1,259 research outputs found

    Predicting the population viability of an endangered amphibian under environmental and demographic uncertainty

    Get PDF
    Population viability analyses (PVAs) represent a key component of many recovery plans for threatened and endangered species. Demography links the processes that affect individuals to population-level patterns, and hence projections constructed from demographic data are the most common tools for PVAs. We constructed a size-structured integral projection model (IPM) for the United States federally endangered Reticulated Flatwoods Salamander, Ambystoma bishopi, to evaluate demographic influences on population growth and predict the efficacy of future management actions. Flatwoods salamanders breed in ephemeral wetlands in the Southeastern United States. The ephemeral nature of breeding sites can result in complete recruitment failure in drought years when wetlands fail to fill, or dry before metamorphosis occurs. As a result, this species exhibits marked temporal variability in vital rates that must be accounted for in projection models. We constructed a stochastic IPM using 13 years of mark-recapture data (2010–2023) from two breeding wetlands. Variable survival rates exhibited by flatwoods salamanders, coupled with a high probability of recruitment failure, result in a low predicted probability of population persistence. Sensitivity analyses revealed age at maturity and the frequency of recruitment exerted the greatest influence on population growth, and thus managers should prioritize conservation efforts that target these demographic processes. Additional management should consider strategies to dampen temporal variability in larval survival, something that could be achieved through emergency salvage operations, captive rearing efforts, and manipulation of wetland hydroperiods

    The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil

    Full text link
    The critical-velocity behavior of oscillatory superfluid Helium-4 flow through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during which the frequency remained below 400 Hz, the critical velocity was a nearly-linearly decreasing function of increasing temperature throughout the region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi phase slips could be observed at the onset of dissipation. In runs with frequencies higher than 400 Hz, downward curvature was observed in the decrease of critical velocity with increasing temperature. In addition, above 500 Hz an alteration in supercritical behavior was seen at the lower temperatures, involving the appearance of large energy-loss events. These irregular events typically lasted a few tens of half-cycles of oscillation and could involve hundreds of times more energy loss than would have occurred in a single complete 2 Pi phase slip at maximum flow. The temperatures at which this altered behavior was observed rose with frequency, from ~ 0.6 K and below, at 500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203

    Space-time evolution of hadronization

    Get PDF
    Beside its intrinsic interest for the insights it can give into color confinement, knowledge of the space-time evolution of hadronization is very important for correctly interpreting jet-quenching data in heavy ion collisions and extracting the properties of the produced medium. On the experimental side, the cleanest environment to study the space-time evolution of hadronization is semi-inclusive Deeply Inelastic Scattering on nuclear targets. On the theoretical side, 2 frameworks are presently competing to explain the observed attenuation of hadron production: quark energy loss (with hadron formation outside the nucleus) and nuclear absorption (with hadronization starting inside the nucleus). I discuss recent observables and ideas which will help to distinguish these 2 mechanisms and to measure the time scales of the hadronization process.Comment: 6 pages, 4 figures. Based on talks given at "Hot Quarks 2006", Villasimius, Italy, May 15-20, 2006, and at the "XLIV internataional winter meeting on nuclear physics", Bormio, Italy, Jan 29 - Feb 5, 2006. To appear in Eur.Phys.J.

    Epistemic and social scripts in computer-supported collaborative learning

    Get PDF
    Collaborative learning in computer-supported learning environments typically means that learners work on tasks together, discussing their individual perspectives via text-based media or videoconferencing, and consequently acquire knowledge. Collaborative learning, however, is often sub-optimal with respect to how learners work on the concepts that are supposed to be learned and how learners interact with each other. One possibility to improve collaborative learning environments is to conceptualize epistemic scripts, which specify how learners work on a given task, and social scripts, which structure how learners interact with each other. In this contribution, two studies will be reported that investigated the effects of epistemic and social scripts in a text-based computer-supported learning environment and in a videoconferencing learning environment in order to foster the individual acquisition of knowledge. In each study the factors ‘epistemic script’ and ‘social script’ have been independently varied in a 2×2-factorial design. 182 university students of Educational Science participated in these two studies. Results of both studies show that social scripts can be substantially beneficial with respect to the individual acquisition of knowledge, whereas epistemic scripts apparently do not to lead to the expected effects

    Mapping net blotch resistance in ‘Nomini’ and CIho 2291 barley

    Get PDF
    Net blotch (Pyrenophora teres) is one of the most devastating diseases of barley (Hordeum vulgare L.) worldwide. Identification of diagnostic molecular markers associated with genes and quantitative trait loci (QTL) for net blotch resistance will facilitate pyramiding of independent genes. Linkage mapping was used to identify chromosomal locations of the independent, dominant genes conditioning net blotch resistance in the winter barley ‘Nomini’ (PI 566929) and spring barley CIho 2291. The F2 populations of 238 and 193 individuals, derived from crosses between the susceptible spring barley parent ‘Hector’ (CIho 15514) and the resistant parents Nomini and CIho 2291, respectively, were used to map the genes governing resistance in the resistant parents. The dominant gene governing resistance in Nomini, temporarily designated Rpt-Nomini, was mapped to a 9.2-cM region of barley chromosome 6H between the flanking microsatellite markers Bmag0344a (r2 = 0.7) and Bmag0103a (r2 = 0.9), which were 6.8 and 2.4 cM away from Rpt-Nomini, respectively. The dominant gene governing resistance in CIho 2291, temporarily designated Rpt-CIho2291, was mapped to a 34.3-cM interval on the distal region of barley chromosome 6H between the flanking microsatellite markers Bmag0173 (r2 = 0.65) and Bmag0500 (r2 = 0.26), which were 9.9 and 24.4 cM away from Rpt-CIho2291, respectively. Identification of the chromosomal location of Rpt-Nomini and Rpt-CIho2291 will facilitate efforts in pyramiding multiple genes for net blotch resistance

    Search for the lepton-family-number nonconserving decay \mu -> e + \gamma

    Full text link
    The MEGA experiment, which searched for the muon- and electron-number violating decay \mu -> e + \gamma, is described. The spectrometer system, the calibrations, the data taking procedures, the data analysis, and the sensitivity of the experiment are discussed. The most stringent upper limit on the branching ratio of \mu -> e + \gamma) < 1.2 x 10^{-11} was obtained

    Hydrophobic and ionic-interactions in bulk and confined water with implications for collapse and folding of proteins

    Full text link
    Water and water-mediated interactions determine thermodynamic and kinetics of protein folding, protein aggregation and self-assembly in confined spaces. To obtain insights into the role of water in the context of folding problems, we describe computer simulations of a few related model systems. The dynamics of collapse of eicosane shows that upon expulsion of water the linear hydrocarbon chain adopts an ordered helical hairpin structure with 1.5 turns. The structure of dimer of eicosane molecules has two well ordered helical hairpins that are stacked perpendicular to each other. As a prelude to studying folding in confined spaces we used simulations to understand changes in hydrophobic and ionic interactions in nano droplets. Solvation of hydrophobic and charged species change drastically in nano water droplets. Hydrophobic species are localized at the boundary. The tendency of ions to be at the boundary where water density is low increases as the charge density decreases. Interaction between hydrophobic, polar, and charged residue are also profoundly altered in confined spaces. Using the results of computer simulations and accounting for loss of chain entropy upon confinement we argue and then demonstrate, using simulations in explicit water, that ordered states of generic amphiphilic peptide sequences should be stabilized in cylindrical nanopores

    Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

    Get PDF
    Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results

    Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    Full text link
    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
    • …
    corecore