1,804 research outputs found
On dominant contractions and a generalization of the zero-two law
Zaharopol proved the following result: let T,S:L^1(X,{\cf},\m)\to
L^1(X,{\cf},\m) be two positive contractions such that . If
then for all n\in\bn. In the present paper we
generalize this result to multi-parameter contractions acting on . As an
application of that result we prove a generalization of the "zero-two" law.Comment: 10 page
Stabilization of Hydrodynamic Flows by Small Viscosity Variations
Motivated by the large effect of turbulent drag reduction by minute
concentrations of polymers we study the effects of a weakly space-dependent
viscosity on the stability of hydrodynamic flows. In a recent Letter [Phys.
Rev. Lett. {\bf 87}, 174501, (2001)] we exposed the crucial role played by a
localized region where the energy of fluctuations is produced by interactions
with the mean flow (the "critical layer"). We showed that a layer of weakly
space-dependent viscosity placed near the critical layer can have a very large
stabilizing effect on hydrodynamic fluctuations, retarding significantly the
onset of turbulence. In this paper we extend these observation in two
directions: first we show that the strong stabilization of the primary
instability is also obtained when the viscosity profile is realistic (inferred
from simulations of turbulent flows with a small concentration of polymers).
Second, we analyze the secondary instability (around the time-dependent primary
instability) and find similar strong stabilization. Since the secondary
instability develops around a time-dependent solution and is three-dimensional,
this brings us closer to the turbulent case. We reiterate that the large effect
is {\em not} due to a modified dissipation (as is assumed in some theories of
drag reduction), but due to reduced energy intake from the mean flow to the
fluctuations. We propose that similar physics act in turbulent drag reduction.Comment: 10 pages, 17 figs., REVTeX4, PRE, submitte
Spectral functions of the Falicov-Kimball model with electronic ferroelectricity
We calculate the angular resolved photoemission spectrum of the
Falicov-Kimball model with electronic ferroelectricity where - and
-electrons have different hoppings. In mix-valence regimes, the presence of
strong scattering processes between - excitons and a hole, created by
emission of an electron, leads to the formation of pseudospin polarons and
novel electronic structures with bandwidth scaling with that of -
excitons. Especially, in the two-dimensional case, we find that flat regions
exist near the bottom of the quasiparticle band in a wide range of the - and
-level energy difference.Comment: 5 pages, 5 figure
How quantum bound states bounce and the structure it reveals
We investigate how quantum bound states bounce from a hard surface. Our
analysis has applications to ab initio calculations of nuclear structure and
elastic deformation, energy levels of excitons in semiconductor quantum dots
and wells, and cold atomic few-body systems on optical lattices with sharp
boundaries. We develop the general theory of elastic reflection for a composite
body from a hard wall. On the numerical side we present ab initio calculations
for the compression of alpha particles and universal results for two-body
states. On the analytical side we derive a universal effective potential that
gives the reflection scattering length for shallow two-body states.Comment: final publication version, new lattice results on alpha particle
compression, 5 pages, 2 figure
Independent Eigenstates of Angular Momentum in a Quantum N-body System
The global rotational degrees of freedom in the Schr\"{o}dinger equation for
an -body system are completely separated from the internal ones. After
removing the motion of center of mass, we find a complete set of
independent base functions with the angular momentum . These are
homogeneous polynomials in the components of the coordinate vectors and the
solutions of the Laplace equation, where the Euler angles do not appear
explicitly. Any function with given angular momentum and given parity in the
system can be expanded with respect to the base functions, where the
coefficients are the functions of the internal variables. With the right choice
of the base functions and the internal variables, we explicitly establish the
equations for those functions. Only (3N-6) internal variables are involved both
in the functions and in the equations. The permutation symmetry of the wave
functions for identical particles is discussed.Comment: 24 pages, no figure, one Table, RevTex, Will be published in Phys.
Rev. A 64, 0421xx (Oct. 2001
Recent developments in planet migration theory
Planetary migration is the process by which a forming planet undergoes a
drift of its semi-major axis caused by the tidal interaction with its parent
protoplanetary disc. One of the key quantities to assess the migration of
embedded planets is the tidal torque between the disc and planet, which has two
components: the Lindblad torque and the corotation torque. We review the latest
results on both torque components for planets on circular orbits, with a
special emphasis on the various processes that give rise to additional, large
components of the corotation torque, and those contributing to the saturation
of this torque. These additional components of the corotation torque could help
address the shortcomings that have recently been exposed by models of planet
population syntheses. We also review recent results concerning the migration of
giant planets that carve gaps in the disc (type II migration) and the migration
of sub-giant planets that open partial gaps in massive discs (type III
migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal
effects in Astronomy and Astrophysics", Lecture Notes in Physic
Ferromagnetism without flat bands in thin armchair nanoribbons
Describing by a Hubbard type of model a thin armchair graphene ribbon in the
armchair hexagon chain limit, one shows in exact terms, that even if the system
does not have flat bands at all, at low concentration a mesoscopic sample can
have ferromagnetic ground state, being metallic in the same time. The mechanism
is connected to a common effect of correlations and confinement.Comment: 37 pages, 12 figures, in press at Eur. Phys. Jour.
Phase diagram of the one-dimensional extended attractive Hubbard model for large nearest-neighbor repulsion
We consider the extended Hubbard model with attractive on-site interaction U
and nearest-neighbor repulsions V. We construct an effective Hamiltonian
H_{eff} for hopping t<<V and arbitrary U<0. Retaining the most important terms,
H_{eff} can be mapped onto two XXZ models, solved by the Bethe ansatz. The
quantum phase diagram shows two Luttinger liquid phases and a region of phase
separation between them. For density n<0.422 and U<-4, singlet superconducting
correlations dominate at large distances. For some parameters, the results are
in qualitative agreement with experiments in BaKBiO.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
Modeling realistic Earth matter density for CP violation in neutrino oscillation
We examine the effect of a more realistic Earth matter density model which
takes into account of the local density variations along the baseline of a
possi ble 2100 km very long baseline neutrino oscillation experiment. Its
influence to the measurement of CP violation is investigated and a comparison
with the commonly used global density models made. Significant differences are
found in the comparison of the results of the different density models.Comment: 16 pages, 8 figure
Alternative Fourier Expansions for Inverse Square Law Forces
Few-body problems involving Coulomb or gravitational interactions between
pairs of particles, whether in classical or quantum physics, are generally
handled through a standard multipole expansion of the two-body potentials. We
discuss an alternative based on a compact, cylindrical Green's function
expansion that should have wide applicability throughout physics. Two-electron
"direct" and "exchange" integrals in many-electron quantum systems are
evaluated to illustrate the procedure which is more compact than the standard
one using Wigner coefficients and Slater integrals.Comment: 10 pages, latex/Revtex4, 1 figure
- …
