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INTRODUCTION

In a single-axis gyroscope, the ideal gimbal axis suspension should be completely
unrestrained. Considering the output axis, the read-out signal is usually the gyros-
copic torque; if the suspension has a torque about the output axis, it would be
included in the read-out measurement and would constitute an output error. There-
fore in designing gimbal axis suspension system, it is of major importance to

minimize its inherent torque, which will be called the error torque.

Fluid film bearings possessing perfect symmetry do not produce error torque, which,
however, is often caused by manufacturing tolerances. In an externally pressurized
gas bearing, for instance, causes for error torque include feeding flow unbalance,
surface blemish, and gap ellipticity. It is reasonable to expect that error torque
can be caused by manufacturing tolerances in a squeeze-film gas bearing in much the
same way. This work is intended to gain some knowledge on the mechanisms and to de-
velop means for estimating the magnitude of error torque in a squeeze~film bearing.
A cylindrical geometry will be assumed for the bearing, and the squeeze frequency

will be assumed to be sufficiently large to permit an asymptotic analysis (Ref. 2).

Three types of tolerance effects will be treated. Out-of-roundness of either the
journal or the bearing or both would make the bearing gap non-uniform even when the
bearing is unloaded. A third tolerance effect is related to the squeeze motion, in
the event of dissymmetry in either the structure or the mounting constraints or the
presence of appendages attached to the transducer of the squeeze~film bearing, the
squeeze motion may lose rotational symmetry. An earlier study which treated only
out-of-roundness in the bearing (Ref. 1) showed no resulting error torque. The
present study will consider two additional effects as well as the interaction among

the three.



BASIC EQUATIONS

Let us consider a cylindrical, squeeze-film journal bearing of finite length.

Using cylindrical polar coordinates, the isothermal Reynolds' Equation is:

9 (g3p 2B 3. (gl By g
=6 (H°P 6 ) + 52 (H°P 2z ) o) T (PH)Y . . v v« v v v v v « o . (1)
where )
g = izp @ ('B Yy = squeeze number
P, c
T= = dimensionless time N 3
Z = Z*/R =

dimensionless axial coordinate

Since the journal and the bearing are not perfectly circular in shape, we assume
that the radii of the journal and the bearing can be expressed as [R + e* cos2
(e—a)} and [R + C + e* cos2 (6—8)] respectively. Here, R is the mean raéius of the
journal, e? and e; iepresent the respective ellipticities, and o and B indicate
the orientations of the respective major axes. Furthermore, we shall allow ellip-

ticity in the squeeze motion. Thus, we can express the dimensionless film thickness

H=1+ €, 1+ a cos2 (9-61)}cosT

L
+ n ¢os6 + £ cos2 (6-85) e e e e e e e e e e e e e e e (3)
where
r Nl
L= le2+e?-2ee cos2 (a-B)!% . . . . . .. .. .
1 2 1 2 J
_ e sin2 B - e sin2 a (4)
2 = %4 tan 2 1 e e e e e . . . .

e cos2 B - e cos2 a
2 1

One can see from Eq. (4) that the last term of Eq. (3) is the combination of the
journal and the bearing ellipticities. The quantity a is the ellipticity of e%cursion
amplitude. When a = -0, the squeeze motion is in its '"hoop' mode of uniform excursion.

The n cos® is the usual eccentricity term.

The boundary conditions of Eq. (1) are

P (zl,e,T) =1 e e e e e e e e e e e e e e e e e e e e (5)
P (zz,e,r) =1 et et e e e e e e e e e e e e e e e e e e (6)
P (2,0,T) =P (2,0 + 2W,T) v v v v o v o o o v v v e e e e e e (7)



3P (z,9,1) _ 2P (z,0 + 2m,1) (8)
Y 36 e e e e e e e e e e e e e e e e

In addition, P satisfies the condition of periodicity in time,
P (z,0,1) = P (2,08, + 2T) v v v e e e e e e e e e e e e e e e ¢))

Since the squeeze number, o, is typically very large, the asymptotic solution (g»»)is ¢
interest. A general treatment of squeeze~film bearings using the asymptotic method

is given in Reference 2. In Reference 3, a special application of this method is

made for journal bearings. We shall recapitulate the asymptotic amalysis in

Appendix A for completeness. As o>, Eq. (1) reduces to

W) =0 ... o oa
or

¥ =Y (z ,9), as oo e e e e e e e e e e e e e e e e e e e (12)
where

Y = PH e )

The governing differential equation for ¥ _is, as shown in Appendix A,

MRE ot RE ) , 28,
g_ | 2y _ 2 __° - . A - — =
36 [86 (Ho‘l‘°° ) 3¥_ 76 + 52 . 32 (Howw ) Y 3z 1 0. . (14)
where Ho is the time-average of H,

27

1
Ho = o f H dt
o
= 14+ 1n cos® + ¢ cos2 (9—62) B ¢ )

The asymtptotic solution ¥ is a good approximation to the problem, except in the
<«
narrow regions near the edges. These narrow regions are referred to as the boundary

)
layers; the extent of which is of the order of 1/Vo.

The appropriate boundary conditions for ¥ at z1 and 22 are

fg" H3 (zi,e,T) dt

y 2 (z;, 0 = T H_ (2,0 L=1,2) .+ v v v v v v ... (16

using a mass content rule derived in Appendix B.



Since both P and H and their first derivations are periodic in 6, we have

Yo (2,0) = Y (2,84 27) .. u i e e e . D)

oY _ (z, 6) 23Y_ (2,6 + 2m)
55 = ) e et e e e e e e e e e e e e e e e (18)




PERTURBATION SOLUTION - SMALL a, £, AND n.

The asymptotic solution Y_ governed by Eq. (14) and subject to boundary conditions
(16), (17) and (18) will be solved in this section. For small a, ¢ and n, we can

solve the problem by the perturbation method and expand

¥,2 = G_(2) +a G61(2,8) + 62(2,8) +n63 (2,8) . . . . . . . .. (19)

Substituting Eq. (19) into Eq. (14) and collecting terms of the same power of a, ¢

and n, we obtain

a%c

Frrai 0 e ¢210))
326 326,
ge—zl+_§2'=0......................(21)
326G, 392G,

ﬁz— + ‘Tz’z = —8G0 cos2 (8-065) e e e e e e e e e e e e e (22)
32G; 392G,

Y- —a'z—z'=—ZGOCOSS..................(23)

The boundary conditions are, from Eq. (16)

2
- 2 3 2 A -
Y (zi,e) H0 (zi,e) +3 € (zi) [1 + a cos2 (8-87)1

= [1+ %— 502 (zi)] +al[3 802 cos2 (8-98;)]
+5[2 cos2 (8-85)] + nl2 cosB] . . . . . . L oL oL (28)

Thus, we have the following boundary conditions (i = 1,2):
- 32 . ... (25
Go (zi) =1+ 2 €6 (zi) e e e e e e e e e e e e e e e (25)
G (zi,e) =3 802 €oS2 (B-81) « v v v v e i e e e e e e e e e e . (26)
Gy (zi,e) =2 c082 (0=082) v v v v v vt e e e e e e e e e e e e e (27D
Gs3 (zi,e) = 2 COSH  h ot ke e h e e e e e e e e e e e e e e e e e s 28

In addition, we have the periodicity condition in 6 for all G-functions. Now we
assume that excursions are uniform in z, so that € is a constant. The solutions

subject to the above conditions are readily obtained.




G = 143 €2 v (29)
2

o 0
h2

Gr = 3¢, %%235’%’ €0S2 (B-81) + v v b e e e e e e e e e (30)
cosh2 z .

Go = [2 (l-GO) cosh2 & + 2 GO]COSZ (B=62) « v v v e v e e e (31)
cosh.. z

Gy = [2 (l-Go) cosh L + 2 Go]cose e e e e e e e e e e e e (32)

where
. -L/2 _ .. L2
z; = = oz R e X))

Here, we have assumed that the bearing is of length L and the origin is taken at

the middle plane (see Fig. 1).

The pressure distribution for the asymptotic problem (large o) is obtained from:

e 2
P = Ef. = -———:il———— 1+ a 3 ~ o cosh? z cos?2 (6-97)
H Ho + ecosT 2 Go cosh2 £ 1

1-G
+z [ o cosh? z

Go cosh? © + l} cos2 (6-65)

l—Go cosh z
+ n Go cosh & + 11 cosf S 1Y
where
e = € [1 + a cos2 (8-87)] . (35)

Torque Calculation

The torque acting on the journal is contributed jointly by the pressure force and

by the viscous shear force.
A. Pressure Torque

It is clear that for a perfectly circular journal, the pressure force always passes
through the center of the journal; consequently, there will be no torque due to the

action of the pressure forces.

In order to calculate the pressure torque, let us first obtain an expression for

the normal vector of an elliptic journal which is represented by
r =R+ et cos2 (6-a) e e e e e e e e e e e e e e e e e e e (36)

. * . . . > . = .
Denote the radial and circumfercvnticl unit vectors by r and 6, and tangential and

> -
normal unit vectors t and n (see Fig. 2). Thus,




>
t

>

-a;+e.a—;— C e e e e e e e e et e e e e e e e e e 37
—>_+rde_+g_
n—rds eds ® & s s+ 3 s e & e 2 & s e e o 2 s o o s (38)

where ds = V(dr)¢ + (rd6)*
From Eq. (36) we have
dr = - 2 e? sin2 (6=a) dB . « v . i e e e e e e e e e e e e e (39)

so that
ds = de /[ZeT sin2 (6-a)]¢ + r*

Substituting Eqs. (36) and (39) into (38),

n = ¢ —2—— 4§ —mA—0 ... (40)
R R
1 2 1 2
where
b = 2 e* sin2 (6-a)
1 1 N ' )
b2 = R + et cos2 (6-a)

. , , . . S .
Since the pressure force on element rd¢édz* is acting in the negative n~direction,
its circumferential component may be expressed as

b
(-prdedz*g)-'§=-prd6dz* L e e (42)

X
1 2

Now the time~averaged pressure torque is

2q L/2 : 27 -1
T = f %l [ dz* ( r [—prdeb (b ?2+b2) %} . (43)
P Ly o L 11 e
Normalizing, we obtain
2 2m
oo

)
<

T [ )
-2 . _ L Pl 2 2\—%
JO dr iz dz JO b, G 2+bDHTIRAE L L ()

Integrate Eq. (44) with respect to T, using Eq. (309) of Reference 4

T 1 fl [T s (45)
—P - - _ r 2 2\"% e
p,LDR 2L 4y lox b 7DD H - €7




where e = €, {1 + a cos2 (9—61)] e e e e e e e e e e e e e e e (46)

Using Eq. (34) and integrating (45) with respect to z, we find

27
T YA
P - _ L1 f 3 o -
5_LOR - 5T /E; , {2t+als G, cos2 (8 91) tanh 2]
1-G
+z [ G tanh 22 + 22] cos2 (6—62)
o
l—G0
+n [2 S tanh® + 22] cos6 }.
o
2 b
(& 1 : L e . . . (47)
Vblz + b22 VHOZ py4

Finally, neglecting 0 {(-% )2}, we integrate Eq. (47) and rearrange terms to obtain

T T T

P pi _b2
= + T 22D
paLDR paLDR paLDR
where
1
= - (C/R) e a A sin2 (8 -a)
p,LDR (¢/R) 1 o (1
Top
= C/R)e A sin2 (8 -a e o « « (483)
RGO LN (6 -a)
- ——2-1 + 3 E-}'-—t:anh L
A = 1¢ 2 /G (l-e 2)7?|1-¢ 2 LG TR
P ) o o o o
Shear Torque
The time-averaged shear torque is
v (L2
= gL * Su_ Y €%
T, l, 5= j_ledz J, Rug RAO (49)
y* = 0

where u is the velocity component in the 6-direction.

The 6-momentum equation is




d 3%u
-1%5=UW N 1))

which is the same equation used to derive the Reynolds Equation (1). Note that in
Eq. (50) we have neglected the non-linear convection terms for small Reynolds'

number flow and the time-dependent term g%% . Observe that the value of the ratio

between p %% and u %;%7 is of the order of %%— . For Q=220,OOO cycles/sec, C = 10'4 in,

L

p 6
time-dependent terms in the momentum equation is indeed negligible even at this high-

ft?/sec, we obtain a typical value of %%E = 0.06. Therefore, the

frequency oscillation.

Equation (50) together with the no-slip condition results in

Czp
u = a 2P y* (yr_ g
2uR a6 C C
and
Cp
du . __a odF
Sy = R 5 H N &30

Combining (49) and (51), and normalizing, we obtain

T 27 L/2 2%
s o J [ J 3P
= - dt dz* H —= d® e e e e e e e e . (52)
paLDR 8TLR L/2 o

Note that in Eq. (49) we integrate the shear stress around the journal as if it
were perfectly circular. It is seen from the above equation that the unit shear
torque is of the order of-% . A more accurate expression of the journal surface
would only result in higher-order modification. Thus, Eq. (49) and consequently

Eq. (52) are accurate to the first order of C/R.

Integrate Eq. (52) by parts,

T o 2m L/2 G-
p.LR - Bar Jo U J_L/de*Jo P5e d¢
c JL/Z Jzn [Zn v (aHo .
T 8rLR J-L/2 dz* ) d?b 0 Ho+s cosT {96 t 38 COST) dr.. (53)

Now, integrate first with respect to T then with respect to z* and 6. The result

is




Ts C
= A sin2 (8 -9 e e e e e
p_LDR R 2 C A sin2 (6-6)
1-G
1
_ T . 2yE_ 1 _R o L
AS = 5 VGO [(l € ) 1 L Go tanh R

Thus, the total dimensionless torque is

Ttotal - ?pﬁ + Ts
paLDR paLDR paLDR

with the right hand side given by Eqs. (48) and (54).

-10-

(54)

(54a)

(55)
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RESULTS

The combined ellipticity and phase angle (f and 62) of the journal and the
bearing, as expressed by Eq. (4) are calculated and graphically shown in Figs.

3 and 4. The factors Ap and AS of Eqs. (48) and (54) respectively, afe plotted
in Fig. 5 for various values of L/D. Both AP and AS increases with €,° A factor
resembling A.p of Eq. (48) also appears in the unit radial stiffness calculation
of Ref. 3. In fact, according to Ref. 3, the unit radial stiffness of a squeeze-
film journal bearing is:

K C o, 1 R1 L
r = 271e?2/6 (L-¢e2)"% T¢? +37 G tanh 5= . . . . . (56)
PaLD 0] (o] o) 0o o

where kr is the radial stiffness. A comparison of Eqs. (48a) and (56) shows that
the pressure torque is proportional to the unit stiffness of a bearing of twice
the length. In Fig. 5, it is seen that the length effect is relatively small,
thus one can conclude that the pressure torque is approximately proportional to
the unit stiffness. Clearly, one way to obtain high stiffness is to have a large
excursion ratio €, In so doing, the pressure torque would be correspondingly
"large'. Fig. 5 shows that the shear torque also increases with e . Thus for the
same tolerances, any gain on the stiffness by increasing the excursion ratio is
always accompanied by a penalty of increased error torque. The present analysis
indicates that a bearing of high stiffness and low error torque can come about

only through tolerance control in the absolute sense.

It is seen from Eqs. (48) and (54) that

1. Ife = 0 (no journal ellipticity), the “'pressure torque' is zero. There would

be a '"'shear torque" if both bearing and excursion ellipticities are present.

2. If e, = 0 (no bearing ellipticity), then TPZ = 0. Both journal and excursion

ellipticities are required for non-vanishing Tpl and TS.

3. If a =0, (no excursion ellipticity), then Tpl = Ts = 0. Combination of the

journal and the bearing ellipticities may result in a pressure torque TPZ'

4. Neither the 'pressure torque' nor the "shear torque" are affected by the radial

eccentricity.



T

The first part of pressure torque —Pl_ yhich is due to journal ellipticity and
P P p_LRD P y

.8 . . .
excursion ellipticity, is plotted in Fig. 6 as a function of 61 with the rest of
the parameters fixed. It is obviously a double sine curve. Its value is zero when
61 = 0, 90°, 1800, i.e. when the major (or minor) axis of excursion ellipticity

coincides with either the major or the minor axis of journal ellipticity.

T T
—B2 and can, of course, be plotted similarly, but are omitted here.
paLDR paLDR S

The total dimensionless torque is plotted against B in Figure 7. Recall that 6

and B are the respective spatial phase angles indicating position relative to the
journal ellipticity. It is therefore quite clear that once the transducer .is mounted
on the housing, there is a fixed spatial phase angle between 61 and B. The various
curves in Figure 7 are respectively for 61 =B, B + 450,8 + 90°, B8 + 1350, B + 180°
with equal magnitudes in journal bearing and excursion ellipticities. The total
dimensionless error torque is a minimum when 91 = B (or 61=B+1800), i.e. when the
major axis of the excursion ellipticity coincides with the major axis of the bearing

ellipticity, and a maximum when 61 = g + 90°.

For e1 = e =a=-¢e and a = 0 we can show that
1
z = e {2 (1 - cos28)}? = 2 e sing
-1 2 sinB cosf m
-_ 1 = 1 —
- e ele. 1=
°, tan T =TT 5 (5 +8)
oy c
= — 2 3
paLDR - R ) e AP sin206;
_ERZ_ C 2
paLDR = ('ﬁ Y e Ap sin2RB
S o ( E') 2 e2 A sin2 (6 -6 ) sinB
paLDR R [} 2 1
= (g ) e2 A [sin20 + sin2 (B-6 )]
R S 1 1
Thus,
total C 2 . .
=y - 2
paLDR ( R ) e {(AS Ap) 51n261 + Ap sin2B

+ A sin2 (8-6 )} e e e e e e e e e e e e e (57)
S 1

-12-
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For a given spatial phase angle between B and 61, the last term of (57) is a
constant., In Figure 7, the curves for 81 =8+ 45° and 61= 8 + 135° have a non-
zero mean value which is represented by the last term of Eq. (57). Physically,
this means that there is a torque in the average sense acting on the journal.
The journal will rotate in the direction according to the sign of the mean

torque.

Consider the situation that the transducer is mounted on the bearing housing
with perfect symmetry. The excursion ellipticity of the transducer is caused
exclusively by the non-uniformity in transducer wall thickness (see Figure 8).
It is seen from Appendix C that the "hoop'" mode of vibration of the transducer
is slightly distorted. The excursion amplitude of the thinner regions (A and
B) of Figure 8 is slightly greater than that of the thicker regions (C and D
of Figure 8). Thus, 61 is equal to B and the magnitude of the error torque
would be the minimum possible according to Fig. 7. Even so, the magnitude of
the error torque for the AB-5 bearing with R = 2.75 cm, operating in an at-
mospheric ambient would be about 40 dyne-cm. This estimate should be about
one order of magnitude too conservative since actual tolerances would have
axial variation and the net effect should be much smaller in magnitude than

that due to an axially uniform tolerance.
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CONCLUSIONS

On the basis of the analysis and the results considered in the previous sections,

we conclude the following:

1.

The asymptotic analysis of squeeze-film bearings is suitable for studying
error torque when ¢ is sufficiently large. The inaccuracy involved in the

asymptotic analysis is of the order of 1/Vo.

A first estimate of the error torque can be obtained by an asymptotic analysis

considering perturbation effects of gap and excursion ellipticities.

Both pressure and shear stress at the journal surface can cause error torque.
Within the accuracy of the asymptotic perturbation analysis, the “pressure
torque'’ requires both gap and excursion ellipticities. Also, radial eccentricity

does not affect error torque directly.

The magnitude of the error torque is proportional to C/R and increases with €,
The 'pressure torque' is directly proportional to stiffness of a bearing of

double length.

The total magnitude of the error torque depends on the individual magnitude of
each of the three types of ellipticities and the relative orientations of their
major axes. In particular, if the magnitudes of the three types of ellipticities
are equal, the magnitude of the total torque is largest when the major axis of
the bearing ellipticity coincides with the minor axis of the excursion ellip-
ticity, and is smallest when the respective major axes coincide. In either case
the total torque is doubly periodic with the angle between the major axes of
the journal and bearing ellipticities with zero average. If the principal axes
of the bearing and excursion ellipticities do not coincide, then the torque

would have a non-zero average so that the journal would rotate continuously.

Reduction of error torque without corresponding reduction in stiffness can

be most effectively realized by absolute tolerance control.



APPENDIX A: ASYMPTOTIC APPROXIMATION

Rewrite Eq. (1) in the form

= ew-=1 %5m%§%)+%wﬂpgq}.............(kn
A5 0 v @, o= (BH) =0 e (A02)
or ¥ =Y¢ (z,0) N e X))
where ¥ = PH O -2/

When ¢ »- » , the right hand side of Eq. (A-1) which contains all the space deviations,
vanishes; this clearly indicates a singular perturbation phenomenon. The asymptotic
solution ¥_ is not uniformly valid throughout the whole bearing film. More specifi-

cally, in the narrow regions near the edges, z = z1 and z = z , the gradient (z-de-
2
viatives) may be so steep that in Eq. (A~1) the term %’3%‘(H3P %5‘) is of the same

2
order as T (v).

These narrow regions are called the boundary layers; the extent of which is of

the order of ;%f— . Let We be the edge correction in the boundary layers, then
o}
Y = We (z,8,1) + ¥ (z,0) N V-5 )

In the interior of the film (outside the boundary layers), ¥=Y¥_is a good approxi-

mation, since ¥ is important only in the boundary layers.
e

During the process of reduction from Eq. (A-1) to Eq. (A-2), the differential equation
loses two orders in z-differentiation, consequently, the asymptotic solution ¥
will not satisfy the two boundary conditions (5) and (6), page 2 . The boundary
conditions to be satisfied by ¥_ at z1 and z2 can only be determined by a mass content

rule which will be discussed later.

Integrating Eq. (A-1) with respect to 1 from o to 27 we obtain

27 27
3 _| 8 2y _ qu2 SH J 9 | 2y _ qy2 OH -
JO = [ 5 (1Y) - 3y ae] dr + | = [Bz (H¥?) - 3¥2 = a1 = 0 (a-6)

The following identity has been used

H3P d P = 1 d (HY2) --% v24dH e e e e e e aeD



-16-

Neglecting the edge correction Yo and using the asymptotic approximation, Eq. (A-6)

is readily reduced to

2 i—(H\PZ)-swza—HP- +;’—i’—(uw?-)-3\y‘°-ﬂ =0 (A-8)
36 36 ‘o w © 38 dz [ 3z Yo' ® ® 3z STt

where Ho is the time-average of H,

2T
H = i J HdrT
o 27 o}

1 + ncos® + zcos2 (6—62) e e e e e e e e e e e e e e e (A-9)

The 6-wise boundary conditions require that both Y and its derivative with respect
to 6 be periodic in 6. The z-wise boundaries, however, are not known explicitely.
Equation (5) and (6) are not useful because at z = z1 and z = 22 the edge correction
We is important but unknown. In the following section a mass ébntent rule will

be derived which may be used as boundary conditions for ¥ _at zl and z2.
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APPENDIX B: BOUNDARY CONDITIONS FOR Y_.

The boundary conditions for the asymptotic solution are derived in this section.

We first integrate Eq. (A-6) with respect to z,

2'" Z 2'"- 3
3 (gy2y-3y2 SH + r 3 |3 (pmy2y_ ay2 SH _
[O laz (H¥2)-3Y az} dt Jz dz Jo v [ 55 (HY9)= 3¥2 35 = A(0). (B-1)
1

where A (6) is an integration "constant'.

Integrate (B-1) with respect to z again,

27
J HY2dT = A (8) 2+ B (8) + I (2,0) « « v« v v v v v v v v« . (B-2)
(o}
where
z 27
I (z,8) = 3 j dz' J dt ¥?2 %%T
zZ (¢}

1
'

z z 2m
_ ' 1 d d 2y _ 2 _3H -
J dz f dz f dt ) {55-(HW ) 3y YIRIREE (B-3)
z. z o) -

1

and B(6) is another integration '‘constant'.

On the boundary we have, from Eqs. (5) and (6),
¥ (zi,e,r) = H (zi,e,T) (1=1,2) . . .o 0000 e e (B-4)
Evaluate Eq. (B-2) on the boundary,
2m
J 3 (z;,6,7) dt = A (8) z, +B (8) + I (2;,8) . . ... ... (B-5)
)

Now we use the asymptotic approximation and replace ¥ by ¥_ on the left hand side
of Eq. (B-2).

¥ 2 (z,0) Izﬁ Hit = A(©) z+B (8) +I (2,8) + v . v+« « . . . (B-6)
o]

Let Gzl be the boundary layer thickness at zl, then we can evaluate Eq. (B-6) at
z = z1 + 6z1’

Y2 (z + 6z ,6)2nH (z +6z ,80) = A (8) (z + 6z ) + B (8)

bt 1 1 o 1 1 1 1

+1I (zl + Gzl,e) e e (B-7)
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Figure B-1

=1
Since 6z; is of the order of (o 4), the right hand sides of Eq. (B-7) with i = 1

-1
are equal if terms of 0 (¢ °) are neglected. Thus, a comparison of (B-5) and (B-7) leads
to

27T

2m
J H3 (z , 8,1) dt = ¥ 2 (z + &z ,9) J H(z + 6z ,6,1) dt . . .(B-8)
o 2 *® 1 1 1 1

)
Since 8z is small, it is reasonable that we impose the value of Y  at a2 to be
1

that at z + 8z .
1 1

Thus,

=]

Y (z + 68z ,8) = VY (z ,6) e e e e e e e e e e e e e e e e e (B-9)
1 1 ®°

Substituting (B-9) %nto Eq. (B-8), we obtain
m
H¥zy,0,1) dr

lo Y ¢ 5
21 Ho (z1,9) :

V2 (2,0 =

Similarly, 2T
I B3 (zz,e,r) dt
2w H0 (zz,e)

Wm2(22,6)= e e e e e e e e e e e . (B-11)
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APPENDIX C: EXCURSION MODES OF A TRANSDUCER

The excursion modes of the transducer shown in Fig. 8 will be analyzed here

according to a simplified model.

While the analysis is only approximate, its purpose is to find out whether the
thicker regions or the thinner regions have larger excursion amplitude at its

distorted "hoop'" mode.

Using the lumped-parameter method, the masses of the thicker and the thinner ends
are represented by (m + ém) and (m - Sm) respectively (see Figure C-1). From the
geometrical configuration of Fig. 8 it is evident that the masses (m + ém) are

supported by weaker spring (k - &k) and the smaller masses (m - 8m) are supported
by stronger springs (k + 6k). The four springs with springs with spring constant,
say, k connecting the masses serve the purpose of providing the coupling between

the respective masses.

K
m-6m k K6k p mom
ra ry VA -

+8k
‘;L-'—‘ % Kook k

m +6m
f,
2

Fig. C-1 Lumped~parameter diagram for the transducer
shown in Fig. 8.
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In analyzing the small vibrations of the system, let us assume that

X} = displacement of m - dm

x2 = displacement of m + ém T sttt s e e e e (c-1)

Figure C-2

Now consider the geometry of masses C and B with center position of the system "0"
as shown in Figure C-2. The lengths of the respective element are also shown there.
Now let the mass A have a displacement xz. Then the reduction of length of the

spring CB is

x
2r-/tZ+(r-x)%2 = 2r-/271r - %’ £ = /) X
2 x, r 2 "2

neglecting the higher-order terms of prlt

Similarly, due to a displacement X, at B, the spring CB reduces its length by an

amount of — xl. Now we are ready to write the equation of motion for (m- §m),
(m - &m) k} + (k + 8k) xl + 2 {k 1% (x1 + x2) i% = 0
The last factor -ﬁg stands for taking the component of the spring forces along the

x1 - direction. Rearranging we have (m - &m) 21 + (k + 6k) x1+ k(x1+x2) =0 . (C~2)

Similarly, the equation of motion of (m + dm) is

(m + sm) ¥ +(k—6k)x2+k(x1+x2) = 0 4 e e e e e e e .. (C-3)
2

Assume that x1 and x2 are of the form

]
xl = c1 sin (wt + a) (C-4)
x =c¢ sin (ut + a)
2 2

where ¢ and ¢ are the amplitudes and w, the frequency.
1 2




Substitution of (C-4) into Eq. (C-2) and (C-3) yields

o, 2k + 8k k - )
e Cl t I -om 02 O v v vemv v (C-5)
k o, 2k - 8k _

o+ om C1 + ( we + m + om )CZ = 0 .00 e I S (C-6)

Since (C-5) and (C-6) is a set of two homogeneous equations, the determinant

of the coefficients must vanish. Expansion of the determinant results in

2 . 2k 1 8m Sk (5m) 2
v m (l + 2 mk + mé
K m ok , 5 (sm)2 1 (§k)2|
+_ — — -—
= 14+ 2 ok +2 mz +2 kz !- v e e e (C7)
neglecting the higher-order terms of é% and ﬁ% . It is seen from (C-7) that
the characteristic frequency w of the system is modified only in the second-order
Sm Sk
in — and — .
m k

Therefore we have, to the first order,

w2 = 2k . k. (8

m m
Take the plus sign in (C-8) which, as we shall see later, corresponds to the

distorted “hoop" mode,

w=/§-—k T (1))

m

Substituting (C-9) into (C-5) and keeping terms up to the first order, we obtain

Cy
- Sk Sm _
c, = 1+ I + 3 - T (1))

Since &k and 6m are positive quantities,

(C-11)

oLﬂo
N
\Y2
=
v
o

Equations (C-10) and (C-11) clearly indicate a distorted "hoop'’ mode of vibration,
the mass (m - 8m) has largeramplitude than the mass (m + ém). Going back to
Fig. 8, the thinner regions of the transducer have larger amplitude than the

thicker regions at its distorted "hoop'" mode of vibration.




NOMENCLATURE

a ellipticity in excursion
A, B integration constants
Ap’ AS defined in Equations (48a) and (54a)
by, bs defined in Equation (41)
Y radial clearance
D bearing diameter
e1*, er* ellipticities of the journal and the bearing
ey, ey dimensionless ellipticities, Eli ,‘fg:
c c
bearing force
o
Gy
G, defined in Equation (19)
G3
H* bearing film thickness
H dimensionless film thickness, H*/C
H defined in Equation (15)
I defined in Equation (B-3)
L bearing length
2 L/2R
P pressure
P, ambient pressure
P dimensionless pressure p/pa
R mean randius of journal
T torque
Tp pressure torque
TPl’ sz defined in Equation (48a)
TS shear torque
Ttotal total torque
t time




D o€ € A

velocity in 6-direction
coordinate perpendicular to journal surface
axial coordinate

dimensionless axial coordinate, z*/R

_L/2
R

L/2
R

spatial phase angles indicating relative orientation of
journal and bearing

amplitude of excursion

normalized excursion amplitude, eo*/C

€, [1 + a cos2 (6-67)]

combined ellipticity, defined in Eq. (4)

eccentricity (normalized with respect to C)

angular coordinate

spatial phase angle of excursion ellipticity

spatial phase angle of combined ellipticity of journal
and bearing, defined in Eq.(4 ).

viscosity

density

' 2
squeeze number = 12u0 ('%

a

dimensionless time, it
PH
asymptotic solution of V¢

squeeze frequency
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PERFECTLY CIRCULAR OUTER
CONTOUR BEING MOUNTED

TRANSDUCER ON BEARING HOUSING

ELLIPTICAL INNER CONTOUR
r=R+C+ e; cos 2(68-8)

Fig. 8 Diagram illustrating non-uniform thickness of the transducer




