624 research outputs found

    Nuclear binding energies: Global collective structure and local shell-model correlations

    Get PDF
    Nuclear binding energies and two-neutron separation energies are analyzed starting from the liquid-drop model and the nuclear shell model in order to describe the global trends of the above observables. We subsequently concentrate on the Interacting Boson Model (IBM) and discuss a new method in order to provide a consistent description of both, ground-state and excited-state properties. We address the artefacts that appear when crossing mid-shell using the IBM formulation and perform detailed numerical calculations for nuclei situated in the 50-82 shell. We also concentrate on local deviations from the above global trends in binding energy and two-neutron separation energies that appear in the neutron-deficient Pb region. We address possible effects on the binding energy, caused by mixing of low-lying 0+0^{+} intruder states into the ground state, using configuration mixing in the IBM framework. We also study ground-state properties using a deformed mean-field approach. Detailed comparisons with recent experimental data in the Pb region are amply discussed.Comment: 69 pages, TeX (ReVTeX). 23 eps figures. 1 table. Modified version. Accepted in Nucl. Phys.

    Proton-neutron quadrupole interactions: an effective contribution to the pairing field

    Get PDF
    We point out that the proton-neutron energy contribution, for low multipoles (in particular for the quadrupole component), effectively renormalizes the strength of the pairing interaction acting amongst identical nucleons filling up a single-j or a set of degenerate many-j shells. We carry out the calculation in lowest-order perturbation theory. We perform a study of this correction in various mass regions. These results may have implications for the use of pairing theory in medium-heavy nuclei and for the study of pairing energy corrections to the liquid drop model when studying nuclear masses.Comment: 19 pages, TeX, 3 tables, 2 figures. Accepted in PR

    Electric monopole transitions from low energy excitations in nuclei

    Get PDF
    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, ρ2\rho^2(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between ρ2\rho^2(E0) and isotopic shifts

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio

    Orbital M1 versus E2 strength in deformed nuclei: A new energy weighted sum rule

    Get PDF
    Within the unified model of Bohr and Mottelson we derive the following linear energy weighted sum rule for low energy orbital 1+^+ excitations in even-even deformed nuclei S_{\rm LE}^{\rm lew} (M_1^{\rm orb}) \cong (6/5) \epsilon (B(E2; 0^+_1 \rightarrow 2_1^+ K=0)/Z e^2^2) \mu^2_N with B(E2) the E2 strength for the transition from the ground state to the first excited state in the ground state rotational band, the charge r.m.s. radius squared and ϵ\epsilon the binding energy per nucleon in the nuclear ground state. It is shown that this energy weighted sum rule is in good agreement with available experimental data. The sum rule is derived using a simple ansatz for the intrinsic ground state wave function that predicts also high energy 1+^+ strength at 2ω\hbar \omega carrying 50\% of the total m1m_1 moment of the orbital M1 operator.Comment: REVTEX (3.0), 9 pages, RU924

    Critical view of WKB decay widths

    Full text link
    A detailed comparison of the expressions for the decay widths obtained within the semiclassical WKB approximation using different approaches to the tunneling problem is performed. The differences between the available improved formulae for tunneling near the top and the bottom of the barrier are investigated. Though the simple WKB method gives the right order of magnitude of the decay widths, a small number of parameters are often fitted. The need to perform the fitting procedure remaining consistently within the WKB framework is emphasized in the context of the fission model based calculations. Calculations for the decay widths of some recently found super heavy nuclei using microscopic alpha-nucleus potentials are presented to demonstrate the importance of a consistent WKB calculation. The half-lives are found to be sensitive to the density dependence of the nucleon-nucleon interaction and the implementation of the Bohr-Sommerfeld quantization condition inherent in the WKB approach.Comment: 18 pages, Late

    Normal frames and the validity of the equivalence principle

    Get PDF
    We investigate the validity of the equivalence principle along paths in gravitational theories based on derivations of the tensor algebra over a differentiable manifold. We prove the existence of local bases, called normal, in which the components of the derivations vanish along arbitrary paths. All such bases are explicitly described. The holonomicity of the normal bases is considered. The results obtained are applied to the important case of linear connections and their relationship with the equivalence principle is described. In particular, any gravitational theory based on tensor derivations which obeys the equivalence principle along all paths, must be based on a linear connection.Comment: 14 pages, LaTeX 2e, the package amsfonts is neede

    Structure and registry of the silica bilayer film on Ru(0001) as viewed by LEED and DFT

    Get PDF
    Silica bilayers are stable on various metal substrates, including Ru(0001) that is used for the present study. In a systematic attempt to elucidate the detailed structure of the silica bilayer film and its registry to the metal substrate, we performed a low energy electron diffraction (I/V-LEED) study. The experimental work is accompanied by detailed calculations on the stability, orientation and dynamic properties of the bilayer at room temperature. It was determined, that the film shows a certain structural diversity within the unit cell of the metal substrate, which depends on the oxygen content at the metal-bilayer interface. In connection with the experimental I/V-LEED study, it became apparent, that a high-quality structure determination is only possible if several structural motifs are taken into account by superimposing bilayer structures with varying registry to the oxygen covered substrate. This result is conceptually in line with the recently observed statistical registry in layered 2D-compound materials

    Normal frames and the validity of the equivalence principle. I. Cases in a neighborhood and at a point

    Get PDF
    A treatment in a neighborhood and at a point of the equivalence principle on the basis of derivations of the tensor algebra over a manifold is given. Necessary and sufficient conditions are given for the existence of local bases, called normal frames, in which the components of derivations vanish in a neighborhood or at a point. These frames (bases), if any, are explicitly described and the problem of their holonomicity is considered. In particular, the obtained results concern symmetric as well as nonsymmetric linear connections.Comment: LaTeX2e, 9 pages, to be published in Journal of Physics A: Mathematical and Genera
    corecore