560 research outputs found

    Asymptotic adaptive methods for multi-scale problems in fluid mechanics

    Get PDF
    This paper reports on the results of a three-year research effort aimed at investigating and exploiting the role of physically motivated asymptotic analysis in the design of numerical methods for singular limit problems in fluid mechanics. Such problems naturally arise, among others, in combustion, magneto-hydrodynamics and geophysical fluid mechanics. Typically, they are characterized by multiple space and/or time scales and by the disturbing fact that standard computational techniques fail entirely, are unacceptably expensive, or both. The challenge here is to construct numerical methods which are robust, uniformly accurate, and efficient through different asymptotic regimes and over a wide range of relevant applications. Summaries of multiple scales asymptotic analyses for low Mach number flows, magnetohydrodynamics at small Mach and Alfv´en numbers, and of multiple scales atmospheric flows are provided. These reveal singular balances between selected terms in the respective governing equations within the considered flow regimes. These singularities give rise to problems of severe stiffness, stability, or to dynamic range issues in straightforward numerical discretizations. Aformal mathematical framework for the multiple scales asymptotics is then summarized using the example of multiple length scale – single time scale asymptotics for low Mach number flows. The remainder of the paper focuses on the construction of numerical discretizations for the respective full governing equation systems. These discretizations avoid the pitfalls of singular balances by exploiting the asymptotic results. Importantly, the asymptotics are not used here to derive simplified equation systems, which are then solved numerically. Rather, we aim at numerically integrating the full equation sets and at using the asymptotics only to construct discretizations that do not deteriorate as a singular limit is approached. One important ingredient of this strategy is the numerical identification of a singular limit regime given a set of discrete numerical state variables. This problem is addressed in an exemplary fashion for multiple length – single time scale low Mach number flows in one space dimension. The strategy allows a dynamic determination of an instantaneous relevant Mach number, and it can thus be used to drive the appropriate adjustment of the numerical discretizations when the singular limit regime is approached

    Genetic diversity and coefficient of parentage between clones and sugarcane varieties in Brazil

    Get PDF
    The success of the development of new sugarcane varieties is associated with the ability to correctly select the genitor. The aim of this study was to evaluate the genetic diversity between 113 clones and sugarcane varieties using the Ward-modified location model procedure with added information about the coefficient of parentage and endogamy. In this study, data was used from 100 experiments that evaluated clones; the experimental phase was conducted in 70 places between the years 2002 and 2009 on the outlining in random blocks. According to the diversity analysis, 3 groups formed: G1, G2, and G3, which were composed of 58, 8, and 47 genotypes, respectively. The clones of groups G1 and G3 were the most outstanding. Thus, biparental crossbreeding involving clones and varieties of these 2 groups can efficiently obtain transgressive genotypes. Knowledge of the heterotypic groups indicated by the Ward-modified location model method, along with the parentage information, will make it a lot easier to define the desirable and undesirable crossbreeds for public and private breeding programs that develop sugarcane varieties

    Blending chitosan-g-poly(caprolactone) with poly(caprolactone) by electrospinning to produce functional fiber mats for tissue engineering applications

    Get PDF
    Use of electrospun fiber mats for tissue engineering applications has become increasingly prominent. One of the most important polymers in research, poly(ε-caprolactone) (PCL), however, lacks biological performance, easy access to modifications and cellular recognition sites. To improve these properties and to enable further modifications, PCL was blended with chitosan grafted with PCL (CS-g-PCL) and subsequently processed via electrospinning. In this way, chitosan was enriched at the fiber's surface presenting cationic amino groups. The fiber mats were analyzed by various techniques such as scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and X-ray photoelectron spectroscopy (XPS). Furthermore, analyzing thermal properties and crystallinity, showed that an increased content of CS-g-PCL in blend composition leads to a higher overall crystallinity in produced fiber mats. Blending CS-g-PCL into PCL significantly increased initial cellular attachment and proliferation as well as cell vitality, while maintaining adequate mechanical properties, fiber diameter, and interstitial volume. As proof of principle for easy access to further modification, fluorescently labeled alginate (Alg-FA) was attached to the fiber's surface and verified by CLSM. Hence, blending CS-g-PCL with PCL can overcome an inherent weakness of PCL and create bioactive implants for tissue engineering applications. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 137, 48650. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc

    Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum

    Full text link
    High-gain resonant nonlinear Raman scattering on trapped cold atoms within a high-fineness ring optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap on atom chip is presented. The enhancement of scattering spectrum is due to a coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms through nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure

    Association between genetic variants of the cholinergic system and postoperative delirium and cognitive dysfunction in elderly patients

    Get PDF
    BACKGROUND: Postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) are frequent and serious complications after surgery. We aim to investigate the association between genetic variants in cholinergic candidate genes according to the Kyoto encyclopedia of genes and genomes - pathway: cholinergic neurotransmission with the development of POD or POCD in elderly patients. METHODS: This analysis is part of the European BioCog project ( www.biocog.eu ), a prospective multicenter observational study with elderly surgical patients. Patients with a Mini-Mental-State-Examination score ≤ 23 points were excluded. POD was assessed up to seven days after surgery using the Nursing Delirium Screening Scale, Confusion Assessment Method and a patient chart review. POCD was assessed three months after surgery with a neuropsychological test battery. Genotyping was performed on the Illumina Infinium Global Screening Array. Associations with POD and POCD were analyzed using logistic regression analysis, adjusted for age, comorbidities and duration of anesthesia (for POCD analysis additionally for education). Odds ratios (OR) refer to minor allele counts (0, 1, 2). RESULTS: 745 patients could be included in the POD analysis, and 452 in the POCD analysis. The rate of POD within this group was 20.8% (155 patients), and the rate of POCD was 10.2% (46 patients). In a candidate gene approach three genetic variants of the cholinergic genes CHRM2 and CHRM4 were associated with POD (OR [95% confidence interval], rs8191992: 0.61[0.46; 0.80]; rs8191992: 1.60[1.22; 2.09]; rs2067482: 1.64[1.10; 2.44]). No associations were found for POCD. CONCLUSIONS: We found an association between genetic variants of CHRM2 and CHRM4 and POD. Further studies are needed to investigate whether disturbances in acetylcholine release and synaptic plasticity are involved in the development of POD

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
    corecore