832 research outputs found

    Numerical simulation of scavenging processes in explosive volcanic eruption clouds

    No full text
    The scavenging of gases and particles in an explosive volcanic eruption plume has been studied by numerical simulations with the plume model ATHAM (Active Tracer High Resolution Atrnospheric Model). We identified relevant factors that determine the fraction of volcanic material eventually being injected into the stratosphere. An extended version of the microphysics has been formulated: predicting both the specific rnass content and the number concentration it de- scribes the interaction of hydrometeors and voicanic ash in the plume, which leads to particle growth and efficient sedimentation. In addition, we developed a mod- ule for the calculation of volcanic gas scavenging by liquid and solid hydrometeors in the plume. This study reveals the dominant role of hydrometeors in controlling many pro- cesses in the plume. The coating of volcanic ash with liquid water or ice results in highly efficient growth of particles, which strongly enhances the fallout velocity of ash. Precipitation of aggregates results in efficient gas-particle separation, which increases the injection of volcanic gases into the stratosphere. In addition, it strongly influences the stream pattern, which in turn influences the microphysics in the plume by lowering the supersaturation in the ascent zone. By far the highest portion of condensed water freezes to ice in the eruption colurnn. The fast plurne rise to regions, which are too cold for even supercooled liquid water to exist causes rnost particles to occur as ice-ash aggregates. We examined the scavenging of the most important volcanic gases, HCl, SO2 and H2S, by liquid and solid hydrometeors and by aggregates in the plume. The scavenging efficiency is determined by the amount of condensed water or ice. HC1 is almost completely removed from the gas phase by dissolution in liquid water occurring in the lower central plurne. These ash-containing drops quickly freeze to graupel aggregates that precipitate efficiently, thus also removing HCl from higher altitudes. On the other hand, a large extent of SO2 and HzS stays at high levels in the umbrella region. The sulphur species are only slightly soluble in liquid water, hence, they are not removed by liquid water drops. However, they are scavenged by frozen hydrorneteors via direct gas incorporation during diffusional growth of ice. This causes a reduction by - 25% of the potential input of an inert volcanic gas, indicating the great relevance of gas trapping in ice. Low relative humidity in the troposphere in our simulations caused precipitation to reevaporate before it could reach the ground. As a consequence, no evidence of hydrometeor-ash interaction or gas scavenging could be found in the fallout of the eruption simulated here, although these processes occurred to a significant degree in upper parts of the plume

    Surface characterization

    Get PDF
    The biocompatibility of commercially pure titanium and its alloys is closely related to their surface properties, with both the composition of the protecting oxide film and the surface topography playing an important role. Surfaces of commercially pure titanium and of the two alloys Ti-6Al-7Nb and Ti-6Al-4V (wt %) have been investigated following three different pretreatments: polishing, nitric acid passivation and pickling in nitric acid-hydrogen fluoride. Nitric acid treatment is found to substantially reduce the concentration of surface contaminants present after polishing. The natural 4-6 nm thick oxide layer on commercially pure titanium is composed of titanium oxide in different oxidation states (TiO2, Ti2O3 and TiO), while for the alloys, aluminium and niobium or vanadium are additionally present in oxidized form (Al2O3, Nb2O5 or V-oxides). The concentrations of the alloying elements at the surface are shown to be strongly dependent on the pretreatment process. While pickling increases the surface roughness of both commercially pure titanium and the alloys, different mechanisms appear to be involved. In the case of commercially pure titanium, the dissolution rate depends on grain orientation, whereas in the case of the two alloys, selective α-phase dissolution and enrichment of the β-phase appears to occur. © 1999 Kluwer Academic Publisher

    The implant material, Ti6Al7Nb: surface microstructure, composition and properties

    Get PDF
    The excellent biocompatibility of titanium and its alloys is intimately related with the properties of the surface in contact with the biological environment, and therefore it is closely connected with the stable, passivating oxide layer that forms on its surface. In the present paper, the oxide layer on the alloy Ti6Al7Nb has been characterized using X-ray photoelectron spectroscopy, scanning Auger microscopy and pH-dependent lateral force microscopy. The alloying elements Al and Nb are incorporated in the oxide layer and detected in their most stable oxidized form, as Al2O3 and Nb2O5. Their distribution in the oxide reflects the underlying α-β microstructure, with enrichment of Al in the α- and of Nb in the β-phase (determined by electron microprobe). Friction measurements (lateral force microscopy) indicate slightly different, pH-dependent, lateral forces above the α- and β-phase structures that point to small local variations in surface charges. © 1999 Kluwer Academic Publisher

    An alternative conformation of ERβ bound to estradiol reveals H12 in a stable antagonist position

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOThe natural ligand 17β-estradiol (E2) is so far believed to induce a unique agonist-bound active conformation in the ligand binding domain (LBD) of the estrogen receptors (ERs). Both subtypes, ERα and ERβ, are transcriptionally activated in the presence o7FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2014/22007-02013/08293-72012/24750-6301981/2011-6This work was supported by the São Paulo Research Foundation FAPESP (grants 2014/22007-0, 2013/08293-7, 2012/24750-6) and by CNPq (grant 301981/2011-6

    The effect of harmonized emissions on aerosol properties in global models - an AeroCom experiment

    Get PDF
    The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingly, harmonization of aerosol sources has only a small impact on the simulated inter-model diversity of the global aerosol burden, and consequently global optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols) and parameterizations of aerosol microphysics (e.g., the split between deposition pathways) and to a lesser extent by the spatial and temporal distributions of the (precursor) emissions. The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversities for these two species were caused by a few outliers. The experiment also showed that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences. These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters) in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategie

    Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses.

    Get PDF
    Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full-thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord-blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic- or (b) hypoxic-preconditioned cells injected into wound margins, or (c) normoxic- or (d) hypoxic-preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel-treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic-preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase-2 expression at week 1. Histologically, significantly more MSC-treated wounds were categorized as pro-healing than pro-inflammatory. Wound area was significantly affected by treatment: MSC-injected wounds were consistently smaller than gel-treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. Stem Cells Translational Medicine 2018;7:98-108

    Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): reference simulation

    Get PDF
    Wildland fires in boreal regions have the potential to initiate deep convection, so-called pyro-convection, due to their release of sensible heat. Under favorable atmospheric conditions, large fires can result in pyro-convection that transports the emissions into the upper troposphere and the lower stratosphere. Here, we present three-dimensional model simulations of the injection of fire emissions into the lower stratosphere by pyro-convection. These model simulations are constrained and evaluated with observations obtained from the Chisholm fire in Alberta, Canada, in 2001. The active tracer high resolution atmospheric model (ATHAM) is initialized with observations obtained by radiosonde. Information on the fire forcing is obtained from ground-based observations of the mass and moisture of the burned fuel. Based on radar observations, the pyro-convection reached an altitude of about 13 km, well above the tropopause, which was located at about 11.2 km. The model simulation yields a similarly strong convection with an overshoot of the convection above the tropopause. The main outflow from the pyro-convection occurs at about 10.6 km, but a significant fraction (about 8%) of the emitted mass of the smoke aerosol is transported above the tropopause. In contrast to regular convection, the region with maximum updraft velocity in the pyro-convection is located close to the surface above the fire. This results in high updraft velocities &gt;10 m s<sup>&minus;1</sup> at cloud base. The temperature anomaly in the plume decreases rapidly with height from values above 50 K at the fire to about 5 K at about 3000 m above the fire. While the sensible heat released from the fire is responsible for the initiation of convection in the model, the release of latent heat from condensation and freezing dominates the overall energy budget. Emissions of water vapor from the fire do not significantly contribute to the energy budget of the convection

    Numerical simulation of explosive volcanic eruptions from the conduit flow to global atmospheric scales

    Get PDF
    Volcanic eruptions are unsteady multiphase phenomena, which encompass many inter-related processes across the whole range of scales from molecular and microscopic to macroscopic, synoptic and global. We provide an overview of recent advances in numerical modelling of volcanic effects, from conduit and eruption column processes to those on the Earth s climate. Conduit flow models examine ascent dynamics and multiphase processes like fragmentation, chemical reactions and mass transfer below the Earth surface. Other models simulate atmospheric dispersal of the erupted gas-particle mixture, focusing on rapid processes occurring in the jet, the lower convective regions, and pyroclastic density currents. The ascending eruption column and intrusive gravity current generated by it, as well as sedimentation and ash dispersal from those flows in the immediate environment of the volcano are examined with modular and generic models. These apply simplifications to the equations describing the system depending on the specific focus of scrutiny. The atmospheric dispersion of volcanic clouds is simulated by ash tracking models. These are inadequate for the first hours of spreading in many cases but focus on long-range prediction of ash location to prevent hazardous aircraft - ash encounters. The climate impact is investigated with global models. All processes and effects of explosive eruptions cannot be simulated by a single model, due to the complexity and hugely contrasting spatial and temporal scales involved. There is now the opportunity to establish a closer integration between different models and to develop the first comprehensive description of explosive eruptions and of their effects on the ground, in the atmosphere, and on the global climate
    corecore