817 research outputs found
En face optical coherence tomography of foveal microstructure in full-thickness macular hole: a model to study perifoveal müller cells.
PURPOSE: To characterize perifoveal intraretinal cavities observed around full-thickness macular holes (MH) using en face optical coherence tomography and to establish correlations with histology of human and primate maculae.
DESIGN: Retrospective nonconsecutive observational case series.
METHODS: Macular en face scans of 8 patients with MH were analyzed to quantify the areas of hyporeflective spaces, and were compared with macular flat mounts and sections from 1 normal human donor eye and 2 normal primate eyes (Macaca fascicularis). Immunohistochemistry was used to study the distribution of glutamine synthetase, expressed by Müller cells, and zonula occludens-1, a tight-junction protein.
RESULTS: The mean area of hyporeflective spaces was lower in the inner nuclear layer (INL) than in the complex formed by the outer plexiform (OPL) and the Henle fiber layers (HFL): 5.0 × 10(-3) mm(2) vs 15.9 × 10(-3) mm(2), respectively (P < .0001, Kruskal-Wallis test). In the OPL and HFL, cavities were elongated with a stellate pattern, whereas in the INL they were rounded and formed vertical cylinders. Immunohistochemistry confirmed that Müller cells followed a radial distribution around the fovea in the frontal plane and a "Z-shaped" course in the axial plane, running obliquely in the OPL and HFL and vertically in the inner layers. In addition, zonula occludens-1 co-localized with Müller cells within the complex of OPL and HFL, indicating junctions in between Müller cells and cone axons.
CONCLUSION: The dual profile of cavities around MHs correlates with Müller cell morphology and is consistent with the hypothesis of intra- or extracellular fluid accumulation along these cells
GNSS-based Location Determination System Architecture for railway performance assessment in presence of local effects
GNSS plays a strategic role on the introduction of the Virtual Balise functionality and the train integrity. Thanks to GNSS, it could be possible to realize cost effective solutions to increase the safety in the regional lines, where the traffic density is lower. The train position estimation is implemented taking into account that the train is constrained to lie on the track (i.e. track constraint). In this way, we can express the position in terms of the curvilinear abscissa (progressive mileage) of the track corresponding to the train position. However, the impact of local effects such as multipath, foliage attenuation and shadowing in the railway environment plays a crucial role due to the presence of infrastructures like platform roofs, side walls, tunnel entrances, buildings and so on close to the trackside. In the paper, we analyse the impact of those threats on the train GNSS-based position estimation performance. At this aim, several scenarios have been generated by using both real data acquired on a railway test-bed in Sardinia, and synthetic data generated in the lab through ad hoc multipath and foliage models.
A sensitivity analysis has been conducted, varying main scenarios parameters (e.g. height of obstacles, presence of trees and shadowing). The result of the performed analysis, in terms of availability, accuracy and integrity, are here presented. mitigations implemented by the ERTMS at system level are not considered since the attention is focused on GNSS only
Investigations on diurnal and seasonal variations of Schumann resonance intensities in the auroral region
Measurements of the magnetic component of the Schumann resonance in the frequency range 6-14 Hz were performed
at high latitude location (TNB Antarctica; geographic coordinates: 74.7°S, 164.1°E; geomagnetic coordinates:
80.0°S, 307.7°E; LT=UT+13; MLT=UT8; altitude=28 m a.s.l.), during the two years 1996-1997. TNB
is a particularly important observation site located in a region characterised by a high electromagnetic activity in the
ELF and VLF bands. Moreover its remote location in Antarctica provides the important advantage that electromagnetic
background noise is not corrupted by anthropogenic noise and that the continental lightning activity is very low.
The combination of low additional anthropogenic electromagnetic radiation and low atmospheric noise in this area
allows detailed investigations into wave generation and amplification in the polar ionosphere and magnetosphere not
possible anywhere else in the world. This paper reports the study of the magnetic power of the 8 Hz Schumann resonance
mode. For both the years considered diurnal and long-term seasonal variations were observed
First Results of Integrated Geoarchaeological Analyses in the Capua Territory (Campania, Italy)
This study employs a multidisciplinary approach, integrating geoarchaeology, geomorphology, archaeometry, and palynology to analyze settlement patterns and land use in the surroundings of Capua (southern Italy) during the medieval transition. Borehole sampling and stratigraphic studies indicate significant landscape transformations due to human activity, particularly deforestation and agricultural expansion. Radiocarbon dating confirms settlement activity from antiquity through the early medieval period. Results suggest that Capua’s elevated position provided natural flood protection, influencing its continuous habitation. Pollen analysis reveals a shift from forested landscapes to open pastures, indicating intensive land use. Future research will focus on refining the chronology and archeological context of this transition, further clarifying Capua’s historical and environmental development. © 2025 by the author
Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey Volcano
A new International Continental Drilling Program (ICDP) project will drill through the 50-yearoldedifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963–1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions
Fourier Velocity Encoded MRI: Acceleration and Velocity Map Estimation
Fourier velocity encoding (FVE) is an alternative to phase contrast imaging (PC). FVE provides considerably higher SNR than PC, due to its higher dimensionality and larger voxel sizes. Furthermore, FVE is robust to partial voluming, as it resolves the velocity distribution within each voxel. FVE data are usually acquired with low spatial resolution, due to scan-time restrictions associated with its higher dimensionality. FVE is capable of providing the velocity distribution associated with a large voxel, but does not directly provides a velocity map. Knowing the velocity distribution on a voxel is important for accurate diagnosis of stenosis in vessels on the scale of spatial resolution. Velocity maps, however, are useful for visualizing the actual blood flow through a vessel and can be used in different studies and diagnosis. In this context, this chapter deals with two aspects of the FVE MRI technique: acceleration and estimation of velocity map. First, are introduced six different acceleration techniques that can be applied to FVE acquisition. Methods such as variable-density sampling and compressive sampling. Then, is proposed a novel method to estimate velocity maps with high spatial resolution from low-resolution FVE data. Finally, it can be concluded that FVE datasets can be acquired in time scale comparable to PC, it contains more velocity information, since it resolves a velocity distribution within a voxel, and also provides an accurate estimation of the velocity map
Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI
Abstract
Background
Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose of this study is to develop a proof-of-concept numerical procedure for constructing a simulated flow field that is influenced by both direct PC-MRI measurements and a fluid physics model, thereby taking advantage of both the accuracy of PC-MRI and the high spatial resolution of CFD. The use of the proposed approach in regularizing 3D flow fields is evaluated.
Methods
The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution of a generalized Tikhonov regularization, which provides a flow field that satisfies the flow physics equations, while being close enough to the measured PC-MRI velocity profile. The feasibility of the proposed approach is demonstrated on data from the carotid bifurcation of one healthy volunteer, and also from a pulsatile carotid flow phantom.
Results
The proposed solver produces flow fields that are in better agreement with direct PC-MRI measurements than CFD alone, and converges faster, while closely satisfying the fluid dynamics equations. For the implementation that provided the best results, the signal-to-error ratio (with respect to the PC-MRI measurements) in the phantom experiment was 6.56 dB higher than that of conventional CFD; in the in vivo experiment, it was 2.15 dB higher.
Conclusions
The proposed approach allows partial or complete measurements to be incorporated into a modified CFD solver, for improving the accuracy of the resulting flow fields estimates. This can be used for reducing scan time, increasing the spatial resolution, and/or denoising the PC-MRI measurements.http://deepblue.lib.umich.edu/bitstream/2027.42/116061/1/12938_2015_Article_104.pd
- …
