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Abstract

Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an
introductory discussion of various model results (shell model, geometric vibrational and rotational
models, algebraic models), we point out that many of the largest E0 transition strengths, ρ2(E0), are
associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present
extensive data for : single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that
exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states.
We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between
ρ2(E0) and isotopic shifts.
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1. Introduction

Electric monopole transition strengths reflect the off-diagonal matrix elements of the E0 operator. The
E0 operator (see, e.g.,1–4) can be expressed in terms of single-nucleon degrees of freedom as

T̂ (E0) =
∑

k

ekr
2
k , (1)

where ek is the effective charge of the kth nucleon and ~rk is its position relative to the center of mass
of the nucleus. The diagonal matrix elements of T̂ (E0) are directly related to mean-square charge radii.
Radii are well known to reveal shape changes in nuclei; these are normally expressed as isotope shifts
or as isomer shifts (see, e.g.,5). In the present study we explore the relationship between E0 transition
strength, ρ2(E0), and shape isomerism (or shape coexistence, see, e.g.,5) in nuclei.

The association of E0 transitions with shape coexistence is a relatively recent development3,6. Some
preliminary surveys have been made7–9, but the association between ρ2(E0) and different shapes was
only qualitative. Here we undertake a quantitative approach. Specifically we investigate the connection
between ρ2(E0) and differences in 〈r2〉 and differences in 〈β2〉, where β is the quadrupole deformation,
between coexisting shapes.

To put the present investigation in perspective, we consider a variety of model estimates of ρ2(E0). We
present comparisons of shell model and collective model (both ”geometric” and ”algebraic”) estimates
of ρ2(E0) with nuclei which are considered to be good examples of the shell model and of the different
collective types. We argue that all the cases of large ρ2(E0) are consistent with a shape-coexistence origin.
Conversely, we show that the ρ2(E0) values found in nuclei which are good examples of the shell model
and of the different collective types are not large.

The focus of the work, as the title implies, is a critical assessment of the connection between strong
E0 transitions and shape coexistence and elementary models of nuclear structure. We do not attempt an
exhaustive review of all aspects of E0 transitions. We refer the reader to the latest in a series of papers
by Voinova10,11 for a detailed coverage of the literature up to 1986 and E0 transitions viewed from a
broader perspective.

2. E0 Transitions : some general properties

A. Introduction

The E0 operator, T̂ (E0), is defined in Equation (1). This operator couples the nucleus to the electro-
magnetic field and gives rise to two-photon emission and internal-pair (IP) formation. It also couples
the nucleus to the atomic electrons and gives rise to the internal-conversion (IC) process. Two-photon
emission is possible at all energies, but is extremely improbable. Decay by IP formation only becomes
possible above 1.022 MeV. For example, the 1.761 MeV 0+ excited state in 90Zr (which is the first excited
state in this nucleus) decays12,13 with probability PIC :PIP :P2φ = 0.70 : 0.30 : 10−4 . The IC process for
E0 occurs primarily through the 1s(K) and 2s(L1) shells. Typical probabilities14–16 for IC in the various
atomic subshells are PK :PL1 :PL2 :PL3 : PM1 = 0.83 : 0.13 : 10−3 : 10−9 : 0.04.

The E0 transition rate, 1
τ(E0) , is defined3 by

1
τ(E0)

= ρ2
fi

(ΩK + ΩL1 + · · · + ΩIP ) , (2)

where

ρ2
fi =

∣∣∣∣ 〈f |∑k ekr
2
k|i〉

eR2

∣∣∣∣2 , (3)

and the Ω’s are ”electronic” (non-nuclear) factors, e is the unit of electrical charge, and R is the nuclear
radius,

R ' 1.2 A1/3 fm . (4)

Tabulations of ΩK , ΩL1 are given by Hager and Seltzer17 and Bell et al.14 and some graphs are given in16.
A quick method for computing ΩK and ΩL1 is given by Kantele4. Tabulations of ΩIP are given in18,19.
The Ω’s depend on the atomic number, Z, of the nucleus and the transition energy, ∆E. The variation
of Ω(Z,∆E) with Z and ∆E is moderate, e.g., ΩK(Z=40, 1 MeV)/ΩK(Z=80, 1 MeV) = 2 × 10−3,
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ΩK(Z=80, 100 keV)/ΩK(Z=80, 1 MeV) = 0.28. For Z=80, ∆E = 500 keV, and ρ2 ' 1 × 10−3, one
obtains τ(E0)'3 ns, i.e., T1/2(E0)'2 ns. Values of ρ2 are generally 10−1 ∼ 10−3 and so it is standard
practice to quote ρ2 · 103. The nuclear structure information is contained in ρ2.

The nuclear structure information embodied in ρ2 values can be directly related to simple models. The
monopole operator, cf. Equations (1) and (3), is directly connected to nuclear mean-square charge radii.
We present a few details of the electric monopole operator expressed in terms of the shell model and
simple geometric and algebraic collective models.

B. The Shell Model

Shell model estimates of ρ2(E0), Equation (3), can be directly formulated because the shell model de-
scribes the nucleus in terms of nucleon degrees of freedom. Consider n nucleons confined to a single
oscillator shell, N . Then, expressing the initial and final states as

|ψi〉 =
∑
m

ai
m|ψm〉 , |ψf 〉 =

∑
l

af
l |ψl〉 , (5)

where

{|ψm〉} = {|(j1)n1(j2)n2 · · · (jk)nk ; JM〉, n = n1 + n2 + · · ·+ nk} , (6)

and j1, j2 · · · , jk are the orbitals making up the shell, we obtain

ρ2
fi

=

∣∣∣∣∣∑
m

∑
l

ai
ma

f∗
l 〈ψl|

n∑
k=1

ekr
2
k|ψm〉

∣∣∣∣∣
2

1
e2R4

. (7)

The scalar nature of r2k results in l = m. Thus,

ρ2
fi

=

∣∣∣∣∣∑
l

ai
la

f∗
l

n∑
k=1

ek〈ψl|r2k|ψl〉
∣∣∣∣∣
2

1
e2R4

. (8)

Because the matrix elemetns of r2k within a single harmonic oscillator shell are independent of l and
because of orthogonality of the initial and final states, i.e.,∑

l

ai
la

f∗
l = 0 , (9)

one immediately obtains the result of vanishing ρ2
fi

values for nucleons confined to a single oscillator shell.
Although ρ2

fi
vanishes within a single oscillator shell, nucleons in a nucleus do not occupy energy

eigenstates which are harmonic oscillator eigenstates. Within an average single-particle field description,
nucleons are well described by eigenstates of a Woods-Saxon potential which differs from an oscillator
potential by being finite in depth and more ”square” in radial profile. These eigenstates can be (and
usually are) expressed as linear combinations of oscillator eigenstates. Although the linear combinations
are dominated by oscillator eigenstates of a particular shell, there are admixtures of eigenstates from
other shells.

A simple expression for ρ2
fi

, when oscillator shell mixing is present, can be directly obtained by con-
sidering two states

|0+
i 〉 = α|j21 , 0+〉 + β|j22 , 0+〉 , (10)

|0+
f 〉 = −β|j21 , 0+〉 + α|j22 , 0+〉 , (11)

where |j21 , 0+〉 and |j22 , 0+〉 denote pairs of nucleons coupled to total spin zero in oscillator configurations
j1 and j2. Then

〈0+
f |r2|0+

i 〉 =(α2 − β2)〈j21 , 0+|r2|j22 , 0+〉
+αβ

(〈j22 , 0+|r2|j22 , 0+〉 − 〈j21 , 0+|r2|j21 , 0+〉) . (12)

If j1 and j2 belong to different oscillator shells, then the ”αβ” term depends on the difference in mean-
square radii of two oscillator shells. In the limit of maximal mixing, α = β = 1√

2
, for j’s in adjacent

oscillator shells,
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〈0+
f |r2|0+

i 〉 =
h̄

mω
, (13)

where ω is the oscillator constant and m is the mass of the nucleon, whence

ρ2
fi

= 0.5 A−2/3 , (14)

where A is the nuclear mass number. This gives, for example, ρ2 · 103 values of 43 and 15 for A=40 and
200, respectively. Equation (14) also provides a useful scaling of ρ2 in terms of A, i.e., ρ2·A2/3 should be
essentially independent of mass effects.

An additional and rather subtle point needs to be mentioned. Because nucleons are bound in a finite
potential well, the less bound a nucleon, the larger its mean-square radius. Hence, even in a single shell,
there are variations in 〈j|r2|j〉. This is well illustrated in the survey of Moalem20. We note in particular
that although spin-orbit intruder states come from the next higher oscillator shell, their mean-square
radii are only slightly larger than valence oscillator shell values. Thus, in practice, Equation (14) is of
little practical value, except as a guide to the A dependence of ρ2.

Finally, we make a remark about contributions of neutrons to E0 transition strength. One would
expect neutrons to make no contribution; however neutrons interact strongly with protons and polarize
the nuclear core. Thus, even in nuclei such as 58

28Ni30 and 206
82 Pb124 (which we will specifically consider in

Section 3A) one finds E0 transition strength.

C. Geometrical Collective Models

Geometrical collective models, i.e., models that depend on shape degrees of freedom, as introduced by
Bohr and Mottelson1 and by the Frankfurt group2,21,22, can provide estimates of ρ2(E0). There are two
important considerations : connecting the collective variables to the monopole operator ; and selection
rules. We consider the harmonic quadrupole vibrator and the quadrupole deformed rotor.

1. The Harmonic Quadrupole Vibrator

The harmonic quadrupole vibrator describes the nucleus as a sphere with a sharply-defined surface which
can execute quadrupole shape oscillations, i.e.,

R(θ, φ) = R0

{
1 + α00Y00 +

∑
µ

αµY
∗
2µ(θ, φ)

}
, (15)

where α00Y00 is included to ensure volume conservation and the αµ, µ = ±2, ±1, 0 are time-dependent
shape parameters. Starting from the general definition of the monopole moment, as described in the
Bohr-Mottelson model1,

m(E0) =
∫
ρ(~r)r2d~r , (16)

where a continuous charge distribution is assumed∗, one obtains

T̂ (E0) =
3
5
ZeR2

0

(
1 +

5
4π

∑
µ

|αµ|2
)

, (17)

with only the |αµ|2 part causing E0 transitions.
Phonon creation and annihilation operators can be introduced

αµ =
(
h̄ω

2C

)1/2 (
bµ + (−1)µb+µ

)
, (18)

where C is the restoring force constant for harmonic quadrupole vibrations of the nucleus. From the
quadratic dependence of T̂ (E0) on αµ, Equation (17), the selection rules for E0 transitions are

∗For a density corresponding to point-like charged particles, as in the shell-model, this definition reduces to
Equation (1).
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∆N = 0,±2 , (19)

where N is the phonon number. Further, designating the vibrational eigenstates by |N,R〉, where R
labels the collective angular momentum, then

〈N,R|T̂ (E0)|N,R〉 =
(
N +

5
2

)
3
4π
ZeR2

0 ·
h̄ω

C
, (20)

and

〈N,R|T̂ (E0)|N − 2, R〉 =
∑
R′
〈N,R‖b†‖N − 1, R′〉〈N − 1, R′‖b†‖N − 2, R〉

×(−1)R+R′
{

1
2
√

2R+ 1

}
3
4π
ZeR2

0

h̄ω

C
. (21)

This most general expression for E0 transitions between the collective quadrupole vibrational excitations
reduces, e.g., for the 0+

2 → 0+
1 E0 transition, to the result

〈2, 0|T̂ (E0)|0, 0〉 =

√
5
2
h̄ω

C

3
4π
ZeR2

0 . (22)

Using the mean-square value

β2
rms ≡ 〈0, 0|

∑
|αµ|2|0, 0〉 =

5
2
h̄ω

C
, (23)

this equation can be cast in the useful form,

〈2, 0|T̂ (E0)|0, 0〉 =

√
2
5
β2

rms

3
4π
ZeR2

0 . (24)

We should point out here that the use of the B and C (or ω) values, as obtained from a model with
irrotational flow, do not result in the correct magnitudes for collective properties (i.e., Ex(2+

1 ) and
B(E2) values are not reproduced). For consistency, we shall resort to the use of values of C,B (or ω)
and derived quantitites from the experimental Ex(2+

1 ), B(E2; 2+
1 → 0+

1 ) values and equate these to the
harmonic results. Thus, it is possible to rewrite the value ρ2

21, using only known quantities, as

ρ2
21 =

2
5
B(E2; 0+

1 → 2+
1 )2(

3
4π

)2
Z2r80A

8/3
, (25)

with R0 = r0A
1/3, r0 = 1.2 fm and B(E2) in units of e2.fm4.

2. The Quadrupole Deformed Rotor

The quadrupole deformed rotor describes the nucleus as a deformed body whose surface is sharply defined
and given by Equation (15), where some or all of the αµ’s have non-zero time-independent as well as
time-dependent parts. The latter correspond to vibrational oscillations of the deformed equilibrium
shape1,2. Following the standard transformation†1,2 to a set of body-fixed principal axes, {αµ} → a0, a2 ≡
{β0 + ξ, η} , where {β0, 0} corresponds to the equilibrium shape and {ξ, η} corresponds to the shape
oscillation, one obtains via Equation (17)

T̂ (E0) =
3ZeR2

0

4π
(
β2

0 + 2ξβ0 + ξ2 + 2η2
)

. (26)

The first term corresponds to the equilibrium shape and will only contribute to E0 moments, whence for
E0 transitions,

T̂ (E0) =
3ZeR2

0

2π
(ξβ0) , (27)

†An alternative parametrization is {β, γ} with a0 = β cos γ and a2 = 1√
2
β sin γ.
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where higher-order contributions of the vibrational oscillation are neglected.
Equation (27) gives rise to non-vanishing E0 transitions deexciting the β-vibrational excitation (char-

acterized by nβ = 1) but results in vanishing gamma-band to ground-band E0 matrix elements. The
result23 is

ρ2(E0;nβ = 1 → nβ = 0) =
1
2

(
3
2π

)2

Z2β2
0

h̄ω

C
. (28)

Note that this expression is exact up to second order.
The remark made in Section 2C 1 regarding the use of the B and C coefficients applies here also.

We make use of the simple axial rotor expressions but with the parameters adjusted to reproduce the
experimental values. Using the definition of the moment of inertia of the ground band, J0 = 3Bβ2

0 ,
E(2+

1 ) = 3h̄2

J0
, E(0+

β ) = h̄ω, alternative expressions using the E2 transition probability can be derived as

ρ2(E0;nβ = 1 → nβ = 0) =
9

8π2
Z2β4

0

E(2+
1 )

E(0+
β )

=
B(E2; 0+

g → 2+
β )4β2

0

e2r40A
4/3

, (29)

(with r0 = 1.2 fm, B(E2) in units of fm4, and β0 the quadrupole equilibrium deformation). We also
point out that E0 transition rates from the β band to the g band do not contain any angular momentum
dependence, i.e., 0+ → 0+, 2+ → 2+, 4+ → 4+, . . . E0 rates are all identical.

D. Algebraic Collective Models

Algebraic collective models, i.e., models that are expressed only in terms of creation and annihilation
operators which describe collective quanta, can provide a semi-empirical framework for discussing ρ2(E0)
values. Further, if simple dynamical symmetries are assumed to be present in the collective structure of
nuclei, some selection rules arise. The most extensively developed of the algebraic collective models is the
interacting boson model (IBM) which is formulated in two versions : IBM-1 which does not distinguish
between protons and neutrons and IBM-2 which does distinguish between them24–27.

1. The Interacting Boson Model - IBM-1

The IBM-1 provides an explicit language for expressing Hamiltonians and other operators in terms of
s(L = 0) and d(L = 2) bosons27. The E0 operator can be written directly as

T̂ (E0) = β0(d†d̃)(0) + γ0(s†s)(0) , (30)

where β0 and γ0 are free parameters (not to be confused with the parameters used in Section 2C 1) and
the superscript notation indicates spherical tensor coupling. Equation (30) can be expressed in terms of
the boson number operators n̂s, n̂d and N̂(= n̂s + n̂d) as

T̂ (E0) = β′0n̂d + γ0n̂s = γ0N̂ + β̃0n̂d = β′0N̂ + γ̃0n̂s , (31)

where

β′0 =
β0√

5
, β̃0 = β′0 − γ0 , γ̃0 = γ0 − β′0 . (32)

The IBM-1 possesses simple limiting dynamical symmetries which lead to closed form expressions for
the matrix elements of T̂ (E0) and, consequently, to selection rules24–26. We deal with the three limiting
cases, U(5), SU(3), and O(6), separately.

The U(5) limit of the IBM-1 possesses N and nd as good quantum numbers24. Thus, T̂ (E0) is diagonal
in this limit and E0 transitions are forbidden.

The SU(3) limit of the IBM-1 possesses N as a good quantum number together with the conventional
SU(3) quantum numbers (λ, µ), but nd is not a good quantum number25. However, considering T̂ (E0) in
the form

T̂ (E0) = γ0N̂ + β̃0

√
5(d†d)(0) , (33)

noting that d† transforms27 as a (λ, µ) = (2, 0) representation of SU(3); then, e.g., (λ, µ) = (2N, 0)
states connect only with (λ, µ) = (2N − 4, 2) states via E0 transitions. This includes the E0 transitions
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connecting the ”β” band ((2N − 4, 2) irrep.) with the g band ((2N, 0) irrep.). The E0 matrix element
becomes

〈(2N, 0)K = 0, L|T̂ (E0)|(2N − 4, 2)K = 0, L〉

= γ̃0N

[
(2N − L)(2N + L+ 1)

3(2N − 1)(2N)

]1/2 [2(2N − 1)2 − L(L− 1)
3(2N − 2)(2N − 1)

]1/2 [ 2(N − 1)
N(2N − 3)

]1/2

. (34)

This simplifies

(i) for N →∞ to

γ̃0

√
2N
3

, (35)

(ii) for L = 0 to

γ̃0

√
2N(2N + 1)
9(2N − 3)

, (36)

(iii) for the ratio R to :

R ≡ M(E0;L→ L)
M(E0; 0 → 0)

=
[
(2N − L)(2N + L+ 1)

2(2N)(2N + 1)
· 2(2N − 1)2 − L(L+ 1)

(2N − 1)2

]1/2

, (37)

and thus expresses a specific L dependence in the β band → g band E0 transitions. This is illustrated in
Figure 1.

The O(6) limit of the IBM-1 possesses N as a good quantum number together with the conventional
O(6) quantum numbers σ, τ but nd is not a good quantum number26. The E0 transition operator possesses
the selection rules ∆σ = 0,±2; ∆τ = 0. Thus, the E0 matrix elements that connect to the 0+ ground-state
level |[N ], σ = N, τ = 0, L = 0〉 originate in the σ = N − 2 multiplet, i.e.. |[N ], σ = N − 2, τ = 0, L = 0〉

〈[N ], σ = N, τ = 0, L = 0|T̂ (E0)|[N ], σ = N − 2, τ = 0, L = 0〉

= β̃0

√
(N − 2)(N − 1)(N + 3)

2(N + 1)
, (38)

which simplifies, for large N(N →∞), to the result

M(E0)σ=N−2→σ=N
∼= β̃0

√
N

2
. (39)

The forbiddenness of E0 transitions in the U(5) limit of IBM-1 and their allowed character in the
harmonic quadrupole vibrator needs some comment. Primarily, the model operators are quite different
(cf. Equations (17) and (31)). For the geometric model, the ∆N = 0, ± 2 selection rules (Equation
(19)) follow directly. For the boson model, the operator is the simplest monopole operator that can be
constructed from the boson operators. It is fair to say that the boson model E0 operator is too simplistic.
There are other concerns with the interacting boson model : the bosons of the model are regarded as
superpositions of pair-correlated configurations restricted to the valence shell. This has been formalized
in the OAI mapping procedure28. Restriction to a valence shell within a harmonic oscillator-based shell
model, as noted earlier, would result in vanishing E0 matrix elements. Thus, we infer that the description
of E0 transitions within the IBM-1 is probably seriously deficient.

2. The Interacting Boson Model - IBM-2

The IBM-2 provides a more detailed language than IBM-1 for the description of collectivity in nuclei in
that it distinguishes between protons and neutrons. Thus, the E0 operator can be written (cf. Equation
(31))

T̂ (E0) = γ0πN̂π + β̃0πn̂dπ + γ0νN̂ν + β̃0ν n̂dν . (40)

7



The IBM-2 possesses simple limiting dynamical symmetries similar to IBM-1 and in addition new types
of limiting symmetries that depend on the distinction between protons and neutrons. The formalism is
extensive and is fully detailed in a monograph29. A discussion of some aspects of E0 transitions within
an IBM-2 framework is made by Barrett and Otsuka30. Most commonly, the application of IBM-2 is via
parameter fitting to systematic trends in long chains of isotopes (or isotones) with only a few parameters
varying. Specific papers using this latter approach will, where applied to E0 properties of nuclei, be cited
in Section 3.

We reiterate here, the concern expressed at the end of the previous section, that the description of E0
transitions in IBM-2 may also be seriously deficient. Additional caution is needed in using Equation (40),
cf. Equation (31), because there are more fitting parameters available.

E. Shape Mixing Effects on E0 Transitions

The connection between shape mixing and E0 transitions is the essential point that we want to make
in this paper. We argue that, in general, nuclei characterized by coexisting shapes having different
deformations will exhibit strong ρ2(E0) values if the states associated with the coexisting shapes become
mixed. We present this argument starting from a two-level mixing description.

Simple two-level models consist of two configurations corresponding to, in general, two shapes with
different quadrupole equilibrium values in the appropriate deformation (β) space. In the general case,
mixing between these two configurations |0+

1 〉 and |0+
2 〉 will result in two eigenstates |0+

i 〉 and |0+
f 〉,

respectively (see Figure 2)

|0+
i 〉 = a|0+

1 〉+ b|0+
2 〉 ,

|0+
f 〉 = −b|0+

1 〉+ a|0+
2 〉 . (41)

Using a general E0 operator, T̂ (E0), which needs to be expressed in the appropriate model space, char-
acterized by a single quadrupole deformation variable β, one obtains the result for ρfi(E0)

ρfi(E0) =
1
eR2

[
ab
(
〈0+

1 |T̂ (E0)|0+
1 〉 − 〈0+

2 |T̂ (E0)|0+
2 〉
)

+
(
a2 − b2

) 〈0+
2 |T̂ (E0)|0+

1 〉
]

. (42)

First, consider the situation in which weak mixing occurs between configurations that correspond to
strongly differing equilibrium shapes. Thus,

ab ' 0 ,

because of weak mixing; and

〈0+
2 |T̂ (E0)|0+

1 〉 ' 0 , (43)

because the wave functions are mainly localized at different points in deformation space. Thus, ρ2
fi ' 0.

The best example, shown in Figure 3, is observed for the E0 decay from the fission isomeric 0+ state in
238U31,32, resulting in the most retarded E0 transition observed anywhere (cf. Table 3).

Second, consider the strong mixing situation. We still have 〈0+
2 |T̂ (E0)|0+

1 〉 ' 0, but

a ' −b ' 1√
2

. (44)

Thus, the general result (42) is approximated by

ρ(E0) =
1
2

[
〈0+

1 |T̂ (E0)|0+
1 〉 − 〈0+

2 |T̂ (E0)|0+
2 〉
] 1
eR2

. (45)

Here, use can be made of the fact that in the collective quadrupole deformation space we have the
definition

β2
k ≡ 〈0+

k |
∑

|αµ|2|0+
k 〉 (46)

which leads to the expression
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ρ2
fi(E0) =

1
4

(
3
4π

)2

Z2
(
β2

1 − β2
2

)2
. (47)

In the particular situation where we have strong mixing between an almost spherical and a strongly
deformed shape, we obtain the result (see also Figure 4)

ρ2
fi(E0) ' 1

4

(
3
4π

)2

Z2β4
def . (48)

F. The Connection Between E0 Transitions and Nuclear Radii

The connection between E0 transitions and nuclear radii which we wish to make is that there are a number
of regions where E0 transitions are observed and where empirical data on ∆〈r2〉 are now available33.
Here we present some simple perspectives on trends in 〈r2〉 and show how they are connected to nuclear
structure. Specifically, we show the types of change in isotope and isomer shifts associated with intruder
states‡ and sudden changes in ground-state structure and the corresponding behavior expected for ρ2(E0).

Starting from a quadrupole (axial) deformed nuclear shape, expressed with a simplified version of
Equation (15), i.e.,

R = R0

(
1 + βY 0

2 (θ)
)

, (49)

(with R0 = r0 ·A1/3 fm), one derives the mean-square radius as

〈r2〉 =
3
5
R2

0

(
1 +

5
4π
β2

)
. (50)

If we now study the situation of two basic configurations (Section 2E), corresponding to different equi-
librium quadrupole deformation values ∆(β2), and allow mixing (described by the mixing amplitude a),
the connecting E0 transition is described by (see also34)

ρ2(E0) =
(

3
4π
Z

)2

a2(1 − a2)
[
∆(β2)

]2
. (51)

The nuclear radius variation between these two configurations is obtained from Equation (50) as

∆〈r2〉 =
3
4π
R2

0∆(β2) ; (52)

or, connecting the isotope shift to a ρ2(E0) value results in the formula

ρ2(E0) =
Z2

R4
0

a2(1 − a2)
[
∆〈r2〉]2 . (53)

Strictly speaking, the ∆〈r2〉 value in Equation (52) corresponds to the isomeric shift between the two 0+

configurations. However, we can argue that this isomeric shift will approximately be equal to the isotopic
shift where the two 0+ configurations cross (see below). So, it is a very reasonable assumption to use
Equation (53) also as an expression relating the ρ2(E0) value to the isotopic shift in those nuclei where
strong variations in the nuclear radius are seen.

An interesting consistency test of Equation (53) can be carried out for the nucleus 96Sr because : (i)
for a long series of Sr nuclei, the isotope shifts are known experimentally as shown in Figure 5 and, (ii) a
ρ2(E0) value, one of the largest, is known in 96Sr (cf. Table 1 and Figure 16). If we make use of Equation
(53), and make as input choice for the mixing amplitude the maximal value a = 1/

√
2, a theoretical value

ρ2(E0) = 0.143 is deduced, in good agreement with the experimental value of ρ2(E0) = 0.185±0.050.
This test shows the validity and usefulness of the relation (53).

‡In the present discussion, we refer to intruder states as those low-lying excited states that are connected to a
largely different deformation as compared to the ground-state deformation. In a microscopic context, they are
associated with particle-hole excitations across shell gaps.
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The relation between mixing a deformed and a spherical configuration, the variation in nuclear radius
in the ground state (isotopic shift), and ρ2(E0) values connecting the two 0+ levels can be highlighted in
a simple two-state (mixing) model. In the case of no mixing, sharp 〈r2〉 variations (spikes) and vanishing
ρ2(E0) values will be seen. With increasing mixing between the two 0+ states, the 〈r2〉 variation will
become more gradual and ρ2(E0) strength will appear in the vicinity of the crossing points. This is
illustrated in Figures 6 and 7.

The relationship between E0 transition rates and the variation of the nuclear radius can be extended
further. In the situation where the ground state contains some admixture of a strongly-deformed con-
figuration, the E0 transition rate can give information on the mixing amplitude. If now the value β of
the deformed configuration is known (from B(E2) data as in, e.g., the Hg, Pt and Pb nuclei), the mixing
amplitude a, describing the mixed wave functions

|0+
g 〉 = a|0+

sph.〉+
√

1− a2|0+
def 〉

|0+
exc.〉 = −

√
1− a2|0+

sph.〉+ a|0+
def 〉 , (54)

can be deduced from Equation (51).

3. Manifestation of E0 Transitions in Nuclei

In this section we undertake a detailed classification of experimental ρ2(E0) values in terms of the different
types of structure observed in nuclei, i.e., shell model, collective models, and shape-coexistence models.
This is the essential part of the present paper. The subsections – singly-closed shell (and subshell) nuclei,
vibrational and weakly-deformed open-shell nuclei, strongly-deformed nuclei, nuclei that exhibit a sudden
change in ground-state structure, nuclei that exhibit shape coexistence and intruder states, light nuclei
(A < 56), and odd-A nuclei – are chosen to classify both nuclei of well-defined structural types (cf. the
preceeding section) and nuclei which exhibit large ρ2(E0) values.

There are surprisingly few ρ2(E0) values known. We present all known values in Tables 1-4. Many more
E0 transitions have been identified in nuclei; however a lack of half-life data precludes the assignment
of ρ2(E0) to these transitions. We emphasize here that this is a serious experimental deficiency in our
knowledge of nuclei. We do not undertake a compilation of E0 transitions for which there are no half-life
data available. Nevertheless, where patterns of E0 decay help to understand ρ2(E0) information, we
present details. In the various subsections we reiterate the data, usually in figures. Finally, we note the
use of ρ2 ·A2/3 (cf. Table 4) which provides a mass-independent comparison of values.

A. Singly-Closed Shell Nuclei

In this section we present data for singly-closed shell nuclei with A≥56 and the zirconium nuclei with
N≤56 which have a closed subshell. However, we postpone a discussion of the (singly-closed shell) tin
and lead nuclei, which lie near to the respective midshells at N=66 and 104, until Section 3E where we
deal with low-lying intruder states which are important in these nuclei.

Figure 8 shows the ρ2(E0) data for the nickel isotopes (Z=28)36,37. Of particular note are the transitions
with ρ2(E0).103 ∼ 80 units which rank among the strongest known for A≥56. In 58,60Ni the parent
levels (at 3531 and 3319 keV) match states which are strongly populated in (3He,n) proton-pair transfer
reactions38,39, i.e., these levels are most probably Z=28 proton intruder states. It appears that in 62Ni the
proton intruder configuration resides predominantly in the 3519 keV state40, thus raising a question about
the ρ2(E0) strength associated with the 2049 keV state. However, there are no direct experimental data
on the admixture of the proton intruder configuration in the 2049 keV state. Lastly, 58Ni is remarkable
in that it exhibits both one of the strongest and one of the weakest known ρ2(E0) values with a difference
of ∼ 104. We interpret the 2942 keV state in 58Ni as a valence neutron shell configuration.

The appearance of strong ρ2(E0) values in the 58−62Ni nuclei implies significant mixing between the
proton 2p-2h intruder configurations and the ground state. This is surprising in the light of the high
excitation energy (Ex '3 MeV) of the 2p-2h states. The presence, in 58Ni, of one of the weakest ρ2(E0)
values is easier to understand. The nucleus 58Ni has two neutrons outside of a doubly-closed shell. A
variety of 0+ pair configurations can arise within the neutron valence shell. These will all have essentially
the same 〈r2〉 values. Further, when there are only valence neutrons outside of a doubly-closed shell, in
order to produce E0 transition strength, the neutrons must polarize the core and this polarization must
be different for different configurations.

Figure 9 shows the ρ2(E0) data for the zirconium isotopes (Z=40)41–48. Although Z=40 is not a major
closed shell, a proton sub-shell gap exists for 90−96Zr. The most notable feature in the figure is the large
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ρ2(E0) values for 98,100Zr. These are due to a sudden shape change and we defer their discussion until
Section 3D.

One can analyze the ρ2(E0) values up to N=56 using a two-component shell-model calculation42,43,45,
in which the (2p1/2)20+ and (1g9/2)20+ shell-model configurations dominate the structure of the low-lying
0+ states. The pairing force strongly mixes these configurations, resulting in

|0+
1 〉 = α|(2p1/2)20+〉+ β|(1g9/2)20+〉 ,

|0+
2 〉 = −β|(2p1/2)20+〉+ α|(1g9/2)20+〉 . (55)

Spectroscopic factors deduced from transfer reactions (see refs. in43 and49) give α and β values. Thus,

〈0+
1 |T̂ (E0)|0+

2 〉 = 2eαβ
{〈r2〉2p1/2 − 〈r2〉1g9/2

}
. (56)

Figure 10 shows the experimental values for ρ21 = ρ(0+
2 → 0+

1 ) for 90,92,94,96Zr and comparison with
ρ21 values estimated using Equation (56) with

(
〈r2〉2p1/2

− 〈r2〉1g9/2

)
values given by the shell model

estimate, i.e., A1/3, and by the values 〈r2〉1/2
2p1/2

= 4.64 fm and 〈r2〉1/2
1g9/2

= 4.79 fm determined42 using the
90Zr(t,α) 89Y reaction. Evidently, for 90Zr, the shell model estimate fails whereas the estimate using
empirically-determined 〈r2〉nlj values agrees within experimental error. (We note that the influence of
variable occupancy of the 2p3/2 orbital has been investigated41–43 also.) The zirconium isotopes are
discussed further when the sudden shape change between 98Zr and 100Zr is considered.

Figure 11 shows the ρ2(E0) data for the N=82 isotones50,51. In the N=82 single-closed shell nuclei,
protons are filling the 1g7/2, 2d5/2, 2d3/2, 3s1/2 and 1h11/2 orbitals. Electric monopole transitions are
expected because of mixing between the N=4 orbitals and the N=5 (1h11/2) orbital. The simple oscillator
shell estimate of ρ2 for 142Nd, with 50-50 mixing, is 0.018. Thus, a shell model description would be a
good zeroth-order approximation in the N=82 isotones.

The only calculation of E0 properties for the N=82 isotones is a simple two-particle shell model plus
pairing force calculation52. The calculated E0 properties of 134Te were qualitatively compared with 136Xe
E0 transition patterns (no ρ2 values are known) and the E0 systematics of the heavier N=82 isotones.

The lowering of the ρ2 value in 146Gd compared to 142Nd has been discussed50 in terms of a variable
effective monopole charge. An alternative possibility is that orbital binding energy effects are playing a
role20.

At the Z=82 closed shell there are ρ2(0+
2 → 0+

1 ) data for 206Pb53,54 and 204Pb55. Tape et al.54 have
discussed the E0 decay of the 0+

2 state in 206Pb in terms of simple mixing of valence neutron hole pairs,
isotope shift data, and an effective monopole charge for neutrons. They used

|0+
1 〉 = α| (3p1/2

)−2 0+〉+ β| (2f5/2

)−2 0+〉
|0+

2 〉 = −β| (3p1/2

)−2 0+〉+ α| (2f5/2

)−2 0+〉 , (57)

and obtained ρth =0.016(10) which can be compared with ρexpt =0.034(2)53. The same reasoning but now
using theoretical isotopic shifts from neutron hole states in 207Pb relative to 208Pb56, and the theoretical
0+
1 , 0+

2 wave functions determined by Ma and True57, considering the major 3p1/2, 2f5/2 and 3p3/2

components results in the value ρth(E0)=0.027.

B. Vibrational and Weakly-Deformed Open-Shell Nuclei

In this section we present data for nuclei which are the best examples of harmonic quadrupole vibrators.
We also look at nuclei which closely match the U(5) and O(6) limits of the IBM1 (nuclei which closely
match the U(5) limit also closely match harmonic quadrupole vibrations). Lastly, in this section, we
consider nuclei which we classify as weakly-deformed open-shell nuclei.

Figure 12 shows B(E2) data for low-lying states in 108,110Pd58,59. These two nuclei are very good
examples of (near) harmonic quadrupole vibrators ; possibly they are the best known examples. Figure
13 shows the available ρ2(E0) data for the palladium isotopes60–63. Evidently, 108,110Pd are not associated
with strong ρ2(E0) values. The nuclei 104,106Pd are also (very) good examples of harmonic quadrupole
vibrators (see, e.g., Kern et al.64). Likewise, the ρ2(E0) values in 104,106Pd are not strong. We infer
that a ”typical” ρ2(E0)·103 value for the 02 → 01 transition in these nuclei is ' 4 units. The vibrational
nature of 106Pd, which has ρ2(E0)·103 = 14± 5 units, is not significantly different from its neighbors and
we argue that the larger value of ρ2(E0) (02 → 01) in this nucleus is due either to an intruder admixture5

(cf. the neighboring cadmium isotopes discussed in Section 3E), or the true value (cf. the experimental
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error) is smaller. These values of ρ2 can be compared with an estimate using Equation (25) which gives
ρ2(E0)·103 ≈ 200 for 106Pd.

Figure 13 also shows the available ρ2(E0) data for the ruthenium isotopes65,66. These nuclei have
more complex collective structure. The ruthenium isotopes have variously been described using the
geometrical collective model (see, e.g.,21,22) and using the interacting boson model (see, e.g.,66–69) : the
lighter Ru isotopes have been interpreted as vibrational or U(5)-like and the heavier Ru isotopes have been
interpreted as axially asymmetric rotors or O(6)-like. Shape coexistence has also been suggested21,22,70

in these nuclei. In the context of shape coexistence, it has further been suggested70 that enhanced E0
transitions be looked for in 104Ru.

Figure 13 shows, lastly, the available ρ2(E0) data for the molybdenum isotopes60. The large ρ2(E0)
values in 98,100Mo and the very large value in 102Mo can be explained by shape coexistence and a sudden
change in ground-state structure. This is addressed in Section 3 D.

Figure 14 shows the available data for the zinc71,72, germanium73,74, selenium73,75–77, and krypton78–81

nuclei. The nuclei shown exhibit a rich variety of collective behavior. Most notably, the selenium and
krypton isotopes exhibit shape coexistence5. Shape coexistence and ρ2(E0) values in 78Kr have been
discussed82 very recently.

The O(6) limit of the IBM-1 possesses well-defined E0 transition selection rules, cf. Section 2 D1. The
nuclei 194,196Pt are, probably, the closest realization for O(6) collective behavior known (see, e.g.,26,83) ;
but note the cautionary remarks in84). Figure 15 shows the available ρ2(E0) data for 194Pt (calculated
using information in the Nuclear Data Sheets for A=194) and 196Pt85. The 0+

3 → 0+
1 transition (∆σ =

2,∆τ = 0) is allowed and the 0+
2 → 0+

1 transition (∆σ = 0,∆τ = 3) and the 0+
3 → 0+

2 transition
(∆τ = 2,∆τ = 3) are forbidden. Either the O(6) 0+ states in 194,196Pt are incorrectly identified (and
possibly intruder states must be invoked85) or the description of E0 transitions in the IBM-1 (cf. Equation
(30,31)) is wrong. (We note that the E0 transition strength pattern observed in 194,196Pt also does not
match predictions made by Barrett and Otsuka30 for the O(6) limit of the IBM-2. Further, the neutron-
deficient Ba and Xe isotopes, which are suggested30 as possible examples of the O(6) limit of the IBM-2,
may not obey the predicted monopole decay pattern86. Finally, we note some IBM-2 fits87 to monopole
properties in the osmium and platinum nuclei which are in fair agreement with the data; and some
discussion88 of E0 properties of 188Os and 196Pt in terms of IBM-1.)

C. Strongly-Deformed Nuclei

Strongly-deformed nuclei are easily identified by their rotational behavior. There have been remarkably
few such nuclei for which ρ2(E0) data are available (see, e.g.,10,11). Consequently, we have undertaken a
compilation and evaluation of data from which ρ2(E0) values have been extracted for deformed nuclei.
We present the data in Table 3. (The N=90 nuclei, which exhibit rotational behavior, are discussed in
Section 3D because they lie in a region of sudden change in ground-state structure.)

Traditionally, strongly-deformed nuclei have been discussed in terms of rotations, β vibrations, γ
vibrations, and quasiparticle excitations ; with an association between E0 transitions and β vibrations1.
This association has been based largely on the nuclei 152Sm, 154Gd, and 174Hf. The nuclei 152Sm, and
154Gd have N=90 and, as noted above, are discussed in Sect.3 D. The nucleus 174Hf was discussed in
detail in ref.1 (see ref.1, pp. 168-171) ; but the data in Table 3 reveal that 174Hf is only one of a number of
nuclei with moderate ρ2(E0) values (moreover, the updated value given in Table 3 is about one half of the
original adopted value89). This β-vibrational band picture has probably retained its popularity because
E0 transitions are expected with equal strength for all ∆J = 0, β-band to ground-band transitions (cf.
Section 2C). Indeed, Jβ → Jg E0 transitions are seen in 152Sm and 154Gd up to J=10 (see Section 3 D)
and in 174Hf up to J=8§89. However, the identification of β vibrations has generally been elusive and the
current picture is confused. We briefly discuss this below.

The answer to the question “Do β vibrations exist in nuclei ?” is very unclear. Ideally, β vibrations
should exhibit B(E2;0+

g → 2+
β ) values comparable to the γ-vibrational quantity B(E2;0+

g → 2+
γ )1. This is,

in general, not observed. The identification of γ bands in deformed nuclei has been widely made through
their enhanced B(E2;0+

g → 2+
γ ) values. It is safe to say that γ vibrations occur in all deformed nuclei,

that the 0+
g → 2+

γ transition has an E2 strength of 2∼10 single-particle units, and that the γ-vibrational
band is always the lowest Kπ= 2+ band in a given nucleus. The lowest Kπ= 0+ bands, which would

§We note that for 174Hf, estimates89 are made for ρ2(E0, Jβ → Jg) based on lifetimes estimated from interband
B(E2)’s computed from B(E2;2+

β → 2+
g ) and Clebsch-Gordan coefficients. We do not include ρ2(E0) values

so-deduced, here.
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be natural candidates for β vibrations, do not often exhibit significant 0+
g →2+

β E2 strength and do not
exhibit any obvious systematic behavior. The strongest B(E2;0+

g → 2+
β ) values that we could find in

Nuclear Data Sheets are for 158Dy (2.15), 170Yb (2.76), 174Hf (2.26), and 232Th (2.03), where the values
in single-particle units are given in parentheses. The weakest values that we could find (assuming that
the lowest Kπ= 0+ band is always the β-vibrational band) are typically ∼ 0.3 s.p. units and as low as
0.06 s.p. units in 178Hf. However, it has recently been found90 that in 166Er the third excited 0+ state
has B(E2;0+

4 → 2+
g )=8.89 s.p. units, suggesting that one should look higher in energy for β vibrations.

All of this raises the question : “What is the nature of the lowest Kπ=0+ band in deformed nuclei ?”
This is briefly considered below.

The structure of excited Kπ=0+ bands in deformed nuclei has been discussed from a number of view-
points : this is well summarized in two recent publications90,91 that provide, in the nucleus 166Er, the
most complete view of positive-parity collective states for any deformed nucleus. It is emphasized in these
studies of 166Er that pair-type excitations must be important at low energy. Indeed, pair excitations must
exist in a pair-correlated system, although the discussion of such states has received only limited attention
theoretically (see, e.g.,92).

Although a discussion of the above issues is beyond the scope of the present work, we note that a specific
type of pair excitation can give rise to enhanced E0 strength. Namely, if a nucleon pair is excited from,
e.g., a set of up-sloping Nilsson orbitals into a set of down-sloping Nilsson orbitals then configurations with
different deformations are possible (evidence for such shape coexistence may be reflected by significant
variations in rotational parameters for K=0 bands in deformed nuclei). If these configurations mix then
E0 transition strength between the states resulting from the mixing will be observed. For complete mixing
and β values of 0.25 and 0.33, one obtains from Equation (47), for Z=70, the result ρ2(E0)·103=150, and
for Z=90 the result ρ2(E0)·103=250.

Within the descriptive framework of the interacting boson model, the SU(3) limit of IBM-1 has been
applied27 to deformed nuclei. In particular , 168Er has been considered93 to be one of the best man-
ifestations of SU(3) boson behavior in a deformed nucleus. The ρ2(E0) data for 168Er (cf. Table 3)
would therefore suggest that little if any (the value for 168Er is consistent with zero) monopole transition
strength should be associated with SU(3) boson states in the IBM. This point needs careful investigation
(however, it is beyond the scope of the present work).

Finally, we comment on three very large values of ρ2·103 in Table 3, namely 162Er(630460), 238U
(176+36

−32), and 238Pu (180110). The value for 162Er depends upon a lifetime deduced from inelastic
scattering of α particles94. The γ-branching ratios from the 1171 keV state in question in 162Er, according
to Nuclear Data Sheets, indicate a very weak E2 matrix element with the ground state and consequently
very strong E2 matrix elements with the 2+

g and 4+
g states. A coupled-channels analysis of the inelastic

scattering data would be desirable to determine if two-step excitation (via the 2+
g state) plays an important

role. The value for 238U depends upon a “mismatch” between (α,α′) and (α,α′γ) data95 which is reconciled
by invoking unobserved internal conversion. A direct observation of this is desirable. The value for 238Pu
depends upon unresolved doublets in the γ-ray and conversion-electron spectra of 238Np→238Pu96 and
of 238Am→238Pu97 and it would be desirable to narrow the errors on the γ-ray and conversion-electron
intensities.

D. Nuclei That Exhibit a Sudden Change in Ground-State Structure

There are two known regions where a sudden change in ground-state structure occurs in nuclei : these are
between N=58 and 60 and N=88 and 90. Nuclei for which there are ρ2(E0) values are shown in Figures
16-19 for N=58, 60, 88, 90, respectively. There exists clear evidence for large E0 strength associated with
these nuclei. In particular, the value ρ2

32(E0)·103 = 185± 50 units in 96Sr is one of the strongest known
in any nucleus with A≥56; and the values of ρ2

21(E0) in 100Zr and 102Mo also rank among the strongest
known in heavy nuclei. It is natural to associate the origin of these large ρ2(E0) values with shape mixing
where we have in mind a ”crossing over” of weakly-deformed and strongly-deformed states as shown in
Figures 6 and 7.

In the N=58,60 Sr, Zr, Mo nuclei, Equation (48) can be used in its more general from, viz.

ρ2
fi(E0) =

(
3
4π

)2

Z2a2(1 − a2)β4
def , (58)

considering the mixing of a deformed (β ' 0.35) and a spherical configuration with a the mixing amplitude
between the spherical and deformed configuration98. We show, in Figure 20, the results for the 2-level
model calculation of ρ2(E0). On the lower axis (upper axis) the unperturbed (perturbed) energy difference
of the two 0+ levels is indicated. Values of ρ2(E0)·103 up to 350 can result99. In Figure 21 we compare
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all data for the strongest ρ2(E0) values in the Sr, Zr, Mo, Ru and Pd nuclei with neutron number
50≤N≤64. One clearly observes the largest ρ2(E0) values near N=58,60 where experimental values up to
ρ2(E0)·103 ' 185 are obtained. These results present compelling evidence for the presence and mixing
of largely different nuclear shapes. The energy spectra in this Z=40, N=54-62 mass region is consistent
with the coexistence (and mixing) of almost spherical and strongly prolate deformed shapes5,6,99,100.

The N=90 nuclei are examples of good rotors and thus are well deformed. So, the question arises (cf.
Section 2 C2) : ”Are the 0+

2 states in the N=90 nuclei β vibrations?” We note that the spacing of the
rotational bands built on the ground state and first excited 0+ state in 152Sm, 154Gd, 156Dy are very
similar, which would be characteristic of β vibrations. However, we also note a peculiarity of the B(E2)
values in the ground-state bands of the N=90 nuclei, as compared to other well-deformed nuclei. This
is shown in Figure 22. Usually, B(E2) values for ground-state bands of well-deformed nuclei are, within
experimental error, in agreement with the rigid rotor model (unlike excitation energies!) However, unique
to the N=90 nuclei among well-deformed nuclei, the B(E2)’s of their ground-state bands clearly increase
(more in accord with one’s expectations cf. the deviation of excitation energies from a rigid rotor, i.e.,
in support of centrifugal stretching). To our knowledge, this feature of the N=90 nuclei (and indeed of
the conformity of ground-state band B(E2)’s to the rigid rotor for well-deformed nuclei cf. energies) has
not been recognized. Thus, we incline towards an interpretation of the N=90 nuclei as very soft, i.e.,
as involving mixing of configurations with different shapes. This needs further exploration. We note a
set of calculations for 154,156,158Gd101, that can be described as IBM-1 configuration mixing calculations,
which discuss ρ2(E0) values in these nuclei. We further note a very recent interpretation102 of 152Sm in
terms of phase coexistence.

E. Nuclei That Exhibit Shape Coexistence and Intruder States

Intruder states are generally associated with shape coexistence. This topic has been explored thoroughly
in two reviews5,103 to which we refer the reader for details of the evidence for shape coexistence.. Already
in the review on doubly-even nuclei5, the qualitative connection between shape coexistence and E0
strength was made. This section and the previous section provide an updated and extended perspective
of this connection.

In Figures 23 and 24 the ρ2(E0) data104–106 for the doubly-even Sn and Cd nuclei are given. One of
the most distinct features is the very strong ρ2

32(E0) values, in particular in the Sn nuclei, which is a clear
indication of strong mixing between an almost spherical and a deformed intruder excitation107. The Cd
nuclei also exhibit strong ρ2

32(E0) values. For 114Cd, a detailed illustration of the relative E0 strength is
given in Figure 25. The IBM-2 configuration mixing calculations of Heyde et al.108 are in fair agreement
with observed values for ρ2(E0) in 114Cd.

The data for the Z=82 mass region are shown for the Pb nuclei in Figure 26 and for the Hg nu-
clei in Figure 275. Information on the mixing between the ground-state spherical and the intruder
deformed configuration has been deduced for the Pb nuclei (192≤A≤196)109,110 and for the Hg nu-
clei (184≤A≤190)111,112. For the Hg nuclei (180≤A≤188), the mixing amplitude, deduced from ρ2(E0)
values111 and from α-decay studies112, is given in Figure 28. In this figure, a comparison with IBM-2
configuration mixing calculations113 is presented also. These calculations give a reasonable prediction of
the ρ2(E0) values in 186,188Hg from parameters fitted to isotope shift data.

F. Light Nuclei (A < 56)

We separate light nuclei from the detailed classifications of Sections 3 A-3E because some ρ2(E0) values
appear significantly larger than those in heavier nuclei although this is simply an A−2/3 effect (see
Equation 14).

In Table 4 we present the excitation energy, the ρ2(E0) values, as well as the ’reduced’ ρ2(E0) values,
i.e., ρ2(E0)·A2/3 for selected light nuclei, where we also compare with some of the largest ρ2(E0) values.

From the shell-model analysis, as given in Section 2B, within a given shell (e.g., the sd-shell), one does
not expect strong ρ2(E0) values. It appears though that in a number of N=Z sd-shell nuclei (see Figure
29), e.g., 24Mg and 28Si, strong ρ2(E0) values are observed.

In light sd shell nuclei, in particular in 16O, 18O and 20Ne clear-cut evidence for deformed 4p-4h
excitations across the Z,N=8 closed shell has been given (see, e.g.,5). Further into the sd shell, near to
N=Z, inelastic electron scattering on 26Mg116 and inelastic α-particle scattering on 24Mg116 and 28Si117
result in form factors which indicate the need for incorporating excitations out of the p-shell core and for
2h̄ω excitations out of the sd shell, respectively. In such excitations, the radial extension of orbitals in the
N=1 and the N=3 and 4 shells are quite different from those in the N=2 shell, and this may partly explain
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the presence of these strong ρ2(E0) values. A more precise description will need a large-scale shell-model
calculation where the sd-model space is expanded to include multi-particle multi-hole excitations in a
consistent way. Attempts in this direction, albeit in a approximate way, have been carried out near the
N=20 shell-closure for sd-shell nuclei118–122.

Although we suggest in the previous paragraph that understanding strong ρ2(E0) values in sd-shell
nuclei requires investigation, nuclei with A<56 which exhibit5 shape coexistence possess moderate to
strong ρ2(E0) values. The nuclei 16,18O, 38Ar and 40,42,44Ca (cf. Figures 3.1-3.6, 3.9 in5) are included in
Table 4.

G. Odd-A Nuclei

Recently, it has become evident that E0 transitions may exhibit widespread occurrence in odd-A nuclei
(see, e.g.,123–125). The identification of E0 transitions in odd-mass nuclei is not new (see, e.g.,126) ; but
it is not easy because coincidence gating of conversion electrons is needed to correctly locate the E0
transitions in the scheme.

At present, we know of no ρ2(E0) data for odd-A nuclei. To obtain such data will be challenging because
of the higher level density and consequent greater decay scheme complexity in odd-A nuclei. However,
information in odd-mass nuclei would be of great value for understanding mixing mechanisms because of
the restrictions on mixing due to the spin-parity of the unpaired nucleon (see for example a recent study
of 187Au125). Such information could cast light on the unusual E0 decay pattern in 184,186Pt127,128 which
are core nuclei for 185Pt and 187Au.

H. Relating ρ2 and ∆〈r2〉

An important influence on this study has been the emerging broad picture of 〈r2〉 information in nuclei
provided by the atomic hyperfine spectroscopy studies of long chains of isotopes using lasers33. Because
the nuclear radius directly presents information on the ground-state wave function, information on the
nuclear ground-state density can be derived and thus knowledge of the particular shape and shape change
can be determined in an almost model-independent way.

The Pb, Hg, Pt region provides a very clear illustration of this and is most dramatically illustrated in
Figure 30 where the 〈r2〉 values are presented for the Hg, Au and Pt nuclei (both even- and odd-mass
nuclei). Compared to the gentle variation of a spherical liquid-drop model, given by the expression of
Equation 50, the jumps in the odd-mass Hg and the Au nuclei cannot so easily be understood. The
explanation for the odd-even staggering effect in the Hg nuclei is related to a drastic change in the
occupied single-particle orbitals for the ground state and isomeric state as situated in the small oblate
and large prolate deformed minima of the energy surface5. The behaviour in the odd-mass Au nuclei
(Z=79) is related to a lowering of orbitals from the 1h9/2 configuration lying above the Z=82 closed shell
at deformation ε2 = 0103. In a spherical model, the negative-parity configuration can be associated with a
4h-1p excited configuration as the intruding configuration that now looks more like a Pt core+1 particle.
The change from a Hg core+1h into a Pt core+1p can be analysed in terms of a change in β2 value (in
the region of N=108) from β2 ' 0.12 in Hg nuclei to β2 = 0.21 in Pt nuclei and so implies a large jump
in the nuclear ground-state deformation and shape5,103.

The interest now is to go to even more neutron-deficient Au nuclei in this mass region. The likely
extrapolation for the ground-state structure is as shown by the dotted lines in Figure 31 which makes
the intruder Pt core+1p (4h-1p) structure the ground-state (98,100≤N≤108) before changing back to the
regular states originating from the 2s1/2, 1d3/2 and 1h11/2 orbitals. Experiments on 〈r2〉 values in this
very-neutron-deficient region would be most interesting to test the above ideas of shape changes through
a modification of the core structure (from Hg to Pt and back to Hg).

4. Conclusions

From the extensive discussion on E0 monopole properties carried out in the present paper, in which the
whole nuclear mass region is considered, it becomes clear that the strongest E0 transitions (ρ2(E0)·103 ≥
20), at least for nuclei which do not have deformed ground states, are associated with the coexistence of
configurations with different shapes and their mixing.

The strongest E0 transitions quite often result between pairs of excited states, i.e., the 0+ ground state
is not involved in the process.

When studying the variations in ρ2(E0) values within a given model type (single-closed shell nuclei,
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vibrational or weakly deformed systems, strongly deformed nuclei, ...), it is not easy to connect model
variations to the corresponding experimental ρ2

exp(E0) values unless shape mixing effects have been re-
moved. This immediately follows from the fact that shape admixtures totally dominate the E0 decay
pattern.

One can definitely put the E0 (ρ2(E0)) observable forward as a very sensitive probe of deformed shape
admixtures, i.e., it acts as a spectroscopic fingerprint for the presence of shape mixing in a region of
nuclei.

We also point out that there is a serious lack of T1/2(0+) experimental values, at present. This is related
to the many experimental difficulties when extending lifetime measurements into the region T1/2 < 10 ps.
Here, a clear need for Doppler shift data emerges. A program of studies of the (n, n′γ) reaction131,132 is
very helpful, in this respect.

An intimate connection between E0 transitions (non-diagonal matrix elements) on the one hand, and
isotopic shifts (differences of diagonal matrix elements) on the other hand has been pointed out, with
ample illustration of its validity in the Sr, Zr, and in the Pb nuclei. This proves to be a good test to
check consistency between observed E0 and 〈r2〉 values in given mass regions.

At present, not enough data are available on Jπ → Jπ E0 transitions (with Jπ 6= 0+), to test a
possible J dependence in the resulting ρ2(E0) values. Such a result may shed light on the connection of
the geometrical and algebraic collective models to nuclei in the rare-earth and actinide region.

Finally, relations between E0 properties (testing mean square change fluctuations in the atomic nucleus)
and other multipole properties (M1,E2) have recently been suggested133,134. Further explorations and
detailed studies along these lines are needed.
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Fig. 1. The spin dependence (L) for E0 transitions connecting the various Jπ levels in the β-band and
ground-band (axial rotor) compared to the corresponding IBM-1 SU(3) E0 transitions (cf. Equation (37)).

Fig. 2. Schematic potential energy surface as a function of the quadrupole deformation. We illustrate the
2-level model with an almost spherical and a strongly deformed shape (0+

1 ,0+
2 ). Schematic collective wave functions

are drawn with dashed lines.

Fig. 3. The fission isomer E0 decay in 238U that represents the slowest E0 transition known31,32. The figure
is taken from5, with corrections from Nuclear Data Sheets. The excitation energies of the super-deformed band
members are estimates based on the rotational parameter shown which is typical for this structure (see, e.g.,5).

Fig. 4. Variation of ρ2(E0)·103, Equation(48), as a function of the deformation variable β. Values are typical
for the A=100-120 mass region.

Fig. 5. The isotopic shift ∆〈r2〉 for the Sr nuclei. The data are taken from35.

Fig. 6. Schematic view of the isotope shift ∆〈r2〉 (middle part) and the ρ(E0) values (lower part) for a
two-level model (upper part) in which a spherical and a strongly-deformed configuration are present. In the left
hand part, no mixing is implied when the two levels cross; in the right-hand part large mixing at the crossing
point is implied.

Fig. 7. The upper part shows the crossing of two configurations (unperturbed and perturbed cases are
drawn) with no mixing (V=0) and mixing (V=100 keV). In the lower part, the relative energies for various
coupling strengths (V=0, 100 and 200 keV) are given. (The figure corresponds to a situation in the platinum
isotopes.)

Fig. 8. Electric monopole transition strengths, ρ2(E0)·103, observed36,37 in the nickel isotopes. The pro-
ton-pair excitations, π2p-2h, have been identified by 56,58Fe(3He,n)38,39 and 56,58,60Fe(16O,12C)40 transfer reac-
tions. Other level data are taken from the relevant Nuclear Data Sheets. (In this figure and hereafter, errors are
indicated for ρ2 values if either the error is large or ρ2 is large. Errors for all ρ2 values are given in Tables 1-4.)

Fig. 9. Electric monopole transition strengths, ρ2(E0)·103, observed43–48 in the zirconium isotopes. (See also
Figures 16, 17.) Other level data taken from the relevant Nuclear Data Sheets.

Fig. 10. The ρ21(E0) values, corresponding to the 0+
2 → 0+

1 E0 transitions for 90,92,94,96Zr. The dot-dashed
line indicates theoretical estimates based on Equations (55,56) with empirically determined values of α and β
(see43,49) and a shell model estimate of ∆〈r2〉; the cross marks an estimate for 90Zr using an empirically determined
value for ∆〈r2〉.

Fig. 11. Electric monopole transition strengths, ρ2(E0)·103, observed50,51 in the N=82 isotones.

Fig. 12. The low-lying states in 108,110Pd and associated B(E2) values. Thick bars are strong transitions.
Forbidden transitions, in a harmonic quadrupole vibrator description, are marked by stars. The data are from58,59

and Nuclear Data Sheets.

Fig. 13. Electric monopole transition strengths, ρ2(E0)·103, observed in the molybdenum60 (see also Figures
16,17), ruthenium65,66, and palladium60–63 isotopes. Other data are from58,59 and Nuclear Data Sheets.

Fig. 14. Electric monopole transition strengths, ρ2(E0)·103, observed in the zinc71,72, germanium73,74,
selenium73,75–77, and krypton78–81, isotopes. Other data are from Nuclear Data Sheets.
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Fig. 15. Electric monopole transition strengths, ρ2(E0)·103, for 194,196Pt. The data are taken from Harder
and Krusche85 for 196Pt and, for 194Pt, are derived using information given in the Nuclear Data Sheets for A =
194. Other 0+ states and E0 transitions are shown for 192−198Pt. Other data are taken from Nuclear Data Sheets
for A = 192-198. The dashed line boundaries for transitions in 196Pt reflect different lower limits to half lives for
the 0+

2 and 0+
3 states in 196Pt.

Fig. 16. Electric monopole transition strengths, ρ2(E0)·103, observed in the N=58 isotones. Also shown are
B(E2) ratios which support the presence of coexisting collectivity in these nuclei. The data are from46,47 and
Nuclear Data Sheets.

Fig. 17. Electric monopole transition strengths, ρ2(E0)·103, observed in the N=60 isotones. Also shown are
B(E2) ratios which support the presence of weak coexisting collectivity in these nuclei. The data are from48,60

and Nuclear Data Sheets.

Fig. 18. Electric monopole transition strengths, ρ2(E0)·103 , observed in the N=88 isotones. The data are
from135 and Nuclear Data Sheets.

Fig. 19. Electric monopole transition strengths, ρ2(E0)·103 , observed in the N=90 isotones. The data are
from Nuclear Data Sheets.

Fig. 20. The value of ρ2
21(E0), according to eq.(51) using a mixing matrix element 〈Hmix〉=100 keV. On the

lower (upper) horizontal axis we denote the energy difference between unperturbed (perturbed) 0+ states.

Fig. 21. Experimental results for ρ2(E0) in the A'100 mass region. The data are taken from the present
compilation and also are partially presented in6.

Fig. 22. Plot of the quantity B(E2)yrast/B(E2)rotor (normalized at I=2) for the averaged values of the N=90
isotones (150Nd, 152Sm, 154Gd, 156Dy, 158Er), open circles, compared to the averaged values of all (36) rare earth
and actinide nuclei, filled circles and the N=92 isotones, crosses. The data are taken from Nuclear Data Sheets.
The line is drawn to guide the eye.

Fig. 23. Electric monopole transition strengths, ρ2(E0)·103 , observed in the Sn isotopes. Also shown are
B(E2) ratios which support the identification5 of deformed bands in these nuclei. The data are from104,106,136

and Nuclear Data Sheets.

Fig. 24. Electric monopole transition strengths, ρ2(E0)·103 , observed in the Cd isotopes. Also shown are
B(E2) ratios which support the identification5 of deformed bands in these nuclei. The data are from5,104,137 and
Nuclear Data Sheets.

Fig. 25. Electric monopole transition strengths, ρ2(E0)·103, observed in 114Cd. The data are from5 and
Nuclear Data Sheets.

Fig. 26. Electric monopole transition strengths, ρ2(E0)·103, observed in the light Pb isotopes. Also shown
are B(E2) ratios which support the identification5 of deformed bands in these nuclei. The data are from110 and
Nuclear Data Sheets.

Fig. 27. Electric monopole transition strengths, ρ2(E0)·103, observed in the Hg isotopes. The data are
from111 and Nuclear Data Sheets.

21



Fig. 28. Mixing amplitudes (a2) between the oblate and intruder prolate 0+ band members in the even-even
Hg nuclei, deduced from experimental ρ2 values and α-decay rates (filled circles). See text for references and
theoretical values derived from IBM-2 configuration mixing calculations113 (filled squares).

Fig. 29. The low-lying states in 24Mg, 28Si, and 32S organized into band structures. The basis of the band
assignments is the B(E2) values which are shown in Weisskopf units in the boxes attatched to the relevant
transitions. The known E0 transitions are shown as heavier lines and ρ2(E0)· 103 values are shown in attached
boxes. Excitation energies are given in keV. The data are taken from114,115

Fig. 30. The charge mean square radii 〈r2〉 (fm2) for the even and odd-mass Pt, Au, and Hg nuclei (the data
are taken from33,129,130).

Fig. 31. Schematic variation of the mean-square charge radius for a spherical liquid drop (thin dashed line).
The full line indicates the observed behavior for the odd-mass Au nuclei. The thick dashed line represents the
expected behavior for the lighter odd-mass Au nuclei.
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Table 1. The strongest ρ2(E0) values in nuclei with weakly-deformeda ground states

Isotope ρ2(E0) · 103 Trans. Classc Fig. Reference

96Sr 185(50) 03 → 02 B 16 [NDS]
152Sm ≈ 150b 42 → 41 B 19 [NDS]
102Mo 120(50) 02 → 01 B 13,17 60

150Sm 100(40) 22 → 21 B 18 135

100Zr 100(30) 02 → 01 B 9,17 [NDS]
154Gd 96(17)b 02 → 01 B 19 [NDS]
114Cd 95(19) 24 → 22 A 25 5

74Kr 90(20) 02 → 01 C 14 78

116Sn 86(15)b 03 → 02 A 23 [NDS],104,106
58Ni 80(32) 03 → 01 A 8 37

62Ni 78(43) 03 → 01 A 8 37

60Ni 77(42) 02 → 01 A 8 37

98Zr 75(8) 03 → 02 B 9,16 46

154Gd 74(9)b 22 → 21 B 19 [NDS]
152Sm 69(6)b 22 → 21 B 19 [NDS]
114Cd 67(10) 42 → 41 A 25 5

152Gd 59(13)b 02 → 01 B 18 [NDS]
152Sm 58(6)b 02 → 01 B 19 [NDS]
98Zr 56(12) 04 → 02 B 9,16 46

98Sr 53(9) 02 → 01 B 17 48

78Kr 47(13) 02 → 01 C 14 79

100Mo 42(6) 02 → 01 B 13,16 [NDS]
76Se 38(15) 02 → 01 C 14 73,77

112Cd 37(11) 02 → 01 A 24 [NDS]
114Cd 36(5) 22 → 21 A 25 5

152Gd 35(3)b 22 → 21 B 18 [NDS]
74Se 34(3) 02 → 01 C 14 73,76

186Hg > 32 02 → 01 A 27 111

112Cd 31(20) 23 → 22 A 24 137

72Se 31(18) 02 → 01 C 14 73,74
98Mo 27(5) 02 → 01 B 13 10

114Sn 26(13) 02 → 01 A 23 106

82Kr 23
(
+28
−17

)b
03 → 01 C 14 [NDS],81

152Sm 22(9)b 03 → 02 B 19 [NDS]
114Cd 22(3) 23 → 22 A 24,25 5

80Kr 21(9) 02 → 01 C 14 80

110Cd 20(15) 23 → 22 A 24 137

a.The N = 60 nuclei, 152Sm, 154Gd are also included (see text for further discussion).
b. Evaluation of data given in Nuclear Data Sheets and/or the cited references made by the authors.
c. Classification is made into : A) nuclei that exhibit shape coexistence and intruder states and lie
at or near closed shells; B) nuclei that exhibit a sudden change in ground-state structure; and,
C) nuclei that exhibit shape coexistence and lie far from closed shells.

23



Table 2. Other ρ2(E0)· 103 values in nuclei with weakly-deformeda ground-states.

Isotope ρ2(E0)· 103 Trans. Fig. Reference

58Ni 0.0062(12) 02 → 01 8 36,37
64Zn 3.9(4) 02 → 01 14 71

64Zn 8(3) 03 → 01 14 71

68Zn 7(+10
−4 ) 02 → 01 14 71

70Zn < 2.6 02 → 01 14 71

70Ge 6.3(4) 02 → 01 14 73,74

72Ge 8.6(4)b 02 → 01 14 [NDS]
82Kr 9(3)b 02 → 01 14 [NDS],81
90Zr 3.30(17) 02 → 01 9 43,45

92Zr 8.1(8)b 02 → 01 9 43,44
94Zr 11.5(11)b 02 → 01 9 43,44

96Zr 7.4(3)b 02 → 01 9 43,44
98Zr 10.4(12) 02 → 01 9,16 [NDS]
96Mo 12(5) 02 → 01 13 10

100Ru 11(2) 02 → 01 13 [NDS]
102Ru 14(3) 02 → 01 13 66

102Pd 4.0(15) 02 → 01 13 61

102Pd < 0.3 03 → 01 13 61

104Pd 4.7(20) 02 → 01 13 61

106Pd 14(3)b 02 → 01 13 58,63

108Pd < 3b 02 → 01 13 58,60
110Pd 3.4(6)b 02 → 01 13 59,60

110Pd 0.48(15)b 03 → 01 13 [NDS],59,60
112Cd 0.48(11) 03 → 01 24 [NDS]
112Cd 8.1(19) 03 → 02 24 [NDS]
114Cd 16(1) 02 → 01 24,25 5

114Cd 1.3(1) 03 → 01 24,25 5

114Cd 0.7(3) 04 → 01 25 5

114Cd 0.45(4) 03 → 02 24,25 5

116Sn 4.4(13) 02 → 01 23 106

116Sn 0.83(15)b 03 → 01 23 [NDS],106
118Sn 5.2(13) 02 → 01 23 17

120Sn 2.6(7) 02 → 01 23 17

140Ce 14(4) 02 → 01 11 51

142Nd 17(6) 02 → 01 11 51

146Gd 10(1) 02 → 01 11 50,51
150Sm 18(3) 02 → 01 18 135

152Sm 0.7(4)b 03 → 01 19 [NDS]
188Os 0.013(5)b 02 → 01 [NDS]
188Os 0.7(6)b 22 → 21 [NDS]
194Pt 0.16(8)b 02 → 01 15 [NDS]
194Pt 11(4)b 04 → 01 15 [NDS]
194Pt 0.46(16)b 22 → 21 [NDS]
196Pt < 0.07 02 → 01 15 [NDS],85

196Pt 1.0(6)b 22 → 21 [NDS]
188Hg 7.7(25) 02 → 01 27 [NDS],111
192Pb 1.7(2) 02 → 01 26 110

194Pb 1.0(2) 02 → 01 26 110

204Pb 0.074(25) 02 → 01
55

206Pb 1.16(8) 02 → 01
53,54

208Po 1.1(3) 02 → 01
53

212Po 1.2(2) 02 → 01
138

214Po 1.48(7)b 02 → 01 [NDS]

a.The N = 60 nuclei, 152Sm and 154Gd are also included.
b. Evaluation of data given in Nuclear Data Sheets and/or the cited references made by the authors.
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Table 3. ρ2(E0)·103 valuesa in nuclei with deformed ground states

Isotope ρ2(E0)·103 Trans. J,Kπ
i Reference

Ei → Ef (see footnotes)

156Gd 55(5) 1129→89 2, 0+
2

156Gd 0.2(+6
−2) 1258 →89 2, 0+

3
158Gd ≤ 0.8 1260 →79 2, 0+

2 78Gr
158Gd 17(3) 1517 →79 2, 0+

3 78Gr
158Dy 27(12) 1086 →99 2, 0+

2 82Ro,68Gr
160Dy 17(4) 1350 →87 2, 0+

2
162Er 630(460) 1171 →102 2, 0+

2
162Er 40(30) 1430 →102 2, ?+

164Er 5.3(27) 1314 →91 2, 0+
2 82Ro

164Er 90(50) 1484 →91 2, 0+
3 82Ro

166Er 2.0(10) 1460 →0 0, 0+
2 97Ga

168Er 0.8(8) 1276 →80 2, 0+
2 81Da,98Le

168Yb 30(7) 1233 → 78 2, 0+
2 70Ch,82Ro,66Gr

170Yb ≤ 0.9 1146 →85 2, 0+
2 72Ca

170Yb 27(5) 1229 →0 0, 0+
3

172Yb 2.8(8) 1043 →0 0, 0+
2

172Yb 3.1(15) 1118 →79 2, 0+
2 85Ge,88Su

172Yb 0.20(3) 1406 →0 0, 0+
3

172Yb 1.1(2) 1406→1043 0, 0+
3

172Yb ≤ 0.013 1477 →79 2, 0+
3 85Ge

172Yb 9(6) 1849 →79 2, 0+
4 85Ge

172Yb 3.3(17) 1956 →78 2, 0+
5 85Ge

174Hf 27(13) 900 →91 2, 0+
2 71Ch,75Ca

176Hf 52(9) 1227 →89 2, 0+
2

178Hf 3.8(15) 1277 →93 2, 0+
2 86Ha

178Hf 14(3) 1496 →93 2, 0+
3 86Ha,74Ha

182W 3.5(3) 1257 →100 2, 0+
2

184W 2.6(5) 1121 →111 2, 0+
2 74Mc

228Th 2.4(3) 1153 →969 2, 2+
2

230Th 50(20) 678 →53 2, 0+
2

232Th 63(+53
−37) 774 →49 2, 0+

2 93Mc
238U 176(+36

−32) 1037 →45 2, 0+
2 94Mc

238Pu 180(110) 983 →44 2, 0+
2

238U 1.7×10−6 2558 →0 0, 0+
fission

a. All ρ2(E0) values have been evaluated by the authors using data given in the relevant
Nuclear Data Sheets together with the cited references.
78Gr R.C.Greenwood et al., Nucl. Phys. A304, 327
82Ro R.M.Ronningen et al. Phys. Rev. C26, 97
68Gr T.Grotdal et al., Nucl. Phys. A110, 385
97Ga P.E.Garrett et al., Phys. Lett. B400, 250
98Le H.Lehmann et al., Phys. Rev. C57, 569
81Da W.F.Davidson et al., J.Phys. G7, 455
66Gr R.Graetzer et al., Nucl. Phys. 76, 1
70Ch A.Charvet et al., Nucl. Phys. A156, 276
72Ca D.C.Camp and F.M.Bernthal, Phys. Rev. C6, 1040
88Su A.R.H.Subber et al., J.Phys. G14, 87
85Ge W.Gelletly et al., J.Phys. G11, 1055
75Ca M.H.Cardoso et al., Z.Phys. A272, 13
71Ch A.Charvet et al., J.Phys. (Paris) 32, 359
86Ha A.M.I.Hague et al., Nucl. Phys. A455, 231
74Ha J.H.Hamilton et al., Phys. Rev. C10, 2540
74Mc D.J.McMillan et al., Nucl. Phys. A223, 29
93Mc F.K.Mc Gowan and W.T.Milner, Nucl. Phys. A562, 241
94Mc F.K.Mc Gowan and W.T.Milner, Nucl. Phys. A571, 569
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Table 4. Excitation energies, ρ2(E0) values in milliunits as well as reduced ρ2(E0) values (multiplied by A2/3)
in selecteda light nuclei and compared to nuclei with the largest reduced ρ2(E0) values (cf. Table 1). The data
for light nuclei are taken from114.

Nucleus Ex(0+) (MeV) ρ2(E0)× 103 ρ2(E0)× 103 ·A2/3

96Sr 1.465 185(50) 3880
20Ne 7.191 430(160) 3160

150Sm 0.740 100(40) 2820
12C 7.655 530(40) 2780

102Mo 0.697 120(50) 2620
18O 3.652 370(80) 2540

24Mg 6.433 305(40) 2540
28Si 4.980 265(40) 2440
42Ca 1.837 135(12) 1630
44Ca 1.884 120(40) 1500
16O 6.049 137(10) 870
40Ca 3.353 26(1) 300
38Ar 3.377 17(2) 190

a These nuclei possess the largest ρ2(E0) values known, or are light nuclei that exhibit (see, e.g.,5)
shape coexistence.
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