2,456 research outputs found

    Behavioral phenotypes of impulsivity related to the ANKK1 gene are independent of an acute stressor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The A1 allele of the <it>ANKK1 Taq</it>IA polymorphism (previously reported as located in the D2 dopamine receptor (DRD2) gene) is associated with reduced DRD2 density in the striatum and with clinical disorders, particularly addiction. It was hypothesized that impulsivity represents an endophenotype underlying these associations with the <it>Taq</it>IA and that environmental stress would moderate the strength of the gene-behavior relationship.</p> <p>Methods</p> <p><it>Taq</it>IA genotyping was conducted on 72 healthy young adults who were randomly allocated to either an acute psychosocial stress or relaxation induction condition. Behavioral phenotypes of impulsivity were measured using a card-sorting index of reinforcement sensitivity and computerized response inhibition and delay discounting tasks.</p> <p>Results</p> <p>Separate analyses of variance revealed associations between the A1 allele and two laboratory measures of impulsivity. The presence of the <it>Taq</it>IA allele (A1+) was associated with slower card-sorting in the presence of small financial reinforcers, but was overcome in a second administration after either a five-minute rest or psychosocial stress induction. A1+ participants also demonstrated significantly poorer response inhibition and faster response times on a computerized stop inhibition task, independent of acute stress exposure.</p> <p>Conclusion</p> <p>These findings indicate the A1 allele is associated with an endophenotype comprising both a "rash impulsive" behavioral style and reinforcement-related learning deficits. These effects are independent of stress.</p

    The effects of white matter hyperintensities and amyloid deposition on Alzheimer dementia

    Get PDF
    Background and purpose: Elevated levels of amyloid deposition as well as white matter damage are thought to be risk factors for Alzheimer Disease (AD). Here we examined whether qualitative ratings of white matter damage predicted cognitive impairment beyond measures of amyloid. Materials and methods: The study examined 397 cognitively normal, 51 very mildly demented, and 11 mildly demented individuals aged 42–90 (mean 68.5). Participants obtained a T2-weighted scan as well as a positron emission tomography scan using 11[C] Pittsburgh Compound B. Periventricular white matter hyperintensities (PVWMHs) and deep white matter hyperintensities (DWMHs) were measured on each T2 scan using the Fazekas rating scale. The effects of amyloid deposition and white matter damage were assessed using logistic regressions. Results: Levels of amyloid deposition (ps < 0.01), as well as ratings of PVWMH (p < 0.01) and DWMH (p < 0.05) discriminated between cognitively normal and demented individuals. Conclusions: The amount of amyloid deposition and white matter damage independently predicts cognitive impairment. This suggests a diagnostic utility of qualitative white matter scales in addition to measuring amyloid levels

    Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis

    Get PDF
    Craniosynostosis, the premature fusion of calvarial sutures, is a common craniofacial abnormality. Causative mutations in more than 10 genes have been identified, involving fibroblast growth factor, transforming growth factor beta, and Eph/ephrin signalling pathways. Mutations affect each human calvarial suture (coronal, sagittal, metopic, and lambdoid) differently, suggesting different gene expression patterns exist in each human suture. To better understand the molecular control of human suture morphogenesis we used microarray analysis to identify genes differentially expressed during suture fusion in children with craniosynostosis. Expression differences were also analysed between each unfused suture type, between sutures from syndromic and non-syndromic craniosynostosis patients, and between unfused sutures from individuals with and without craniosynostosis.Anna K Coussens, Christopher R Wilkinson, Ian P Hughes, C Phillip Morris, Angela van Daal, Peter J Anderson and Barry C Powel

    Re-evaluation of the Fijianolide/Laulimalide Chemotype Suggests an Alternate Mechanism of Action for C-15/C-20 Analogs.

    Get PDF
    Herein, we report on naturally derived microtubule stabilizers with activity against triple negative breast cancer (TNBC) cell lines, including paclitaxel, fijianolide B/laulimalide (3), fijianolide B di-acetate (4), and two new semisynthetic analogs of 3, which include fijianolide J (5) and fijianolide L (6). Similar to paclitaxel, compound 3 demonstrated classic microtubule stabilizing activity with potent (GI50 = 0.7–17 nM) antiproliferative efficacy among the five molecularly distinct TNBC cell lines. Alternatively, compounds 5 or 6, generated from oxidation of C-20 or C-15 and C-20 respectively, resulted in a unique profile with reduced potency (GI50 = 4–9 μM), but improved efficacy in some lines, suggesting a distinct mechanism of action. The C-15, C-20 di-acetate, and dioxo modifications on 4 and 6 resulted in compounds devoid of classic microtubule stabilizing activity in biochemical assays. While 4 also had no detectable effect on cellular microtubules, 6 promoted a reorganization of the cytoskeleton resulting in an accumulation of microtubules at the cell periphery. Compound 5, with a single C-20 oxo substitution, displayed a mixed phenotype, sharing properties of 3 and 6. These results demonstrate the importance of the C-15/C-20 chiral centers, which appear to be required for the potent microtubule stabilizing activity of this chemotype and that oxidation of these sites promotes unanticipated cytoskeletal alterations that are distinct from classic microtubule stabilization, likely through a distinct mechanism of action

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    Rapid prototyping Lab-on-Chip devices for the future: A numerical optimisation of bulk optical parameters in microfluidic systems

    Get PDF
    Nuclear reactor process control is typically monitored for pure β-emitting radionuclides via manual sampling followed by laboratory analysis, leading to delays in data availability and response times. The development of an in situ microfluidic Lab on Chip (LoC) system with integrated detection capable of measuring pure β-emitting radionuclides presents a promising solution, enabling a reduction in occupational exposure and cost of monitoring whilst providing improved temporal resolution through near real-time data acquisition. However, testing prototypes with radioactive sources is time-consuming, requires specialist facilities/equipment, generates contaminated waste, and cannot rapidly evaluate a wide range of designs or configurations. Despite this, modelling multiple design parameters and testing their impact on detection with non-radioactive substitutes has yet to be adopted as best practice. The measurement of pure β emitters in aqueous media relies on the efficient transport of photons generated by the Cherenkov effect or liquid scintillators to the detector. Here we explore the role of numerical modelling to assess the impact of optical cell geometry and design on photon transmission and detection through the microfluidic system, facilitating improved designs to realise better efficiency of integrated detectors and overall platform design. Our results demonstrate that theoretical modelling and an experimental evaluation using non-radiogenic chemiluminescence are viable for system testing design parameters and their impact on photon transport. These approaches enable reduced material consumption and requirement for specialist facilities for handling radioactive materials during the prototyping process. This method establishes proof of concept and the first step towards numerical modelling approaches for the design optimisation of microfluidic LoC systems with integrated detectors for the measurement of pure β emitting radionuclides via scintillation-based detection

    Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations

    Get PDF
    We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-Domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anti-correlations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing eight planets and one additional planet candidate.Comment: Accepted to MNRA

    Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler

    Get PDF
    We report the distribution of planets as a function of planet radius (R_p), orbital period (P), and stellar effective temperature (Teff) for P < 50 day orbits around GK stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 Earth radii (Re). For each of the 156,000 target stars we assess the detectability of planets as a function of R_p and P. We also correct for the geometric probability of transit, R*/a. We consider first stars within the "solar subset" having Teff = 4100-6100 K, logg = 4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having noise low enough to permit detection of planets down to 2 Re. We count planets in small domains of R_p and P and divide by the included target stars to calculate planet occurrence in each domain. Occurrence of planets varies by more than three orders of magnitude and increases substantially down to the smallest radius (2 Re) and out to the longest orbital period (50 days, ~0.25 AU) in our study. For P < 50 days, the radius distribution is given by a power law, df/dlogR= k R^\alpha. This rapid increase in planet occurrence with decreasing planet size agrees with core-accretion, but disagrees with population synthesis models. We fit occurrence as a function of P to a power law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over Teff = 3600-7100 K, spanning M0 to F2 dwarfs. The occurrence of 2-4 Re planets in the Kepler field increases with decreasing Teff, making these small planets seven times more abundant around cool stars than the hottest stars in our sample. [abridged]Comment: Submitted to ApJ, 22 pages, 10 figure
    • …
    corecore