arrays of Dots

    Full text link
    We investigate the effects of finite temperature, dc pulse, and ac drives on the charge transport in metallic arrays using numerical simulations. For finite temperatures there is a finite conduction threshold which decreases linearly with temperature. Additionally we find a quadratic scaling of the current-voltage curves which is independent of temperature for finite thresholds. These results are in excellent agreement with recent experiments on 2D metallic dot arrays. We have also investigated the effects of an ac drive as well as a suddenly applied dc drive. With an ac drive the conduction threshold decreases for fixed frequency and increasing amplitude and saturates for fixed amplitude and increasing frequency. For sudden applied dc drives below threshold we observe a long time power law conduction decay.Comment: 6 pages, 7 postscript figure

    Plastic Flow, Voltage Bursts, and Vortex Avalanches in Superconductors

    Full text link
    We use large-scale parallel simulations to compute the motion of superconducting magnetic vortices during avalanches triggered by small field increases. We find that experimentally observable voltage bursts correspond to pulsing vortex movement along branched channels or winding chains, and relate vortex flow images to features of statistical distributions. As pin density is increased, a crossover occurs from interstitial motion in narrow easy-flow winding channels with typical avalanche sizes, to pin-to-pin motion in broad channels, characterized by a very broad distribution of sizes. Our results are consistent with recent experiments.Comment: 4 pages, Latex, 4 figures included. Movies available at http://www-personal.engin.umich.edu/~nor

    Dynamic Vortex Phases and Pinning in Superconductors with Twin Boundaries

    Full text link
    We investigate the pinning and driven dynamics of vortices interacting with twin boundaries using large scale molecular dynamics simulations on samples with near one million pinning sites. For low applied driving forces, the vortex lattice orients itself parallel to the twin boundary and we observe the creation of a flux gradient and vortex free region near the edges of the twin boundary. For increasing drive, we find evidence for several distinct dynamical flow phases which we characterize by the density of defects in the vortex lattice, the microscopic vortex flow patterns, and orientation of the vortex lattice. We show that these different dynamical phases can be directly related to microscopically measurable voltage - current V(I) curves and voltage noise. By conducting a series of simulations for various twin boundary parameters we derive several vortex dynamic phase diagrams.Comment: 5 figures, to appear in Phys. Rev.

    Dynamics and Melting of Stripes, Crystals, and Bubbles with Quenched Disorder

    Full text link
    Two-dimensional systems in which there is a competition between long-range repulsion and short range attraction exhibit a remarkable variety of patterns such as stripes, bubbles, and labyrinths. Such systems include magnetic films, Langmuir monolayers, polymers, gels, water-oil mixtures, and two-dimensional electron systems. In many of these systems quenched disorder from the underlying substrate may be present. We examine the dynamics and stripe formation in the presence of both an applied dc drive and quenched disorder. When the disorder strength exceeds a critical value, an applied dc drive can induce a dynamical stripe ordering transition to a state that is more ordered than the originating undriven, unpinned pattern.Comment: 6 pages, 7 postscript figures; Proceedings of International Workshop on Anomalous Distributions, Nonlinear Dynamics and Nonextensivity, Santa Fe, 200

    Transverse Phase Locking for Vortex Motion in Square and Triangular Pinning Arrays

    Full text link
    We analyze transverse phase locking for vortex motion in a superconductor with a longitudinal DC drive and a transverse AC drive. For both square and triangular arrays we observe a variety of fractional phase locking steps in the velocity versus DC drive which correspond to stable vortex orbits. The locking steps are more pronounced for the triangular arrays which is due to the fact that the vortex motion has a periodic transverse velocity component even for zero transverse AC drive. All the steps increase monotonically in width with AC amplitude. We confirm that the width of some fractional steps in the square arrays scales as the square of the AC driving amplitude. In addition we demonstrate scaling in the velocity versus applied DC driving curves at depinning and on the main step, similar to that seen for phase locking in charge-density wave systems. The phase locking steps are most prominent for commensurate vortex fillings where the interstitial vortices form symmetrical ground states. For increasing temperature, the fractional steps are washed out very quickly, while the main step gains a linear component and disappears at melting. For triangular pinning arrays we again observe transverse phase locking, with the main and several of the fractional step widths scaling linearly with AC amplitude.Comment: 10 pages, 14 postscript figure

    London equation studies of thin-film superconductors with a triangular antidot lattice

    Full text link
    We report on a study of vortex pinning in nanoscale antidot defect arrays in the context of the London Theory. Using a wire network model, we discretize the array with a fine mesh, thereby providing a detailed treatment of pinning phenomena. The use of a fine grid has enabled us to examine both circular and elongated defects, patterned in the form of a rhombus. The latter display pinning characteristics superior to circular defects constructed with the similar area. We calculate pinning potentials for defects containing zero and single quanta, and we obtain a pinning phase diagram for the second matching field, H=2ΦoH = 2 \Phi_{o}.Comment: 10 pages and 14 figure

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    Transverse depinning in strongly driven vortex lattices with disorder

    Full text link
    Using numerical simulations we investigate the transverse depinning of moving vortex lattices interacting with random disorder. We observe a finite transverse depinning barrier for vortex lattices that are driven with high longitudinal drives, when the vortex lattice is defect free and moving in correlated 1D channels. The transverse barrier is reduced as the longitudinal drive is decreased and defects appear in the vortex lattice, and the barrier disappears in the plastic flow regime. At the transverse depinning transition, the vortex lattice moves in a staircase pattern with a clear transverse narrow-band voltage noise signature.Comment: 4 pages, 4 figure
    corecore