13,109 research outputs found
Correlated Spectral and Temporal Variability in the High-Energy Emission from Blazars
Blazar flare data show energy-dependent lags and correlated variability
between optical/X-ray and GeV-TeV energies, and follow characteristic
trajectories when plotted in the spectral-index/flux plane. This behavior is
qualitatively explained if nonthermal electrons are injected over a finite time
interval in the comoving plasma frame and cool by radiative processes.
Numerical results are presented which show the importance of the effects of
synchrotron self-Compton cooling and plasmoid deceleration. The use of INTEGRAL
to advance our understanding of these systems is discussed.Comment: 8 pages, 5 figures, uses epsf.sty, rotate.sty Invited paper in "The
Extreme Universe," 3rd INTEGRAL Workshop, 14-18 September 1998, Taorimina,
Ital
On Error Torques of Squeeze-film Cylindrical Journal Bearings
Error torques of squeeze film cylindrical journal bearing
The Mechanical Impact of the Tibetan Plateau on the Seasonal Evolution of the South Asian Monsoon
The impact of the Tibetan Plateau on the South Asian monsoon is examined using a hierarchy of atmospheric general circulation models. During the premonsoon season and monsoon onset (AprilāJune), when westerly winds over the Southern Tibetan Plateau are still strong, the Tibetan Plateau triggers early monsoon rainfall downstream, particularly over the Bay of Bengal and South China. The downstream moist convection is accompanied by strong monsoonal low-level winds. In experiments where the Tibetan Plateau is removed, monsoon onset occurs about a month later, but the monsoon circulation becomes progressively stronger and reaches comparable strength during the mature phase. During the mature and decaying phase of monsoon (JulyāSeptember), when westerly winds over the Southern Tibetan Plateau almost disappear, monsoon circulation strength is not much affected by the presence of the Tibetan Plateau.
A dry dynamical core with eastāwest-oriented narrow mountains in the subtropics consistently simulates downstream convergence with background zonal westerlies over the mountain. In a moist atmosphere, the mechanically driven downstream convergence is expected to be associated with significant moisture convergence. The authors speculate that the mechanically driven downstream convergence in the presence of the Tibetan Plateau is responsible for zonally asymmetric monsoon onset, particularly over the Bay of Bengal and South China
Populations of European corn borer, Ostrinia nubilalis (Hbn.) in field corn, Zea mays (L.)
Agricultural Experiment Stations of Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, North Dakota, South Dakota, Nebraska, Wisconsin, Ohio, and KansasDigitized 2007 AES.Includes bibliographical references (page 60)
On the slowly time dependent problem of squeeze film bearings
Time dependency of spherical squeeze-film bearing for use in suspension of precision gyroscope outpu
Unitary chiral dynamics in decays into and the role of the scalar mesons
We make a theoretical study of the \J decays into ,
, and using the techniques of
the chiral unitary approach stressing the important role of the scalar
resonances dynamically generated through the final state interaction of the two
pseudoscalar mesons. We also discuss the importance of new mechanisms with
intermediate exchange of vector and axial-vector mesons and the role played by
the OZI rule in the \J\phi\pi\pi vertex, quantifying its effects. The results
nicely reproduce the experimental data for the invariant mass distributions in
all the channels considered.Comment: Prepared for the 10th International Symposium on Meson-Nucleon
Physics and the Structure of the Nucleo
Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks
This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc
wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints.
By dual decomposition, the resource allocation problem
naturally decomposes into three subproblems: congestion control,
routing and scheduling that interact through congestion price.
The global convergence property of this algorithm is proved. We
next extend the dual algorithm to handle networks with timevarying
channels and adaptive multi-rate devices. The stability
of the resulting system is established, and its performance is
characterized with respect to an ideal reference system which
has the best feasible rate region at link layer.
We then generalize the aforementioned results to a general
model of queueing network served by a set of interdependent
parallel servers with time-varying service capabilities, which
models many design problems in communication networks. We
show that for a general convex optimization problem where a
subset of variables lie in a polytope and the rest in a convex set,
the dual-based algorithm remains stable and optimal when the
constraint set is modulated by an irreducible finite-state Markov
chain. This paper thus presents a step toward a systematic way
to carry out cross-layer design in the framework of ālayering as
optimization decompositionā for time-varying channel models
- ā¦