1,042 research outputs found
Precision spectroscopy with two correlated atoms
We discuss techniques that allow for long coherence times in laser
spectroscopy experiments with two trapped ions. We show that for this purpose
not only entangled ions prepared in decoherence-free subspaces can be used but
also a pair of ions that are not entangled but subject to the same kind of
phase noise. We apply this technique to a measurement of the electric
quadrupole moment of the 3d D5/2 state of 40Ca+ and to a measurement of the
linewidth of an ultrastable laser exciting a pair of 40Ca+ ions
Robust entanglement
It is common belief among physicists that entangled states of quantum systems
loose their coherence rather quickly. The reason is that any interaction with
the environment which distinguishes between the entangled sub-systems collapses
the quantum state. Here we investigate entangled states of two trapped Ca
ions and observe robust entanglement lasting for more than 20 seconds
Elasticity of Semiflexible Biopolymer Networks
We develop a model for gels and entangled solutions of semiflexible
biopolymers such as F-actin. Such networks play a crucial structural role in
the cytoskeleton of cells. We show that the rheologic properties of these
networks can result from nonclassical rubber elasticity. This model can explain
a number of elastic properties of such networks {\em in vitro}, including the
concentration dependence of the storage modulus and yield strain.Comment: Uses RevTeX, full postscript with figures available at
http://www.umich.edu/~fcm/preprints/agel/agel.htm
A Single Laser System for Ground-State Cooling of 25-Mg+
We present a single solid-state laser system to cool, coherently manipulate
and detect Mg ions. Coherent manipulation is accomplished by
coupling two hyperfine ground state levels using a pair of far-detuned Raman
laser beams. Resonant light for Doppler cooling and detection is derived from
the same laser source by means of an electro-optic modulator, generating a
sideband which is resonant with the atomic transition. We demonstrate
ground-state cooling of one of the vibrational modes of the ion in the trap
using resolved-sideband cooling. The cooling performance is studied and
discussed by observing the temporal evolution of Raman-stimulated sideband
transitions. The setup is a major simplification over existing state-of-the-art
systems, typically involving up to three separate laser sources
Cooling atomic motion with quantum interference
We theoretically investigate the quantum dynamics of the center of mass of
trapped atoms, whose internal degrees of freedom are driven in a
-shaped configuration with the lasers tuned at two-photon resonance.
In the Lamb-Dicke regime, when the motional wave packet is well localized over
the laser wavelenght, transient coherent population trapping occurs, cancelling
transitions at the laser frequency. In this limit the motion can be efficiently
cooled to the ground state of the trapping potential. We derive an equation for
the center-of-mass motion by adiabatically eliminating the internal degrees of
freedom. This treatment provides the theoretical background of the scheme
presented in [G. Morigi {\it et al}, Phys. Rev. Lett. {\bf 85}, 4458 (2000)]
and implemented in [C.F. Roos {\it et al}, Phys. Rev. Lett. {\bf 85}, 5547
(2000)]. We discuss the physical mechanisms determining the dynamics and
identify new parameters regimes, where cooling is efficient. We discuss
implementations of the scheme to cases where the trapping potential is not
harmonic.Comment: 11 pages, 3 figure
Resonance fluorescence of a trapped three-level atom
We investigate theoretically the spectrum of resonance fluorescence of a
harmonically trapped atom, whose internal transitions are --shaped and
driven at two-photon resonance by a pair of lasers, which cool the
center--of--mass motion. For this configuration, photons are scattered only due
to the mechanical effects of the quantum interaction between light and atom. We
study the spectrum of emission in the final stage of laser--cooling, when the
atomic center-of-mass dynamics is quantum mechanical and the size of the wave
packet is much smaller than the laser wavelength (Lamb--Dicke limit). We use
the spectral decomposition of the Liouville operator of the master equation for
the atomic density matrix and apply second order perturbation theory. We find
that the spectrum of resonance fluorescence is composed by two narrow sidebands
-- the Stokes and anti-Stokes components of the scattered light -- while all
other signals are in general orders of magnitude smaller. For very low
temperatures, however, the Mollow--type inelastic component of the spectrum
becomes visible. This exhibits novel features which allow further insight into
the quantum dynamics of the system. We provide a physical model that interprets
our results and discuss how one can recover temperature and cooling rate of the
atom from the spectrum. The behaviour of the considered system is compared with
the resonance fluorescence of a trapped atom whose internal transition consists
of two-levels.Comment: 11 pages, 4 Figure
Instability of Myelin Tubes under Dehydration: deswelling of layered cylindrical structures
We report experimental observations of an undulational instability of myelin
figures. Motivated by this, we examine theoretically the deformation and
possible instability of concentric, cylindrical, multi-lamellar membrane
structures. Under conditions of osmotic stress (swelling or dehydration), we
find a stable, deformed state in which the layer deformation is given by \delta
R ~ r^{\sqrt{B_A/(hB)}}, where B_A is the area compression modulus, B is the
inter-layer compression modulus, and h is the repeat distance of layers. Also,
above a finite threshold of dehydration (or osmotic stress), we find that the
system becomes unstable to undulations, first with a characteristic wavelength
of order \sqrt{xi d_0}, where xi is the standard smectic penetration depth and
d_0 is the thickness of dehydrated region.Comment: 5 pages + 3 figures [revtex 4
A quantum-like description of the planetary systems
The Titius-Bode law for planetary distances is reviewed. A model describing
the basic features of this rule in the "quantum-like" language of a wave
equation is proposed. Some considerations about the 't Hooft idea on the
quantum behaviour of deterministic systems with dissipation are discussed.Comment: LaTex file, 17 pages, no figures. Version published in Foundations of
Physics, August 200
The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling.
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere
Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps
We discuss the experimental feasibility of quantum simulation with trapped
ion crystals, using magnetic field gradients. We describe a micro structured
planar ion trap, which contains a central wire loop generating a strong
magnetic gradient of about 20 T/m in an ion crystal held about 160 \mu m above
the surface. On the theoretical side, we extend a proposal about spin-spin
interactions via magnetic gradient induced coupling (MAGIC) [Johanning, et al,
J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154009]. We describe aspects where
planar ion traps promise novel physics: Spin-spin coupling strengths of
transversal eigenmodes exhibit significant advantages over the coupling schemes
in longitudinal direction that have been previously investigated. With a chip
device and a magnetic field coil with small inductance, a resonant enhancement
of magnetic spin forces through the application of alternating magnetic field
gradients is proposed. Such resonantly enhanced spin-spin coupling may be used,
for instance, to create Schr\"odinger cat states. Finally we investigate
magnetic gradient interactions in two-dimensional ion crystals, and discuss
frustration effects in such two-dimensional arrangements.Comment: 20 pages, 13 figure
- …
