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ABSTRACT 2 é/'? Q;f‘)

The stability and vibration response of a spherical squeeze-film hybrid bearing
were analyzed theoretically. Since the squeeze frequency is typically much
higher than the vibration frequency, the asymptotic amalysis for large squeeze
number can be applied here. Perturbation solutions about the radially concen-
tric position were obtained for small vibration amplitudes and small radial
displacement. There is no limitation, however, in the values of vibration
number, (so long as it is small in comparison with the squeeze number), compressi-
bility number, axial displacement ratio and excursion ratio. Dynamic bearing
reactions were computed based on the perturbation solutions. Results indicate
that a spherical squeeze-film bearing is always stable in the axial direction.

In the radial direction, however, instability about the radially concentric
position is possible when there is journmal rotation; the frequency of instability
is exactly one half the rotational frequency; the system would be stable if the

mass is kept below the critical value.

The analysis can be readily extended to compute the response to vibratory

excitation in either the axial or the radial direction.

Vi axlld
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INTRODUCTION

As in all other suspension systems, the dynamic characteristics of a squeeze-
film bearing must be considered in order to determine its response to dynamic
excitations such as shock load, random excitation, and stability. In squeeze-
film bearings the problem is peculiar because the squeeze motion provides a
built-in time-dependence in spite of any additional time dependence related

to the dynamic excitations. Fortunately, under typical circumstances of interest,
the duration of squeeze motion is at least one order of magnitude smaller than
the time scale of the dynamic excitation. For example,the squeeze motion may

be at 25 kHz where as the duration of a shock load may be about 0.001 sec.

The situation is similar to a frequency modulated signal with the squeeze motion
being analogous to the high frequency carrier. Elrod postulated that the two
time scales are separable.(His derivation is given in Appendix B.) Thus the
motion due to dynamic excitation can be treated as quasi-static during each
cycle of squeeze motion. Averaging over a cycle of squeeze-motion, he derived
the governing equation and established the appropriate boundary conditions for
the 'slow time dependent problem' assuming that the frequency of squeeze-motion
is infinitely high. This equation places no restriction on either the amplitudes
or the type of time dependence. However, a large class of dynamic problems of
practical interest is related to simple, harmonic motions of small amplitudes;
for instance, one is generally interested in the frequency response for the
range 20 Hz - 2 kHz, from which responses to random and impulse excitations can
be constructed with the aid of Fourier transformations, and the onset of self-
excited instability can also be determined. For this reason, we give particular
attention to the golution of Elrod's equation for small amplitude harmonic

motions.

The spherical squeeze-film bearing has become a leading candidate for the sus-
pension of the output of a precision gyroscope. Its advantages include relative
ease in manufacturing, freedom from need for critical alignment, and its

adaptability to an effective transducer design. Of particular interest is



a pair of spherical bearings having their squeeze motion provided by an

axial transducer. As a first approximation, the squeeze motion of the bearing
can be regarded to be uniform and purely axial. Elrod's equation will be solved
for such a bearing under the condition that a “low frequency' harmonic motion
of small amplitude corresponding to a dynamic response of the float is super-

imposed on the "high frequency'" squeeze motion.




2. ANALYSIS

In analyzing the stability and vibration response of a squeeze-film bearing,

it is essential to have information about the dynamic bearing reactions from

gas film pressure forces due to perturbed periodic motion of the jourmal.

2.1. Basic Equations

Let us consider the isothermal Reynolds' Equation

bearing with meridian journal angular speed w and
9 | 9P
sing g—¢ [sincb 3 P 93—} + —= (B} ——}

2

@

where ¥ = PH . .« o e .

We have used the spherical coordinates with 6 and

of a spherical squeeze-film

squeeze frequency 2 (Ref. 1)

B ¢S
R )

$ the meridianal and azimu-

thal angles respectively. The bearing extends in the ¢-direction from ¢1 to

¢, (see Fig. 1).

Aside from the squeeze frequency 2, the bearing may have a radial vibration

frequency (or whirl speed) v, and an axial vibration frequency v, Both the

squeeze motion and vibrations contribute to the time dependence of. the

problem. Hence, we can write formally:

¥ = ¥ (¢,0,T,T) « « ¢ o ¢ o ¢ o v o o o

where
T = vt
T = Qt
v = vibration frequency | * ° ° " * " °
(axial or radial)
Thus
aY _ 3 AT ¥ dr
ot aT dt dt dt ettt

Substituting (2.5) into Equation (2.1) we obtain:

S ¢ 2)

(2.3.)

(2.4.)



T J 3 26
- ein? LI B T
sin® ¢ { A 58 + 5T + 0 P } v B Y
where -
v uw (R 2
A = compressibility number = — T
Pa
2
t = vibration number = LZuv (R R ¢ )
P,, \C
_ 12u0%(R\?
0 = squeeze number = =
p, |C

In this manner, we have introduced separate time scales for journal vibration

(as a rigid body) and bearing squeeze motion.

We shall further assume that the squeeze motion is entirely in the axial
direction, although the general approach is equally applicable to any other
squeeze motion. We shall normalize all displacements with respect to the nominal
bearing clearance, C. Setting € = excursion ratio, Nys N = axial and radial
displacement ratio respectively, Gz = axial vibration amplitude ratio, Gx’éy =
romponents of radial vibration amplitude ratio, where x denotes the direction

of n_ and y, perpendicular to it (see Fig. 2); the normalized film gap can

be expressed as (Refs. 1 and 4)

H = H_+¢cos ¢ cos 1 e e e e s e e e s s e e e e e e e (2.8)

where

fas]
[l

1+ nz cos ¢ + nr sin ¢ cos 6
+ dz cos ¢ cos v, (t - tz) + (Gx cos B + Gy sin 6) sin ¢ cos vr(t—tr)(2.9)

t, d tr are reference times for the two respective motions.

The boundary conditions of Eq. (2.1) are

P (¢1,6, T,7) = 1 e e e e e e e e e e e e e e e e e e e e (2.10)
P (¢2,6, T,7) = 1 c et e e e e e e e e e e e e e e e e e e (2.11)
P (4,6, T,T) = P (¢, 0427, To,T) -« « « « o o o o o o o o o o & (2.12)
OP (¢,6, T,©1) _ 3P (¢, 6427, T,1T)

Y = 55 e e e e e e e e e e e e (2.13)

where T is either vz(t—tz) or vr(t—tr), since the problems of the respective motions
are separable as will be shown later. Since the squeeze frequency is typically much
higher than both the vibration frequency and the journal rotating speed, it

is of interest to study the asymptotic behavior of the solution as o>~ with A

and ¢ held fixed. We also have the relationship between the two time scales,



T v
- =3 << 1 e e et e s e e e e e e e e e e e e e e e e (2.14)

From Equation (2.14) it is obvious that when the squeeze motion completes a
cycle (1 = T, T, + 27), the vibration time T changes only by an amount of
2w %-which approaches zero as § -+ =, Therefore, with respect to the high fre-
quency squeeze motion, all vibrations are quasi-stationary. A general treatment
of this topic is given in Appendix B. Applying the results of Appendix B to

spherical squeeze-film bearings we have

as ¢ > ®, Y= ¥ (¢, 0, T) e e e e e e e e e e e e e . (2.15
where ¥_ is the asymptotic solution of ¥ for large o in the interior of the
bearing film, i.e. the whole bearing film excluding the narrow regions near the

edges (¢ = ¢1 and ¢ = ¢2). These narrow regions are called the boundary layers,
the extent of which is of the order of 1/7o.

The governing equation for ¥ _ is
8 L 2y _ 3y 2 e
sing 3% [ sin¢ oY) (H.w‘l’°° ) 3¥_“ sing Y }

8_| 3 2y _ 2y 2 OHg
* 3% [ 50 Ho¥eD) - 38,7 o5

.2 3o , 24uv 7RV 3V
sin?¢ [ZA TR > (c] n e e e e e e e e e e e e e (2.16)

with boundary conditions

(¥ 2

=g 3 3 (20082 o
¢i,95T H_ (¢i,6,T) + 5 £°cos ¢i Hw(¢i,B,T) (i=1,2) . . (2.17)

Note that we have used the identity

H3pdP =-§ d (HY?) - %- . 1 - (R ¢ £:)

2.2. Perturbation Solutions - small n_, 6 , 8§ and §
r’> 'z’ x Ty

The asymptotic solution Y _ governed by Eq. (2.16) and subject to boundary
conditions (2.17) plus the periodicity conditions in 6, will be solved in this

section. For small n_» Gz, Gx and Gy the problem may be solved by perturbation
method.




Following the ideas of Reference 5, we use the identities

cos O cos T [cos (6-T_) + cos (6+T )]
T r T

o= o

sin 8 cos Tr = [gin (e—Tr) + sin (9+Tr)]
Then Equation (2.9) becomes

H = 1 + nz cos ¢ + nr sin ¢ cos 6

[« ]

. 1 1
+ sin ¢ [2 6x cos (8 Tr) + 2 6x cos (6+Tr)

1 . 1 .
+ 2 Gy sin (6—Tr) + 2 5y sin (9+Trﬂ
+ 8 cos ¢ cos T S,
z z
where T = v_ (t-t)
r r T
z = Yz (t—tz) J

For small perturbations it is convenient to expand

-
Hm\l’i=g+n Re<\, }
< AO-Tr) o i) ‘(
3
. )
1 (6-Tp) . i(e-Ty)
- e /
{ g, ~ 1 s
+ 8 Re {e gz}. . e e e

Rewrite Eq. (2.20) in the form
H = h 4+ n_ Re {h ele>
o (¢] T 1
Re {hl e1(6-Tp) +h ei(e+Tr)>

Re { - ih e T _ g ei(e'Tr)>
1

+

<+

Mko» NINO';

iT

+ 8, Re {cos p e "2} ., ..

(2.19)

(2.20)

(2.20a)

(2.21)

(2.22)



=3
]

=2
1

1+ n, cos¢

sing

Substituting (2.21) into Equation (2.16) and noting that

v 3

w aT

we obtain

sing

sing

Cz =

A

A

13
w 3t

A (L -
I

A A+
5
lZuvz

P, C

R+ 2

The boundary conditions

(o}

J

g, (¢

g (¢i

g. (4>i

)

)

)

h_3(4,) +% h (6,) €2 cos? ¢,

2 3 2
3ho (¢i) cos¢i + < ¢

= axial vibration number

are, from Equation (2.17),

1

3
2 cos ¢i

(i =1,2).

2 3 2 2 .
3h (¢i) h1 (¢i) t3 h1 (¢i) e cos¢, (i

&
(i

(2.23)

(2.24)

(2.25)

e v« . (2.26)

. (2.27)

(2.28)

(2.29)

=1,2) (2.30)
=1,2,3,4,5)

=1,2) (2.31)




Thus, it is seen that the linearized perturbation solutions are not coupled

and the method of superposition can be applied. Any small vibrations in a direction
perpendicular to the z-axis, for instance, the Gx-term in Eq. (2.22) , may be
considered as the combination of the "forward' and “‘backward” whirls. The corre-

sponding solutions are obviously g and g (see Eq.(2.21)).
2 3

The solution g satisfying Equations (2.25) and (2.29) has been obtained in Ref. 4.
This represents the solution of an axially displaced, but radially concentric
spherical squeeze-film bearing. The solution g was also obtained in Reference 4.
The finction g5 (j = 2,3,4,5), (satisfying Eqs. (2.26) and (2.30)), differ from

g1 only in the numerical value for Aj' Therefore, knowing gl we can obtain g

(§ = 2,3,4,5) immediately using the proper numerical value for A,. Since

i
A=A and A = A , we have
2 b 3 5
g < B
2 ‘:‘ (2.32)
and =
i gy gs_]
Separating the real and imaginary parts,
- = u + iv
g1 1 1
= u + iv e e e e e e s e e e e e e e e e e e e e e (2.33)
2 2 2
i = u + iv
3 3 3

The u's and v's may be regarded as known functions using the solutions of Ref. 4

with proper values of A's.

Note that Aj may take on negative values for any v, greater than /2. Then

Eq. (2.26)together with boundary conditions (2.30) suggests that

uj (—Aj) uj (Aj)

T N 1 |

v, (—Aj)

3 . -V, (Aj)

J

The above relationships will be used later.

Since g, may be complex, we separate its real and imaginary parts,

g, = u, + v e e e e e e e e e e e e e e e e e e (2.35)



-

Then Equations (2.27) and (2.31) yield

d2uz duz Bg

o tE (¢)T¢+f2 (¢) u, + 2, h_o
d £ (¢)

=3—g¢— +3 (cot ) £ (4)

dzvz dv, g,
32 + f1 (¢) FT + f2 () v, - sz[h—o
=—§ ‘\/—?—0— Qﬂ
z7\/h h °
[o] (o]

with boundary conditioms,

- 2 3.2 3
u, (¢i) = 3 b (4;) cos ¢, + 7 €7 cos® ¢,
v, (¢ = 0
where 5 dho
f1 (¢) = - E; 0 + cot ¢
dh
= 4 (1 _ o} _ 1

f2 () =-3% h d¢) 3 (cot ¢) b

8o g cos ¢ dh
f3 (¢) =-¢ sin ¢ - —5 3%

o o

1=

=

1,2)

1,2) .

(2.36a)

(2.36b)

(2.37)

(2.38)

(2.39)

Equations (2.36a) and (2.36b) with boundary conditions (2.37) and (2.38) are to

be solved numerically using the matrix multiplication method described in

Appendix A.



3. DYNAMIC BEARING REACTIONS

Using the results of the asymptotic analysis and the perturbation solutions

of the previous section, we can calculate the dynamic bearing reactionms.

The pressure distribution of large o is related to the asymptotic solution
Y by

o _ 1 © o

H - Hw+€COS¢ CoST " e e s s o o s & o (3.1)

«©

which may be readily expanded into

_ 1 ’EQ- ié g h h
P= h + €cos¢$ cosT\V h Re 1+ nr e Ll 1
o o 2ho

Zgo ho + ecos¢ cosTt
+ ’_51 - i E.Y. o1(6-Ty) [gz - ) ! 1
\2 2 [Zg 2h h + ecos¢ COSTJ
o o
o Yy ey (B R
2 2 2go 2ho h + ecos¢ cosT
+ 5 eiTz g, _ cos¢ _ cosd (3.2)
z 2g, 2h h + ecos¢ cost R :

Equation (3.2) contains, first of all, the zeroth-order solution which represents
the axially displaced but radially concentric problem plus the contributions from
all the perturbations. Among the perturbation terms, the nr—term represents per-
turbation due to a steady-state radial displacement; the 6X and Gy terms repre-
sent perturbation due to radial vibrations; and, finally, the Gz terms represent
perturbation due to an axial vibration. All perturbations are about the radially
concentric position. It is to be noted that for small perturbations the axial

and radial vibrations are not coupled, i.e. one is not affected by the other.



3.1. Axial Dynamic Reactions

Denoting the 6z terms of (3.2) by P, we can compute the axial dynamic bearing

8z
force 20
= & 2 P (27R sing) R d
F, = o P, s, cos¢ (27R sing S ¢ T )
o ¢1
or
Fz _ 27 dt ¢, P, 2 siné 6 do (3.8)
N RZ 2 62 ing cos e e e e e e e e e e .
o] ¢1
where
g . g
P, = L 2 Re J5 etz |2 _ cos¢
é h + ecos¢ cost h z 2g 2h
Z o] o o o
3
- | S (3.5)
ho + €cos¢ COST'U
Now we integrate (3.4) with respect to T, holding T, = constant. In so doing,

we have used the condition that the axial vibratiomn isquasi-stationary in

comparison to the high frequency squeeze motion. This point has been elaborated

-11~

in App. B and was also mentioned in Section 2. The result of the tT-integration is:

¢, .
Fz 2sin¢ cos¢ o iT, Yy ti Va coso
-—-———2-= 6 — e -
p. TR z 2 g 2h
a vh 2-szcoszda o o
¢, o

h cos¢
_E:mdd). .« « (3.6)

Equations (309) and (317) of Referecen 6 were used above; they are

JZ“ dt 27

"+ b cosT = — e e e e e e e e e e .. (3.7)

.

o
and

2ma
(az-bz)

(3.8)

2T
f (a + b cost)? 3/2
o
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Rewrite Eq. (3.6) in the form

F
A _ _ i Tz .
W = (62) Re e (UZ+ 1 VZ) e & + e s e s e s e ® (3-9)
where -
U = r¢2 2 sing cos¢ Eg_ Y, + coso + hocos¢ d
z i TeZeosZs h 2g 2h h “-e“cos¢ ¢
o o "E°cos ¢ o o o o
1 . .« . (3.10)
v = 2 2 sin¢ cos¢ 52. Ve dé
Jy o "€ cos¢ o o -

1

Note that in Eq. (3.9) we have factored out (—dz). This is because 6z is positive
in the direction of increasing gap whereas the bearing stiffness is defined
as "'the increment of bearing force per unit decrement of the gap". Clearly, U

z
, the out-of-

the in-phase component, is the effective dynamic stiffness; and Vz
phase component, is the effective dynamic damping. From the numerical sclutions

of u, and v, of the Appendiz;Uz and Vz can be integrated numerically. The results
are plotted against Z, in Figure 3 and 4 for bearing extending from ¢1= 41.5°
to ¢2 = 68°. This geometry 1is chosen because its steady-state results were

already given in Ref. 4.

3.2. Radial Dynamic Reactions

The dynamic bearing forces in a plane perpendicular to the z-axis can be decom-

posed into x and y components denoted by FX and Fy (see Fig. 2). Note that

Fx = - FR and Fy = FT' Let
P = 1 %o e %x _ i oy -T2 - o ) |
Gx,dy h _+ecos¢cost h0 2 2 Zgo 2h ho+ecos¢cos¢J
5 s\ . g h h '
X _ .o y| i(e+T )53 1 1 .
* 2 132 ) € r 2go 2h0 ho+ecos¢cosT_ ettt (3.11)

The dynamic bearing forces are obtained by first averaging over a squeeze cycle

and then integrating throughout the bearing film,
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F 27 2T ¢

x 1 dr 2 2
m_“J ?_nf cosedef PG_,G_ sin¢d¢_””_“(3.12)
a ) ) ¢, X'y

F 2m 2m ¢, '
—Yﬁz =-11;f g—;[ sinedef Po o sin?¢ d¢ - + + -+ - .+ .« +(3.13)
pa [o] 0 $ X’y

Carrying out the integrations and noting that the results are quite analogous

to the radial and tangential stiffness of Reference 4, we obtain

F § . 8
X _ _x [, 42) (3): [, (2) (3)
W__COSTL’ [2 ‘KR" +KR : +§l ‘KT +KT )}
8 ; 8
+ sin T_ l— 55 (KT(Z) - KT(3)) +-51 (KR(Z) - KR(3)) . . (3.14)
and
F ) 8
Yy . X (2) M\_ ¥ (2) 3)
Pa"R cos Tr[Z “KT + K'l‘ ) > {KR + KR )
§ 8
- sin T, fé§-(KR(2) - KR(B)) + Ez'(KT(Z) - KT(3)1] .« . (3.15)
where
. ¢ . g u, h h h
K3 - - J 2 sin¢ = {23 - d¢}(i=2,3)(3.16)
v h “-e%cos? ¢V o 8o “"o  h2 -e2cos? ¢
¢, o o
$ . .
KT(j) = - f 2 sin®¢ 2o [EJ—J dé (G=2,3). . .  (3.17)
s 4 hoz—e‘cosZ ¢ By goJ
1

Note that KR(j) and KT(j) are identical to those of Eqs. (4.17) and (4.18)

of Reference 4 upon replacing u by uj and v by Vj (i.e. A by A,). The results

of Reference 4 for the particular geometry of ¢1 = 41.5° and ¢2= 68° are
reproduced here in Figures 5 and 6. The curves for n, = 0 and -0.4 are replotted
in Figures 7 and 8. The data for negative values of Aj in Figs. 7 and 8 can be
obtained with the aid of Eq. (2.34). It is seen from Equations (2.34), (3.16)
and (3.17) that KR(j) is an even function of Aj whereas KT(j) is an odd function

of A,.
3

Equations (3.14) and (3.15) can be written in matrix notation



- = =

taking, of course, only the
real.

Here we have denoted

Z _=U _+4+1iV ZE -
XX XX XX
Z =U_+1iV e
Xy Xy Xy
Z _=U_+1V E-l
yx yx vX 2
Z =U +1iV z -
yy yy yy

Note that Z = 7 and Z
XX yy Xy

according to the definition

—14-

elTr e e e e e e . (3.18)

= L =

real part. Note that §  and 5y do not have to be both

——

1. (3) 1l @) (3)
@ k@) 14 [ -k,
1 (2) )_,; 1 (2) (3)
L (@ @)1 (@ - k)
(3.19)
(2) (3 1 (2) (3)
@+ 1P+ 13 @ - )

+13 5@ -5

= —Zyx; which indicate that the bearing is isotropic

of Ref. 3. This result should have been obvious since

the bearing geometry possesses rotational symmetry and that a _concentric equilibrium

position was used in the dynamic perturbation analysis.



4, STABILITY OF AXTAL VIBRATIONS

In the previous sections we: have shown that for small perturbations the axial
vibration and radial vibration: are not coupled. Therefore, we can deal with
the axial and radial stability problems separately. The axial stability is

thus reduced to a single degree-of-freedom problem.

The results of stability analysis of Reference 3 for a single degree-of-freedom

system may be stated as follows:
Let Voo be the frequency of axial vibration at which

A e (4.1)

P, T R4
Mo = < Uz e e e e e e e s e e e e e e e e e e (4.2)
Z0 \Y

A slight variation from the state of neutral stability would cause the system
to be unstable if and only if

av

z
sz M > 0 e (4.3)

Y
zZo

where &M is a small mass increment above Mo.
Using the above results of Reference 3, and from Figure 4, it is seen that Vz

is zero only when Cz = 0 or v, = 0. Hence we have

Voo = 0 s e e e e e e e e e e e e e e e e e e e e e e e (4.4)

M = @ L i ittt e e et e e e e e e e e e e e e e s e e (4.5)

Therefore, any actual mass would be less than the critical mass and

M < 0 O ¢/ ) )
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Also, we have

3V, oV, dg,
.a_\.)—— = B_C— ‘d'\)— 0 . . - 3 Y . . . . . . 3 3 (4'7)
z z zZ
\Y A\
Zo Zo

Combination of (4.6) and (4.7) results in

3V

'a'\Tz' M <0 (4.8)
Z {V

zo
Thus, we conclude that a spherical squeeze-film bearing is always stable in the

axial direction. The same conclusion can be said of the flat squeeze-film thrust
bearing, since it may be considered to be the special case of a spherical bearing

with small subtended angles (él and ¢2).
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5. RADIAL STABILITY AND VIBRATION RESPONSE

The radial dynamic bearing forces were obtained in Section 3.2. using perturbation
solutions about the radially concentric position. The results, therefore, repre-

sent dynamic reactions of an unloaded (radially) spherical squeeze-film bearing.

5.1. Radial Stability

The stability of an isotropic bearing of two degrees of freedom was analyzed in
Reference 3. Since the axial vibration and radial vibration of a spherical squeeze-
film bearing are decoupled for small perturbations, the radial stability of a
radially unloaded spherical squeeze-film bearing may be studied using the iso-

tropic bearing results of Reference 3 which are summarized as follows:

Let Voo be the frequency at which

(3) '
Ry’ () )
ro

Then, with the dimensionless mass defined as

2
m o= e L G
P, T R
the critical mass is given by
P
Iy
m = - o P )
v /w)

A slight variation ém from m would cause the system to be unstable if and only
if
(3
3 KT | (Aj)

v .
T

Sm < 0 .0 0 s e e e s e e e e e e e e e (5.)

v
ro

Example: Unloaded (radially) spherical squeeze-film hybrid bearing

Given: ¢ = 41.5° ¢ = 68°

€ = 0.4
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From Fig. 6, K.3) = 0, when A, = 0

T h|
Then Eq. (2.28) shows that
v
= _r
Ay =142~ + 0
and the only possibility is
v
r —
A, = 1-2 — = 0
Thus,
T T S ¢ 15
ro 2

This indicates that the only possibility of instability of the system is in the
form of a half-frequency whirl. From Equation (5.3) and Figure 5, the critical
mass is
0.036_
(1/2)?
m_ = 0.05 0.2 for n
(1/2)? ‘
0.076  _

(1/2)2

f
(=4
N

|

0.144 for n,

1
(=)

(5.6)

0.304 for n_ = -0.2
o} z

i

) . .
0, A, is essentiall
KR ( J) Yro 4

Note that in Eq. (5.3), because Aj = A2

the static radial stiffness of a non-rotating jourmal. It is seen that the critical

mass increases with increasing axial load (decreasing nz).

Now,
i 2
3 KT(J)(A.) BKT( )(AZ) d A, < 0 (5.7)
i _ e e e e )
v A dv
T 2 r
v AY]
ro ro
since
3 K_(2)
3h >0
2

v
ro



and

d A
dv
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Combining (5.4) and (5.7) it is seen that the system is unstable if and only

if 6m

> 0. Conversely, in order for the system to be stable, the mass must be

kept below the critical mass. Equation (5.6) then indicates that the axial

loading of a radially unloaded spherical squeeze-film hybrid bearing helps

to stabilize the system.

5.2. Vibration Response

The vibration response of a spherical squeeze-film hybrid bearing in a plane

perpendicular to the z-axis may be obtained by using the dynamic bearing

reactions of Section 3. Let us rewrite Eq. (3.18)

- E . _
X
P, mRZ Zxx ny
Z Z
p, ™R yX vy

8
y

-—

e . « o « o . e . o . o

(5.8)

Recall that Gx and 5y do not have to be both real, since the x~ and y-vibrations

may be out-of-phase. Now we may interpret F_ and F_ as the components of a given
X y

force exerted on the journal, and write

P

—

.

.

f
X

iTj
1t

£
y

-

(5.9)

where fx and fy are unit complex force amplitude. Then, corresponding to Fx and

Fy’ the complex amplitude of the journal motion may be found from

[ 6, ]

'

z z 17t e
XX Xy X
2z £
yx  yy y

(5.10)
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The inverse of the Z-matrix can be easily computed with Z__, Z , Z and Z
XX Xy yX

given by (3.19). Knowing 5x and Gy’ the motion of the journal is readily obtained

from Re(c‘Sx eiTr) and Re (Gy eiTr).
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6. CONCLUSIONS

On the basis of the analyses in the previous sections, we conclude the following:

a. When a slowly time dependent motion is superimposed on a high frequency

squeeze motion, the fluid film pressure can be found by an asymptotic
analysis. In the asymptotic analysis the product of pressure and film

thickness is only slowly time dependent.

Dynamic bearing reactions are obtained based on perturbation solutions
due to small periodic motions of the journal about the radially con-
centric position.

Spherical squeeze-film bearings are always stable in the axial direction.
The same conclusions can be said of the flat squeeze-film thrust bearing,
since it may be considered to be the special case of a spherical bearing
with small subtended angles (¢1 and ¢2).

Radial instability of a radially unloaded bearing occurs only in the
form of half-frequency whirl of a rotating journal. The system would

be stable if the mass is kept below the critical value. Axial loading

of a radially unloaded, spherical, squeeze-film hybrid bearing helps

to stabilize the system. Conversely, the non-rotating journal cannot
experience instability according to the present analysis.

The present analysis can be readily extended to compute the response to

vibratory excitation in either the radial or the axial direction.
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Equations (2.36a) and (2.36b) together with their boundary conditions (2.37) and

(2.38) may be written in the following general form:

v+ f u'"'+f u+f VvV'+£f vi+f v=f¢£ . . (A-1)
1 2 3 L 5 ©
D.E.
v' o+ v' + v + "4 '+ u= . (A-2
8 g, B, u 8, u 8, B, (A-2)
at x = xl, u=F, ve G et e e e e e e e e e e (A-3)
B.C. at x = xz, u=F, v=_ e e e e e e e e e (A-4)

Here we denote the independent variable by x. The primes ‘represent derivations

with respect to x. The symbols fl, f2 . . . etc. are known functioms of x.

In central difference form we can write

u(x,) = o
uk+1 uk-l
¥ = — -
u ({k) A . . .« e e e . (A-5)
k+1 k 1
uw(x,) = u - Zwu + u
k A% |
We have assumed that there are N divisions between xl and xz, so that
X, -X
k=0, 1, 2,...N,andA=—LN—L.

Now, Eq. (A-1) take the form
k

f f
k+l (1 1 } k | =2 k k-1 |1

u {Zg + A +u [TT + f2 +u [7;2

k

k k
f f -2f f f
k+1 [ Y ] k k} k-1 [ _y } _ . k _
+ v —%—A +2A + v A +f5 + v —Q—A A f6 . . (A-6)
A similar equation may be obtained from Eq. (A-2), which together with (A-6)

can be written in the following matrix form,

P N T R ¢ D)

The method of computation described in this Appendix is due to Castelli and

Pirvics (Ref. 7).



Assume that the y-vector at station "k + 1 can be expressed by

[ L)
LO)
Fs
At o
g gk
4
TS
-2
Kz'+f2
-ng‘.
a2 ‘e
&
2% T 2a
gk gk
-
A 24
 k
6
gk
| ®6

k+1 Mk yk + lnk

y =

where M is an unknown matrix and m, an unknown vector. From (A-9) we can

write formally

—

(A-8)

(4-9)



yk - Mk-l yk—l + mk—l

and

yk-l - Mk—2 yk—2 + mk—2

Substitute (A-9) and (A-10) into (A-7),

- k
(Ak Mk + Bk) yk + Ck yk 1_ dk _ Ak nt
Thus,
yk - [Ak Mk + Bk]—l [—Ck yk—l + (dk _ Ak mk)]

Comparing (A-11) with the first equation of (A-10), we find

Wl oAk o+ BT [ )
I e LR N
Using (A-4)
F
Iq = — . - . . . L] . L] .
Y G

and from the first equation of (A-10) we obtain

MN-1=O e o 8 ® s o o e o
N-1 F
m = . . .
[

Now we can use (A-12) and (A-13) as recurrance formulas to obtain

2y

=
|

8
|

and so on.

CN—l]

1
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(A-10)

(A-11)

(A-12)
(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

. (A-18)

Having computed the M's and m's, we can calculate the solution by marching from

X = x Using boundary coadition (A-3),



the solution is

1
y

Mo yo + mo

2 Ml yl + m1

y

and so on.

(A-20)
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APPENDIX B - DIFFERENTIAL EQUATIONS FOR TIME-DEPENDENT SQUEEZE FIIMS

I1f, in a gas bearing, one of the bearing surfaces is forced to vibrate normal
to itself, the resulting oscillatory "squeeze-film" action can support a time-
average load. This phenomenon is now well known, and a number of analyses

have been published for various geometrical configurations. These analyses
have been for ‘'steady-state' squeeze films (in the sense of AC electrical
terminology), there being no long-term transient in addition to the imposed

high-frequency squeezing motion.

When long~term transients are present in the dynamic behavior of a squeeze-
film bearing, the basic differential equation for the film is, of course,

still applicable. However, numerical solution of this non-linear equation is

<4 -
impede

[a N

by the necessity of following the surface trajectories in detail
through each cycle of the high-frequency squeeze action. To avoid excessive com-
puter time comsumption, it would be desirable to develop some form of diffe-
rential equations in terms of ‘‘smoothed” dependent variables which exhibit

only the long-term trends. Such a development is proposed in this note.

Basic Equations

The present work is an extension of that of Pan (Ref. 2), whose notation we

adopt. Thus the basic Reynolds equation is written as:

g 3
dph .{phv _ _h- -
5t + Vv > o0 pVp 0 N ¢ - P D
For a perfect gas: p = pRT(t) e e e e e e e e e e e e e e e e e e (B.2)

(The bearing temperature may depend on time, but not position.) Then.

I 3
3ph .{ehV  h” -
3t+v{2 lzu<RTpV;)0 e e e e e e e e e e e e e e e e (B
. 3/4 .
For air B v T and, rather typically for perfect gases, T/u depends only

weakly on temperature. Accordingly, Eq. (B.3) is reduced to:

M.}.{;. Vph=ﬁV'h3pr

5t ]_Zp ® e s & s ¢ e s e ® o & s s e o ¢ (B.ll')
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It is convenient to introduce a new dependent variable,

o €Y 18 L ¢ )

and it is easily shown that Eq. (B.4) becomes:

_1.|3Q .V _ RT_ . _
- [at +5 vq] 1oy V0 (- 20vh) L. (B.6)

The film thickness is hypothesized to have the form:
> -
h = h0 (r,t) + 6h (r,t) cos(wt) e e e e e e e e e e e e e (8.7)

Here ho is the thickness corresponding to some long-term transient about which

forced oscillations of amplitude Sh and squeeze frequency "w' take place.

The film response, in terms of Q, is hypothesized to have the form:

> . P > >
Q=Q (r,t) +Z q {(r,t) cosfnet +4¢_ (r,0)} . . . . ¢« ¢ ¢ . v .. (B.8)
(o] n n n

In the last two equations, even as w?>, the functions ho’ éh, Qo’ q, and ¢n are

presumed to be "smooth" in t".

Smopthening of the Differential Equations

In the case of steady-state squeeze films, Pan (Ref. 2 ) has shown that, except
néar film edges, Q is smooth in spatial position WphL It is anticipated that,
with the smme exception, Q will also be smooth in time '"t'". More specifically,

there are two characteristic times associated with the film:

a) the squeeze period, 2n/w

2
b) the "filling time', iZEigiﬁl—
a
where "c' is a characteristic film thickness and "R is a characteristic bearing

dimension. Those functions whose fractional changes in one filling time are 0(1)

are termed ‘‘smooth" in time.



-29-

An important comnsequence of the assumption of smoothness for "Q" is that, in
the bearing interior,

*
a >0, all n. ) see footnote

To smoothen Eq. (B.6), we integrate it from t - 7/w to t + 7/w and consider

the order of magnitude of the various resultants when w is very large.

The time-derivative term integrates directly to:

vQ(t+n/w) -~ YQ(t-m/w) =

YQ (t+1/w) + & q_(t+n/w) cos {nw(t-m/w) + ¢_(t+n/w)}
Te) aom . n

—/Qo(t-w/w) + ﬁ qn(t—n/w) cos {nw(t-m/w) + ¢n(t—n/w)} = OG%) .« . (B.9)

Here the average time derivative over one squeeze cycle is small because of th

o

near-periodicity of all high-frequency components.

>
No time derivatives are involved in the second term V V/E, so that integration

yields directly

\7-\70(%) e e e e s aY

Footnote

T. Chiang observes that the assumption of spatial smoothmess plus (B.8) suffices

to give temporal smoothness in the interior. Thus, assume (B.8) to be valid

and substitute into (B.6). The resulting equation is:

aQ 9q
1 (o} n
[ 5t + Z{;t cos (nwt + ¢n)

- (nw + Szg)qn sin (nwt + ¢n{J
6 -
+‘2— . VQ)‘
= RL_ o, -
=120 v (bW 2Qvh)

-Teq =0 {%} x 0 {Spatial derivatives}

But all spatial derivatives are 0(1), so q, 0.
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The actual magnitude of the term depends on the effect of spatial differentiation.

On the right-hand side of Eq. (B.6) we again conclude that all integrations give
derivatives of terms of 0(%), but it is desirable to ascertain the origins of

the contributions. The process is aided by noting that:

sin nwt 1
a) £(t) cos nwt dt = 06;2) e e e e e e e e e e e e e e e (B.D
for any smooth f(t)

b) qg sin wt cos nwtdt = 0

e r e e e e e e e e e e (B.12)
45 cos kwt cos juwtdt =7 ij

The appropriate rhs terms to retain are:

h \
v -{:ho VQo + 2 V(qlcos¢l) - 2Q°Vh° q1 cos¢lV6h (B.13)

Since, in the interior of the bearing, the q, > 0, we recover Eq. (B.6) expressed

in terms of zeroth-order functions. Namely,

1 aQo V
Inside Bearing: — 5;—-+ 5 VQo =
vQ
o
RT
120 V-_(hoVQo - 2Q°Vho) o e e e e e e e e . (B.14)

This differential equation in terms of the smoothened variables Qo and ho is
applicable to most of the bearing surface; and can, accordingly, be used to de-
termine time-average load-carrying capacity. However, the applicable boundary

conditions are, as yet, unknown.
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Boundary Conditions for Smoothened Equation

To find appropriate boundary conditions, we recall that Pan (Ref.2 ) has shown
that all inflow and outflow during a cycle at high squeeze frequency is con-
fined to a very narrow edge strip of width 0(1/vw). (See. Fig. B.1). On the

outer edge of this strip (minus side)

p, = constant
oy = paﬂRT(t) e e e e e et e e e e e e e e e e e e e (B.15)
h = ho + 6h coswt
plus side of strip
analytica minus side of strip
pill-box"
Interior.
q, =0
bearing edge
P =P,
edge region of p = pa/RT(t)
rapia transition
q, T 0
Fig. B.1 Plan View of Squeeze-Film Bearing of Arbitrary Shape
- 2 _ 2, 2 2 2
Q (pah) Py [h0 + 2h06h coswt + (6h)“ cos4wt]
2
=p2{h2+@+2hshcosmt+...} e .. (B.16)
alo 2 o
Therefore,
z‘v
° N - T8 3
qQ = .

h 2 . = 1.
! 2 oGh CHR cos¢1 1.0



On the inner edge of the strip (plus side), all 4, vanish. It is clear then,

. that
0
5n q1 = 0(Yw) e e e e e e e e e e e e e e e e e e e e (B.18)

since Aq1 across this strip is 0(l), and the strip width is 0(1//53-

To proceed further, consider the full time-averaged equation consisting of the
averaged time-derivative (B.9), the averaged convective term (B.10) and the

averaged divergence term (B.13).

Take a pill-box within the edge region, as shown in Fig. B.l. Let its bottom
border the bearing interior, and let its top lie somewhere towards the true
bearing edge. Integrate the total DE over the pill-box volume, which is

0( 1//w). The results obtained are shown below.

(B.9) (B.10) (B.13)
%.
3Q
0 1 o §h 3
w3/2) 0 " ho a2 (qlcos¢1)
- oh
o éh
_ZQo an cos¢ an
; _ Qg ehT
—ho Tr;-l- 2Q0 Fe e+ .« (B.19)

Now the functions hO and Sh are spatially smooth everywhere, and the derivative

of Qo is certainly small bordering the bearing interior. Hence.

oQ
(o] oh 0 v
ho o + > o (qlcos¢1) =0 e e e e e e e e e e e e e e e (B.20)

although, individually, the terms may be large. A second integration across
the entire edge strip gives (treating ho and Sh as constant):

+ _ 6h +

Sh + _ (B.21)
ho Q0 + 2 q1 cos¢1 h @

o 0

Reference to Eq. (B.17) now shows that:

=p2h2[1+3ﬁ
a o

r

Qo 2 th

o

2
] e h e e e e e e e e e e e e e e e e .. (BL22)
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At a given time all quantities on the right hand side of Eq. (B.22) are known

and it supplies the boundary condition for DE (B. 14).

Incorporation of Bearing Dynamics

The average local pressure during a squeeze cycle is given by:
-p = pdt __ _ w_ Q
Pv =P (ﬁ (2n7) 2 ? h RTAt . .« . v v ¢« v ¢ o « v « . (B.23)

Exclusive of the edge region:
Q= Qo(t) A ¢ X'y

But asymptotically in “w', T, Q , h , 6h can be treated as constant durin
ym Yy o o g

one squeeze cycle
¢

. =8 4t
. p, =5 RT /6;' €T> o e e e e e e e e e e e e e e (B.25)
Or:
Q.
P = RT — 2 . e e e e e e e e e e e e e e e . (B.26)
° h,2-(sh)?2

In this last expression, T, Qo’ ho’ 8h, can be regarded as time-dependent despite
the fact that they were treated as constants during one period of the squeeze

cycle.

It is now entirely possible to investigate some cases of bearing dynamics. For
example, consider the squeeze-film suspension of a mass, M, as shown in Fig. 4.1.

Let the instantaneous elevation of the vibrating plate be:

y1 = -6h coswt e e e s e et e e e e e e s e e e e e e e e e (B.27)
and the instantaneous elevation of the lower surface of mass M be:

y, (t) e e e e e e e e e e e e e e e, (B.28)
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‘//,Suspended mass
M

72

T 7777777 Ny,

vibrating plate

Fig. B.2 - ilementary Dynamical Problem with Squeeze Film

Then h = yz(t) + 6h coswt et e e e e e e e e e e e e e e e e e e (B.29)
or: ho(t) = yz(t) e e e e e e s e e s e e e e e e e e e e e e (B.30)

Let the film temperature be constant. Then:

d2ho I &r /(Z |
M FTYa -p. - MG e e e e e e e e e e e (B.31)

ho - (8h) §
where A" is the bearing face area. Initial conditions for ho and dho/dt must be
given.
The accompanying DE for Q, is obtained from (B.14). Thus:
3Q ®RTh

1 o _ o
/6— ot 12y
(o]

2
v2q, (B.32)

with the boundary condition from (B.22)

‘P )2 ,
- (-2 2 .73 2
Qo_\CRT) {ho+2(6h)}.................... (B.33)

Some initial distribution of 'p throughout the bearing film must also be given.
The mathematical problem for following the mass motion and average film history

is then completely posed.



Nomenclature for Appendix B

[» ]
:‘os‘ 5 o0

O O v R

o
fa)

=}

H t ® wmoH

<
—

<
N

bearing face area

characteristic film thickness
film thickness

long-term transient film thickness
amplitude of squeeze motion
bearing mass

pressure

(ph)?

defined in Eq. (B.8)

space coordinate

characteristic bearing dimension
gas constant

time

temperature

displacements (see Fig. B.2)

density
phase angle defined in Eq. (B.8)

squeeze frequency (in this appendix)
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NOMENCLATURE

C

D

f1, fa, f3
fx’ fy

F, F

X y

L]

09
(4]

(]
N

[ -~ =~ =
~ 8 (o]
e
~—
~
e
~r

W YoYoY KRB B
o (o) (o}

&
P
[}

bearing clearance
bearing diameter
defined in Eq. (2.39)
defined in Eq. (5.9)

components of dynamic bearing forces

pendicular to the z-axis
axial dynamic bearing force
defined in Eq. (2.21)
defined in Eq. (2.21)
defined in Eq. (2.23)
normalized film thickness
defined in Eq. (2.9)

v

defined in Eq. (3.16) and (3.17)

dimensionless mass defined in (5.2)

critical dimensionless mass
journal mass

critical journal mass
pressure

ambient pressure

p/p,

bearing radius
real part of { }
time

reference times
vt

defined in Eq. (2.20a)
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in a plane per-

real and imaginary parts of gj, j=1,2, . . 5

axial dynamic stiffness and damping




coordinates imn Fig. 2

coordinate in the axial direction

defined in (3.18) and (3.19)

amplitudes of vibration in the respective directions
5;/0, 6;/0

amplitude of axial vibration

Gg/C

excursion amplitude

excursion ratio, e*/C

radial and axial displacement

n*/C, n/C

meridional angle of spherical coordinates
compressibility number, defined in (2.7)
defined in (2.28)

viscosity

vibration frequency

radial and axial vibration frequencies
vibration number, defined in (2.7)

axial vibration number, defined in (2.28)
squeeze number, defined in (2.7)

Qt

PH

asymptotic solution of ¥ for o » =

— 3'8._



Fig. 1

Spherical Squeeze-Film Bearing



Fig. 2

Bearing
Center

Journal
Center

Diagram illustrating x and y coordinates
in a plane perpendicular to the z-axis
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