768 research outputs found

    Kullback-Leibler and Renormalized Entropy: Applications to EEGs of Epilepsy Patients

    Full text link
    Recently, renormalized entropy was proposed as a novel measure of relative entropy (P. Saparin et al., Chaos, Solitons & Fractals 4, 1907 (1994)) and applied to several physiological time sequences, including EEGs of patients with epilepsy. We show here that this measure is just a modified Kullback-Leibler (K-L) relative entropy, and it gives similar numerical results to the standard K-L entropy. The latter better distinguishes frequency contents of e.g. seizure and background EEGs than renormalized entropy. We thus propose that renormalized entropy might not be as useful as claimed by its proponents. In passing we also make some critical remarks about the implementation of these methods.Comment: 15 pages, 4 Postscript figures. Submitted to Phys. Rev. E, 199

    White Light Interferometry for Quantitative Surface Characterization in Ion Sputtering Experiments

    Full text link
    White light interferometry (WLI) can be used to obtain surface morphology information on dimensional scale of millimeters with lateral resolution as good as ~1 {\mu}m and depth resolution down to 1 nm. By performing true three-dimensional imaging of sample surfaces, the WLI technique enables accurate quantitative characterization of the geometry of surface features and compares favorably to scanning electron and atomic force microscopies by avoiding some of their drawbacks. In this paper, results of using the WLI imaging technique to characterize the products of ion sputtering experiments are reported. With a few figures, several example applications of the WLI method are illustrated when used for (i) sputtering yield measurements and time-to-depth conversion, (ii) optimizing ion beam current density profiles, the shapes of sputtered craters, and multiple ion beam superposition and (iii) quantitative characterization of surfaces processed with ions. In particular, for sputter depth profiling experiments of 25Mg, 44Ca and 53Cr ion implants in Si (implantation energy of 1 keV per nucleon), the depth calibration of the measured depth profile curves determined by the WLI method appeared to be self-consistent with TRIM simulations for such projectile-matrix systems. In addition, high depth resolution of the WLI method is demonstrated for a case of a Genesis solar wind Si collector surface processed by gas cluster ion beam: a 12.5 nm layer was removed from the processed surface, while the transition length between the processed and untreated areas was 150 {\mu}m.Comment: Applied Surface Science, accepted: 7 pages and 8 figure

    Is there an association between airborne and surface microbes in the critical care environment?

    Get PDF
    BackgroundThere are few data and no accepted standards for air quality in the intensive care unit (ICU). Any relationship between airborne pathogens and hospital-acquired infection (HAI) risk in the ICU remains unknown.AimFirst, to correlate environmental contamination of air and surfaces in the ICU; second, to examine any association between environmental contamination and ICU-acquired staphylococcal infection.MethodsPatients, air, and surfaces were screened on 10 sampling days in a mechanically ventilated 10-bed ICU for a 10-month period. Near-patient hand-touch sites (N = 500) and air (N = 80) were screened for total colony count and Staphylococcus aureus. Air counts were compared with surface counts according to proposed standards for air and surface bioburden. Patients were monitored for ICU-acquired staphylococcal infection throughout.FindingsOverall, 235 of 500 (47%) surfaces failed the standard for aerobic counts (≤2.5 cfu/cm2). Half of passive air samples (20/40: 50%) failed the ‘index of microbial air’ contamination (2 cfu/9 cm plate/h), and 15/40 (37.5%) active air samples failed the clean air standard

    Proposed measurement of tagged deep inelastic scattering in Hall A of Jefferson lab

    Get PDF
    A tagged deep inelastic scattering (TDIS) experiment is planned for Hall A of Jefferson Lab, which will probe the mesonic content of the nucleon directly. Low momentum recoiling (and spectator) protons will be measured in coincidence with electrons scattered in a deep inelastic regime from hydrogen (and deuterium) targets, covering kinematics of 8 < W2 < 18 GeV2, 1 < Q2 < 3 (GeV/c)2 and 0.05 < x < 0.2. The tagging technique will help identify scattering from partons in the meson cloud and provide access to the pion structure function via the Sullivan process. The experiment will yield the first TDIS results in the valence regime, for both proton and neutron targets. We present here an overview of the experiment

    Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor

    Get PDF
    We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2= 0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/- 0.58(sys)ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Superconductivity in the two dimensional Hubbard Model.

    Full text link
    Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (pi,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favouring superconductivity. However the mechanism for superconductivity is a local one, in contrast to spin fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature T_c is in the range 10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c) ~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11. Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file, (self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95

    Experimental evidence for 56Ni-core breaking from the low-spin structure of the N=Z nucleus 58Cu

    Get PDF
    Low-spin states in the odd-odd N=Z nucleus 58Cu were investigated with the 58Ni(p,n gamma)58Cu fusion evaporation reaction at the FN-tandem accelerator in Cologne. Seventeen low spin states below 3.6 MeV and 17 new transitions were observed. Ten multipole mixing ratios and 17 gamma-branching ratios were determined for the first time. New detailed spectroscopic information on the 2+,2 state, the Isobaric Analogue State (IAS) of the 2+,1,T=1 state of 58Ni, makes 58Cu the heaviest odd-odd N=Z nucleus with known B(E2;2+,T=1 --> 0+,T=1) value. The 4^+ state at 2.751 MeV, observed here for the first time, is identified as the IAS of the 4+,1,T=1 state in 58Ni. The new data are compared to full pf-shell model calculations with the novel GXPF1 residual interaction and to calculations within a pf5/2 configurational space with a residual surface delta interaction. The role of the 56Ni core excitations for the low-spin structure in 58Cu is discussed.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
    corecore