876 research outputs found

    Branes, AdS gravitons and Virasoro symmetry

    Get PDF
    We consider travelling waves propagating on the anti-de Sitter (AdS) background. It is pointed out that for any dimension d, this space of solutions has a Virasoro symmetry with a non-zero central charge. This result is a natural generalization to higher dimensions of the three-dimensional Brown-Henneaux symmetry.Comment: 4 pages REVTe

    LHC Searches for Non-Chiral Weakly Charged Multiplets

    Get PDF
    Because the TeV-scale to be probed at the Large Hadron Collider should shed light on the naturalness, hierarchy, and dark matter problems, most searches to date have focused on new physics signatures motivated by possible solutions to these puzzles. In this paper, we consider some candidates for new states that although not well-motivated from this standpoint are obvious possibilities that current search strategies would miss. In particular we consider vector representations of fermions in multiplets of SU(2)LSU(2)_L with a lightest neutral state. Standard search strategies would fail to find such particles because of the expected small one-loop-level splitting between charged and neutral states.Comment: 16 pages, 9 figure

    The decay Bs -> mu+ mu-: updated SUSY constraints and prospects

    Get PDF
    We perform a study of the impact of the recently released limits on BR(Bs -> mu+ mu-) by LHCb and CMS on several SUSY models. We show that the obtained constraints can be superior to those which are derived from direct searches for SUSY particles in some scenarios, and the use of a double ratio of purely leptonic decays involving Bs -> mu+ mu- can further strengthen such constraints. We also discuss the experimental sensitivity and prospects for observation of Bs -> mu+ mu- during the sqrt(s)=7 TeV run of the LHC, and its potential implications.Comment: 30 pages, 21 figures. v2: Improved discussion of constraints from B -> tau nu, references adde

    The Deformable Universe

    Full text link
    The concept of smooth deformations of a Riemannian manifolds, recently evidenced by the solution of the Poincar\'e conjecture, is applied to Einstein's gravitational theory and in particular to the standard FLRW cosmology. We present a brief review of the deformation of Riemannian geometry, showing how such deformations can be derived from the Einstein-Hilbert dynamical principle. We show that such deformations of space-times of general relativity produce observable effects that can be measured by four-dimensional observers. In the case of the FLRW cosmology, one such observable effect is shown to be consistent with the accelerated expansion of the universe.Comment: 20 pages, LaTeX, 3 figure

    Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner

    Get PDF
    The viability of a possible cosmological scenario is investigated. The theoretical framework is the constrained next-to-minimal supersymmetric standard model (cNMSSM), with a gravitino playing the role of the lightest supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest supersymmetric particle (NLSP). All the necessary constraints from colliders and cosmology have been taken into account. For gravitino we have considered the two usual production mechanisms, namely out-of equillibrium decay from the NLSP, and scattering processes from the thermal bath. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determined.Comment: 20 pages, 5 figure

    On SUSY GUTs with a degenerate Higgs mass matrix

    Get PDF
    Certain supersymmetric grand unified models predict that the coefficients of the quadratic terms in the MSSM Higgs potential should be degenerate at the GUT scale. We discuss some examples for such models, and we analyse the implications of this peculiar condition of a GUT-scale degenerate Higgs mass matrix for low-scale MSSM phenomenology. To this end we explore the parameter space which is consistent with existing experimental constraints by means of a Markov Chain Monte Carlo analysis.Comment: 31 pages, 27 figures; v2: typos correcte

    Geometry of open strings ending on backreacting D3-branes

    Full text link
    We investigate open string theory on backreacting D3-branes using a spacetime approach. We study in detail the half-BPS supergravity solutions describing open strings ending on D3-branes, in the near horizon of the D3-branes. We recover quantitatively several non-trivial features of open string physics including the appearance of D3-brane spikes, the polarization of fundamental strings into D5-branes, and the Hanany-Witten effect. Finally we detail the computation of the gravitational potential between two open strings, and contrast it with the holographic computation of Wilson lines. We argue that the D-brane backreaction has a large influence on the low-energy gravity, which may lead to experimental tests for string theory brane-world scenarios.Comment: 64 pages, 20 figure

    Seesaw Neutrino Signals at the Large Hadron Collider

    Full text link
    We discuss the scenario with gauge singlet fermions (right-handed neutrinos) accessible at the energy of the Large Hadron Collider. The singlet fermions generate tiny neutrino masses via the seesaw mechanism and also have sizable couplings to the standard-model particles. We demonstrate that these two facts, which are naively not satisfied simultaneously, are reconciled in the five-dimensional framework in various fashions, which make the seesaw mechanism observable. The collider signal of tri-lepton final states with transverse missing energy is investigated for two explicit examples of the observable seesaw, taking account of three types of neutrino mass spectrum and the constraint from lepton flavor violation. We find by showing the significance of signal discovery that the collider experiment has a potential to find signals of extra dimensions and the origin of small neutrino masses.Comment: 27 pages, 4 figure

    Phenomenology and Cosmology of an Electroweak Pseudo-Dilaton and Electroweak Baryons

    Get PDF
    In many strongly-interacting models of electroweak symmetry breaking the lowest-lying observable particle is a pseudo-Goldstone boson of approximate scale symmetry, the pseudo-dilaton. Its interactions with Standard Model particles can be described using a low-energy effective nonlinear chiral Lagrangian supplemented by terms that restore approximate scale symmetry, yielding couplings of the pseudo-dilaton that differ from those of a Standard Model Higgs boson by fixed factors. We review the experimental constraints on such a pseudo-dilaton in light of new data from the LHC and elsewhere. The effective nonlinear chiral Lagrangian has Skyrmion solutions that may be identified with the `electroweak baryons' of the underlying strongly-interacting theory, whose nature may be revealed by the properties of the Skyrmions. We discuss the finite-temperature electroweak phase transition in the low-energy effective theory, finding that the possibility of a first-order electroweak phase transition is resurrected. We discuss the evolution of the Universe during this transition and derive an order-of-magnitude lower limit on the abundance of electroweak baryons in the absence of a cosmological asymmetry, which suggests that such an asymmetry would be necessary if the electroweak baryons are to provide the cosmological density of dark matter. We revisit estimates of the corresponding spin-independent dark matter scattering cross section, with a view to direct detection experiments.Comment: 34 pages, 4 figures, additional references adde
    corecore