4,369 research outputs found

    Extrasolar Planets in Mean-Motion Resonance: Apses Alignment and Asymmetric Stationary Solutions

    Get PDF
    In recent years several pairs of extrasolar planets have been discovered in the vicinity of mean-motion commensurabilities. In some cases, such as the Gliese 876 system, the planets seem to be trapped in a stationary solution, the system exhibiting a simultaneous libration of the resonant angle theta_1 = 2 lambda_2 - lambda_1 - varpi_1 and of the relative position of the pericenters. In this paper we analyze the existence and location of these stable solutions, for the 2/1 and 3/1 resonances, as function of the masses and orbital elements of both planets. This is undertaken via an analytical model for the resonant Hamiltonian function. The results are compared with those of numerical simulations of the exact equations. In the 2/1 commensurability, we show the existence of three principal families of stationary solutions: (i) aligned orbits, in which theta_1 and varpi_1 - varpi_2 both librate around zero, (ii) anti-aligned orbits, in which theta_1=0 and the difference in pericenter is 180 degrees, and (iii) asymmetric stationary solutions, where both the resonant angle and varpi_1 - varpi_2 are constants with values different of 0 or 180 degrees. Each family exists in a different domain of values of the mass ratio and eccentricities of both planets. Similar results are also found in the 3/1 resonance. We discuss the application of these results to the extrasolar planetary systems and develop a chart of possible planetary orbits with apsidal corotation. We estimate, also, the maximum planetary masses in order that the stationary solutions are dynamically stable.Comment: 25 pages, 10 figures. Submitted to Ap

    On planetary mass determination in the case of super-Earths orbiting active stars. The case of the CoRoT-7 system

    Full text link
    This investigation uses the excellent HARPS radial velocity measurements of CoRoT-7 to re-determine the planet masses and to explore techniques able to determine mass and elements of planets discovered around active stars when the relative variation of the radial velocity due to the star activity cannot be considered as just noise and can exceed the variation due to the planets. The main technique used here is a self-consistent version of the high-pass filter used by Queloz et al. (2009) in the first mass determination of CoRoT-7b and CoRoT-7c. The results are compared to those given by two alternative techniques: (1) The approach proposed by Hatzes et al. (2010) using only those nights in which 2 or 3 observations were done; (2) A pure Fourier analysis. In all cases, the eccentricities are taken equal to zero as indicated by the study of the tidal evolution of the system; the periods are also kept fixed at the values given by Queloz et al. Only the observations done in the time interval BJD 2,454,847 - 873 are used because they include many nights with multiple observations; otherwise it is not possible to separate the effects of the rotation fourth harmonic (5.91d = Prot/4) from the alias of the orbital period of CoRoT-7b (0.853585 d). The results of the various approaches are combined to give for the planet masses the values 8.0 \pm 1.2 MEarth for CoRoT-7b and 13.6 \pm 1.4 MEarth for CoRoT 7c. An estimation of the variation of the radial velocity of the star due to its activity is also given.The results obtained with 3 different approaches agree to give masses larger than those in previous determinations. From the existing internal structure models they indicate that CoRoT-7b is a much denser super-Earth. The bulk density is 11 \pm 3.5 g.cm-3 . CoRoT-7b may be rocky with a large iron core.Comment: 12 pages, 11 figure

    Dynamics of two planets in co-orbital motion

    Full text link
    We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities, also we assume that both planets share the same orbital plane. Initially we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analyzed in more detail using a semi-analytical model. Apart from the well known quasi-satellite (QS) orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (σ,Δω)=(±60deg⁥,∓120deg⁥)(\sigma,\Delta\omega) = (\pm 60\deg, \mp 120\deg), where \sigma is the difference in mean longitudes and \Delta\omega is the difference in longitudes of pericenter. The position of these Anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities, and are found for eccentricities as high as ~ 0.7. Finally, we also applied a slow mass variation to one of the planets, and analyzed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.Comment: 9 pages, 11 figure

    Evolution of Migrating Planet Pairs in Resonance

    Get PDF
    In this paper we present numerical simulations of the evolution of planets or massive satellites captured in the 2/1 and 3/1 resonances, under the action of an anti-dissipative tidal force. The evolution of resonant trapped bodies show a richness of solutions: librations around stationary symmetric solutions with aligned periapses (w1-w2=0) or anti-aligned periapses (w1-w2=180 deg), and librations around stationary solutions in which the periapses configuration is fixed, but with w1-w2 taking values in a wide range of angles. Many of these solutions exist for large values of the eccentricities and, during the semimajor axis drift, the solutions show turnabouts from one configuration to another. These results are valid for other non-conservative forces leading to adiabatic covergent migration and capture into one of these resonances

    Management of Montados and Dehesas for High Nature Value: an interdisciplinary pathway

    Get PDF
    Mediterranean oak woodlands, Montados in Portugal and Dehesas in Spain have long been acknowledged as potential land use systems of high nature and social value providing relevant ecosystem services and biodiversity conservation. Nevertheless, these systems are now under severe threat, both due to abandonment in certain areas and overuse in others, extremes that may be limited by appropriate management practices and strategies. The High Nature Value concept can be a pathway for the understanding and assessment of management practices best adapted to the balance of the Montado and Dehesa, and also to the assessment of the thresholds of change, so that the long term sustainability of the Montado systems is preserved. This special issue aims to contribute for the understanding of how the Montado and Dehesa classification as High Nature Value may be a path for sustainable management. This classification can be achieved by different ways and implies different components of the Montado, and thus the first four papers of this special issue address different approaches and methodologies for the identification of HNV Dehesas and Montados, the following seven papers deal mostly with the effect of management practices on biodiversity and other Dehesas and Montados values and finally the last two papers address the causes for Montado decline and suggest mitigation measures for that decline

    Doped carrier formulation of the t-J model: the projection constraint and the effective Kondo-Heisenberg lattice representation

    Full text link
    We show that the recently proposed doped carrier Hamiltonian formulation of the t-J model should be complemented with the constraint that projects out the unphysical states. With this new important ingredient, the previously used and seemingly different spin-fermion representations of the t-J model are shown to be gauge related to each other. This new constraint can be treated in a controlled way close to half-filling suggesting that the doped carrier representation provides an appropriate theoretical framework to address the t-J model in this region. This constraint also suggests that the t-J model can be mapped onto a Kondo-Heisenberg lattice model. Such a mapping highlights important physical similarities between the quasi two-dimensional heavy fermions and the high-Tc_c superconductors. Finally we discuss the physical implications of our model representation relating in particular the small versus large Fermi surface crossover to the closure of the lattice spin gap.Comment: corrected and enlarged versio

    Planetary Migration and Extrasolar Planets in the 2/1 Mean-Motion Resonance

    Full text link
    We analyze the possible relationship between the current orbital elements fits of known exoplanets in the 2/1 mean-motion resonance and the expected orbital configuration due to migration. It is found that, as long as the orbital decay was sufficiently slow to be approximated by an adiabatic process, all captured planets should be in apsidal corotations. In other words, they should show a simultaneous libration of both the resonant angle and the difference in longitudes of pericenter. We present a complete set of corotational solutions for the 2/1 commensurability, including previously known solutions and new results. Comparisons with observed exoplanets show that current orbital fits of three known planetary systems in this resonance are either consistent with apsidal corotations (GJ876 and HD82943) or correspond to bodies with uncertain orbits (HD160691). Finally, we discuss the applicability of these results as a test for the planetary migration hypothesis itself. If all future systems in this commensurability are found to be consistent with corotational solutions, then resonance capture of these bodies through planetary migration is a working hypothesis. Conversely, If any planetary pair is found in a different configuration, then either migration did not occur for those bodies, or it took a different form than currently believed.Comment: Submitted to MNRA

    A new analysis of the GJ581 extrasolar planetary system

    Full text link
    We have done a new analysis of the available observations for the GJ581 exoplanetary system. Today this system is controversial due to choices that can be done in the orbital determination. The main ones are the ocurrence of aliases and the additional bodies - the planets f and g - announced in Vogt et al. 2010. Any dynamical study of exoplanets requires the good knowledge of the orbital elements and the investigations involving the planet g are particularly interesting, since this body would lie in the Habitable Zone (HZ) of the star GJ581. This region,for this system, is very attractive of the dynamical point of view due to several resonances of two and three bodies present there. In this work, we investigate the conditions under which the planet g may exist. We stress the fact that the planet g is intimately related with the orbital elements of the planet d; more precisely, we conclude that it is not possible to disconnect its existence from the determination of the eccentricity of the planet d. Concerning the planet f, we have found one solution with period ≈450\approx 450 days, but we are judicious about any affirmation concernig this body because its signal is in the threshold of detection and the high period is in a spectral region where the ocorruence of aliases is very common. Besides, we outline some dynamical features of the habitable zone with the dynamical map and point out the role played by some resonances laying there.Comment: 12 pages, 9 figure
    • 

    corecore