598 research outputs found
Fermionic partner of Quintessence field as candidate for dark matter
Quintessence is a possible candidate for dark energy. In this paper we study
the phenomenologies of the fermionic partner of Quintessence, the Quintessino.
Our results show that, for suitable choices of the model parameters, the
Quintessino is a good candidate for cold or warm dark matter. In our scenario,
dark energy and dark matter of the Universe are connected in one chiral
superfield.Comment: 4 pages, 3 figures, version to appear in PR
Electron energy loss and induced photon emission in photonic crystals
The interaction of a fast electron with a photonic crystal is investigated by
solving the Maxwell equations exactly for the external field provided by the
electron in the presence of the crystal. The energy loss is obtained from the
retarding force exerted on the electron by the induced electric field. The
features of the energy loss spectra are shown to be related to the photonic
band structure of the crystal. Two different regimes are discussed: for small
lattice constants relative to the wavelength of the associated electron
excitations , an effective medium theory can be used to describe the
material; however, for the photonic band structure plays an
important role. Special attention is paid to the frequency gap regions in the
latter case.Comment: 12 pages, 7 figure
Synaptic vesicle dynamic changes in a model of fragile X
__Background:__ Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated.
__Methods:__ Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MSE) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy.
__Results:__ Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission.
__Conclusions:__ Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS
Effects of crossed states on photoluminescence excitation spectroscopy of InAs quantum dots
In this report, the influence of the intrinsic transitions between bound-to-delocalized states (crossed states or quasicontinuous density of electron-hole states) on photoluminescence excitation (PLE) spectra of InAs quantum dots (QDs) was investigated. The InAs QDs were different in size, shape, and number of bound states. Results from the PLE spectroscopy at low temperature and under a high magnetic field (up to 14 T) were compared. Our findings show that the profile of the PLE resonances associated with the bound transitions disintegrated and broadened. This was attributed to the coupling of the localized QD excited states to the crossed states and scattering of longitudinal acoustical (LA) phonons. The degree of spectral linewidth broadening was larger for the excited state in smaller QDs because of the higher crossed joint density of states and scattering rate
Reducing GBA2 activity ameliorates neuropathology in niemann-pick type C mice
The enzyme glucocerebrosidase (GBA) hydrolyses glucosylceramide (GlcCer) in lysosomes. Markedly reduced GBA activity is associated with severe manifestations of Gaucher disease including neurological involvement. Mutations in the GBA gene have recently also been identified as major genetic risk factor for Parkinsonism. Disturbed metabolism of GlcCer may therefore play a role in neuropathology. Besides lysosomal GBA, cells also contain a non-lysosomal glucosylceramidase (GBA2). Given that the two β-glucosidases share substrates, we speculated that over-activity of GBA2 during severe GBA impairment might influence neuropathology. This hypothesis was studied in Niemann-Pick type C (Npc1-/-) mice showing secondary deficiency in GBA in various tissues. Here we report that GBA2 activity is indeed increased in the brain of Npc1-/- mice. We found that GBA2 is particularly abundant in Purkinje cells (PCs), one of the most affected neuronal populations in NPC disease. Inhibiting GBA2 in Npc1-/- mice with a brain-permeable low nanomolar inhibitor significantly improved motor coordination and extended lifespan in the absence of correction in cholesterol and ganglioside abnormalities. This trend was recapitulated, although not to full extent, by introducing a genetic loss of GBA2 in Npc1-/- mice. Our findings point to GBA2 activity as therapeutic target in NPC
Internal representations of smell in the Drosophila brain
Recent advances in sensory neuroscience using Drosophila olfaction as a model system have revealed brain maps representing the external world. Once we understand how the brain's built-in capability generates the internal olfactory maps, we can then elaborate how the brain computes and makes decision to elicit complex behaviors. Here, we review current progress in mapping Drosophila olfactory circuits and discuss their relationships with innate olfactory behaviors
Light‐limited photosynthesis under energy‐saving film decreases eggplant yield
Glasshouse films with adjustable light transmittance and energy‐efficient designs have the potential to reduce (up to 80%) the high energy cost for greenhouse horticulture operations. Whether these films compromise the quantity and quality of light transmission for photosynthesis and crop yield remains unclear. A “Smart Glass” film ULR‐80 (SG) was applied to a high‐tech greenhouse horticulture facility, and two experimental trials were conducted by growing eggplant (Solanum melongena) using commercial vertical cultivation and management practices. SG blocked 85% of ultraviolet (UV), 58% of far‐red, and 26% of red light, leading to an overall reduction of 19% in photosynthetically active radiation (PAR, 380–699 nm) and a 25% reduction in total season fruit yield. There was a 53% (season mean) reduction in net short‐wave radiation (radiometer range, 385–2,105 nm upward; 295–2,685 nm downward) that generated a net reduction of 8% in heat load and reduced water and nutrient consumption by 18%, leading to improved energy and resource use efficiency. Eggplant adjusted to the altered SG light environment via decreased maximum light‐saturated photosynthetic rates (Amax) and lower xanthophyll de‐epoxidation state. The shift in light characteristics under SG led to reduced photosynthesis, which may have reduced source (leaf) to sink (fruit) carbon distribution, increased fruit abortion and decreased fruit yield, but did not affect nutritional quality. We conclude that SG increases energy and resource use efficiency, without affecting fruit quality, but the reduction in photosynthesis and eggplant yield is high. The solution is to re‐engineer the SG to increase penetration of UV and PAR, while maintaining blockage of glasshouse heat gain
Searching for GEMS:TOI-6383Ab, a Giant Planet Transiting an M3-dwarf Star in a Binary System
We report on the discovery of a transiting giant planet around the 3500 K M3-dwarf star TOI-6383A located 172 pc from Earth. It was detected by the Transiting Exoplanet Survey Satellite and confirmed by a combination of ground-based follow-up photometry and precise radial velocity measurements. This planet has an orbital period of ∼1.791 days, a mass of 1.040 ± 0.094 MJ , and a radius of 1.008 − 0.033 + 0.036 RJ , resulting in a mean bulk density of 1.26 − 0.17 + 0.18 g cm−3. TOI-6383A has an M dwarf companion star, TOI-6383B, which has a stellar effective temperature of Teff ∼ 3100 K and a projected orbital separation of 3126 au. TOI-6383A is a low-mass dwarf star hosting a giant planet and is an intriguing object for planetary evolution studies due to its high planet-to-star mass ratio. This discovery is part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) Survey, intending to provide robust and accurate estimates of the occurrence of GEMS and the statistics on their physical and orbital parameters. This paper presents an interesting addition to the small number of confirmed GEMS, particularly notable since its formation necessitates massive, dust-rich protoplanetary discs and high accretion efficiency (>10%).</p
Circulating B-vitamin biomarkers and B-vitamin supplement use in relation to quality of life in patients with colorectal cancer: results from the FOCUS consortium
Background: B vitamins have been associated with the risk and progression of colorectal cancer (CRC), given their central roles in nucleotide synthesis and methylation, yet their association with quality of life in established CRC is unclear.Objectives: To investigate whether quality of life 6 months postdiagnosis is associated with: 1) circulating concentrations of B vitamins and related biomarkers 6 months postdiagnosis; 2) changes in these concentrations between diagnosis and 6 months postdiagnosis; 3) B-vitamin supplement use 6 months postdiagnosis; and 4) changes in B-vitamin supplement use between diagnosis and 6 months postdiagnosis.Methods: We included 1676 newly diagnosed stage I-III CRC patients from 3 prospective European cohorts. Circulating concentrations of 9 biomarkers related to the B vitamins folate, riboflavin, vitamin B6, and cobalamin were measured at diagnosis and 6 months postdiagnosis. Information on dietary supplement use was collected at both time points. Health-related quality of life (global quality of life, functioning scales, and fatigue) was assessed by the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire 6 months postdiagnosis. Confounder-adjusted linear regression analyses were performed, adjusted for multiple testing.Results: Higher pyridoxal 5'-phosphate (PLP) was cross-sectionally associated with better physical, role, and social functioning, as well as reduced fatigue, 6 months postdiagnosis. Associations were observed for a doubling in the hydroxykynurenine ratio [3-hydroxykynurenine: (kynurenic acid + xanthurenic acid + 3-hydroxyanthranilic acid + anthranilic acid); an inverse marker of vitamin B6] and both reduced global quality of life (beta = -3.62; 95% CI: -5.88, -1.36) and worse physical functioning (beta = -5.01; 95% CI: -7.09, -2.94). Dose-response relations were observed for PLP and quality of life. No associations were observed for changes in biomarker concentrations between diagnosis and 6 months. Participants who stopped using B-vitamin supplements after diagnosis reported higher fatigue than nonusers.Conclusions: Higher vitamin B6 status was associated with better quality of life, yet limited associations were observed for the use of B-vitamin supplements. Vitamin B6 needs further study to clarify its role in relation to quality of life
- …
