Re-evaluation of the Fijianolide/Laulimalide Chemotype Suggests an Alternate Mechanism of Action for C-15/C-20 analogs

Joseph D. Morris[†], Leila Takahashi-Ruiz[‡], Lauren N. Persi[†], Jonathan C. Summers[†], Erin P. McCauley[§], Peter Y. W. Chan[‡], Gabriella Amberchan[§], Itzel Lizama-Chamu[§], David A. Coppage[§], Phillip Crews[§], April L. Risinger^{‡,*} and Tyler A. Johnson^{†, §,*}

[†]Department of Natural Sciences, Dominican University of California, California 94901, USA [‡]Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229, USA [§]Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, USA

Supporting Information

*To whom correspondence should be addressed Tel: (415) 482-1983 Email: tyler.johnson@dominican.edu Tel: (210) 567-6267 Email: risingera@uthscsa.edu

Table S1. Structural Modifications of 37 Analogs of Fijianolide B/Laulimalide (3) With Their AssociatedS	\$3						
Potency Against Selected Cancer Cell Lines							
Table S2. ¹ H NMR Data of Fijianolide B/Laulimalide (3) in C_6D_6							
Table S3. ¹ H NMR Data of Fijianolide B di-acetate (4) in C_6D_6 S	38						
Table S4. ¹³ C, ¹ H, HSQC, HMBC, and COSY NMR Data of Fijianolide J (5) in C_6D_6 S	39						
Table S5. 13 C and 1 H NMR Data of Fijianolide L (6) in C ₆ D ₆ S1	10						
Figure S1. ¹ H NMR spectrum of Fijianolide B (3) in C_6D_6 (400 MHz) S1	11						
Figure S2. ¹ H NMR spectrum of Fijianolide B di-acetate (4) in C_6D_6 (500 MHz) S1	12						
Figure S3. ¹ H NMR spectrum of Fijianolide J (5) in C_6D_6 (400 MHz) S1	13						
Figure S4. ¹³ C NMR spectrum of Fijianolide J (5) in C_6D_6 (175 MHz) S1	14						
Figure S5. DEPT NMR spectra of Fijianolide J (5) in C6D6 (175MHz) S1	15						
Figure S6. gCOSY spectrum of Fijianolide J (5) in C ₆ D ₆ (700 MHz) S1	16						
Figure S7. HSQC spectrum of Fijianolide J (5) in C_6D_6 (700 MHz) S1	17						
Figure S8. HMBC spectrum of Fijianolide J (5) in C_6D_6 (700 MHz) S1	18						
Figure S9. ¹ H NMR spectrum of Fijianolide L (6) in C_6D_6 (400 MHz) S1	19						
Figure S10. ¹³ C NMR spectrum of Fijianolide L (6) in C_6D_6 (100 MHz) S2	20						
Figure S11. gCOSY spectrum of Fijianolide L (6) in C_6D_6 (600 MHz) S2	21						
Figure S12. HSQC spectrum of Fijianolide L (6) in C_6D_6 (600 MHz) S2	22						
Figure S13. HMBC spectrum of Fijianolide L (6) in C_6D_6 (600 MHz) S2	23						
Figure S14. ESI-HAMS spectrum of Fijianolide B/ Laulimalide (3) S2	24						
Figure S15. ESI-HAMS spectrum of Fijianolide J (5) S2	25						
Figure S16. ESI-HAMS spectrum of Fijianolide L (6) S2	26						
Figure S17. Cosedimentation of antiproliferative activity with purified tubulinS2	27						

Table S1. Structural Modifications of Analogs of 37 Fijianolide B/Laulimalide (1) with Selected Potencies Against Selected Cancer Cell Lines.

entry	R1	R2	R3	R4	R5	R6	MDA-MB- 435	NCI/ADR	MCF-7	HCT116	HT-29	A2780
IC ₅₀ (nM)										IC ₅₀ (nM)		
1	۲ ۲ ۲ ۲ ۲	H	of she	A A A A A A A A A A A A A A A A A A A	nn Se	No No	7.0^{1} 2.3 ⁴ 5.7 ⁶	36 ²	$ \begin{array}{r} 11.6^{3} \\ 3.8^{2} \\ 7.0^{7} \end{array} $	3.01	6.94	3.45
2	0H	H H	OTBS	Joseph Contraction of the second seco	www.	Nor St	>1,0004					
3	٥	H H	OMe 22 S	Joseph Contraction of the second seco	nn N	re re	242^4 240^6			590 ⁴ 470 ⁶		
4	6ااا	H H	OAC 22 52	And the second s	rrr T	2 recent	91±27 ⁴					
5	OMe	H H	of the second se	And the second s	nr.	No chi	>1,0004					
6	OAc IIIIII	H HIMING	OH JAN	HIME O	nn Z	Nor St	234					

7	Sol Sol	HIMIN OF H	22/20 - 52 - 52 - 52 - 52 - 52 - 52 - 52 -	J. J. Company	nn Star	No No	1764				
8	0	nine -	OH	HIM O	nr.	w w	>1,000 ⁴				
9	p-NO ₂ (C ₆ H ₄) CO ₂	Human Street	مربر مربر	HIM O	nr.	Nor St	374				
10	MeOCO ₂	Hummer Store	Solution of the solution of th	HI O	nr.	No No	4424				
11	Me ₂ NCO ₂	Hummer Second	OH	HIM O	rr.	so so so	6014				
12	0H	H HITTER	۲۹. مرکز در مرکز در	HIME O	and the second	Nor St			542		
13	08 ا	HIIIIII	× مرمر ملا	HIM O	* == *	2 cr	2,5006	13,7006			
14	۲ کرد کرد	anjur	of stand	HIII O	rr.	No No	$ \begin{array}{r} 289^4 \\ 120^6 \\ 120^8 \end{array} $		89 ² 360 ⁷	960 ⁴ 370 ⁶	
15	OH	H HIMING	۲. مرکز مر		nn X	Nor St	2338	4338			
16	OH	H HIMME	۲. مرکز مر		nn X	Nor St	$1,170^9$ $1,200^8$	1,2008			
17	OH	H HIMING	۲. مربر مربر مربر	HING OF CONTRACTOR	nn X	No st	1,3001		7001		
18	OH	H HIMAN	۲. مرکز دیار		nr.	Nor St	1,3508	2,3808			

19	۳ ۲۰۰۰ کلیست کرک	H H	8- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		nn Se	so so	7,3008	12,4008				
20	6 ا	H H	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-55	nn Se	No No	7,9008	22,900 ⁸				
21	۲ کرکر کرکر	H	0H 50/00	E line	nn Stall	so so	9,200 ¹		1,400 ¹			
22	۳. مرد مرد	H	۲. مربر مربر	o vive	nr.	so so so	>50,0006					
23	8ااااست. مربر	H	۲. کرکر کرکر	A A A A A A A A A A A A A A A A A A A	nn K	Jose Star	49.0 ⁹					50.0 ⁵
24	OH Solor	-	۲۹ میر مرکز میر	A A A A A A A A A A A A A A A A A A A	nr.	so so	7904			2,7004		
25	OH SAN	H H	۲۰ کم کر	HIII O	nn Scille	Nor Sty	1764					
26	OH	H H	OMe	Harris Contraction	- { - {	No st	>1,000 ⁴				>1,0004	
27	OH Joy Joy Joy Joy Joy Joy Joy Joy Joy Joy	H H	OMe	HIM O	under and	Nor St	>1,000 ⁴				>1,000 ⁴	
28	OH SV/S		۲. مربع میر مربع	Harris Contraction		No st	2,7604				8,5004	
29	OH John Star		۲۹ می	Hard Contraction		Nor St	4,2954				9,6004	
30	0H		OMe	AS A A A A A A A A A A A A A A A A A A	nn St	so so	4,4106				22,0006	

31	OH Solor Solor		ی <mark>ال</mark> د	2 A A A A A A A A A A A A A A A A A A A	*=*	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16,5006	25,4006		
	رب کر <u>کر</u> ОН	5 5	~~~ <u>~~</u> 0H			н				40.0005
32	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ZZZ O	2 Cry	<u>у</u> гу. н		22 sr				40,000
33	OH	H Comment	St St		nr.	Jon Stranger				9,0005
34	OH	H Comment	SH SY SY	N S	Nr.	Jon Stand				>50,000 ⁵
35	OH	and and a	Story Story	, ²⁵ н	nn X	Jon Star				>50,0005
36	OH	and and a	۲. مربع میں	Harris Contraction	Nr.	2 A St				4305
37	OH	and and a	Jon St.		nn X	Jon Star				>50,000 ⁵
38	OH	and and a	۲. مرکز محر	R R R R R R R R R R R R R R R R R R R	nn K	Jon Stranger				>50,0005

1) Johnson, et al., 2007, J. Med. Chem. 50, 3795-3803. 2) Mulzer et al., 2003, Chem. Rev. 103, 3753-3786. 3) Gollner et al., 2009, Chem. Eur. J. 15, 5979-5997. 4) Gallagher et al., 2004, Bioorg. Med. Chem. 14, 575-579. 5) Pateson et al., 2005, Bioorg. Med. Chem. 15, 2243-2247. 6) Wender et al., 2003, Org. Lett. 5, 3507-3509. 7) Pryor et al., 2002, Biochemistry, 41, 9109-9115. 8) Mooberry, et al., 2008, Mol. Pharmacol., 5, 829-838. 9) Wender, et. al., 2006, Org. Lett., 8, 1507-1510. 10) Quinoa et al., 1988, J. Org. Chem, 53, 3642-3644. 11) Trost, B.M. et al., 2012 Chem. Eur. J. 18, 2961-2971.

No.	Туре	$\delta_{ m H}{}^a$	mult.	$J(\mathrm{Hz})$
1	С			
2	СН	5.70	d	11.6
3	СН	6.01	ddd	11.4, 9.5, 3.6
4	CH_2	3.84	m	
		1.89	m	
5	CH	3.92	m	
6	CH	5.40	dq	10.2, 3.0
7	CH	5.61	ddd	10.1, 5.3, 2.5
8	CH_2	1.83	m	
		1.74	m	
9	CH	3.66	dd	9.0, 3.3
10	CH_2	1.52	m	
		1.15	ddd	14.3, 4.5, 3.1
11	СН	1.80	m	
12	CH_2	2.57	dd	13.1, 4.3
	_	1.85	m	
13	С			
14	CH ₂	2.11	m	
	-	2.09	m	
15	СН	3.96	m	
16	СН	2.71	dd	3.3, 2.5
17	СН	2.88	ddd	9.3, 3.6, 2.4
18	CH_2	2.15	ddd	13.8, 3.0, 1.5
	-	1.43	ddd	14.1, 8.4, 3.6
19	СН	5.09	ddd	10.0, 4.9, 1.6
20	СН	4.10	m	
21	СН	4.71	ddd	16.2, 5.4, 1.7
22	СН	5.79	ddd	16.1, 4.8, 1.2
23	СН	3.90	m	
24	CH_2	1.96	m	
	-	1.61	m	
25	С			
26	СН	5.11	bs	
27	CH ₂	4.07	bs	
-	- 2			
28	CH ₃	0.84	d	6.5
29	CH ₂	4.89	S	
-	- 2	4.87	S	
30	CH ₃	1.47	S	
	5			

Table S2. ¹H NMR Data of Fijianolide B/Laulimalide (3) in Benzene-d6

^a Measured at 400 MHz (¹H) in benzene-d6.

No.	Type	$\delta_{ m H}{}^a$	mult.	$J(\mathrm{Hz})$
1	С			
2	CH	5.77	d	10.8
3	CH	5.96	ddd	10.9, 10.9, 3.8
4	CH_2	3.96	m	
	-	2.06	m	
5	СН	4.13	bd	8.7
6	СН	5.43	bd	10.8
7	СН	5.64	m	
8	CH ₂	1.76	m	
9	CH	3.73	m	
10	CH ₂	1.53	m	
	2	1.16	ddd	14.3. 4.2. 3.0
11	СН	1.78	m	
12	CH ₂	2.54	dd	14.8.6.0
	2	1.84	m	,
13	С			
14	CH ₂	2.23	dd	15.9.9.6
	2	1 69	m	
15	СН	5.63	m	
16	СН	2.78	dd	32.28
17	СН	2.89	da	8920
18	CH2	2.13	m	0.9, 2.0
10	0112	2.15		
19	СН	5.35	ddd	11.5. 5.7. 1.6
20	СН	5.53	dd	,,
21	CH	5.75	dd	15.8.5.0
22	СН	5 88	ddd	159 47 06
23	СН	3.82	ddd	863333
24	CH2	1 94	m	0.0, 5.5, 5.5
2.	0112	1.50	m	
25	С	1.00		
26	СН	5 12	bs	
27	CH2	4 08	bs	
- /	0112	3.92	bs	
28	CH_2	0.82	d	6.0
29	CH ₂	4 97	bs	0.0
2)		4 86	bs	
30	CH_2		bs	
20	OAc	1 77	s	
	OAc	1.65	s	
^a Meas	sured at 50)0 MHz ((^{1}H) in be	nzene-d6

Table S3. ¹H NMR Data of Fijianolide B Di-Acetate (4) in benzene-d6

No.	Type ^a	δ_{C}^{b}	$\delta_{\rm H}{}^c$	mult.	J (Hz)	gHMBC ^c	gCOSY ^c
1	C	165.5	••			2,4	
2	СН	120.4	5.76	d	11.4	4	3, 4
3	СН	150.3	5.93	ddd	11.3, 10.2, 3.6	4	3, 4
4	CH_2	34.2	4.72	m	, ,	3,6	2, 3, 5
	2		2.04	m		,	, ,
5	СН	73.4	4.09	bd	10.2	3, 4	4, 6, 7
6	СН	129.1	5.36	bd	10.2	4	5,7
7	СН	125.2	5.57	m		8	5, 6, 8
8	CH_2	33.5*	1.73	m			9, 10
	-		1.55				
9	СН	68.2	3.54	m		8	8, 9, 10, 11
10	CH_2	44.0	1.46	m		8, 28	8, 9, 11
			1.10	ddd	14.3, 4.7, 2.4	-	
11	СН	30.0	1.86	m		10, 12, 28	10, 12
12	CH_2	46.7	2.53	dd	13.4, 5.1	11, 28, 29	10, 11, 29
			1.86	dd	13.9, 10.1		
13	С	145.5				11, 12	
14	CH_2	37.7	2.09	m		12, 29	15, 29
15	СН	66.4	3.97	m		14, 16	14, 16
16	СН	60.9	2.67	dd	3.0, 2.3	14, 18	15, 17
17	СН	51.4	2.87	ddd	8.8, 4.2, 2.2	16, 18, 19	16, 18
18	CH_2	33.5*	2.23	ddd	14.1, 4.2, 2.1	17	17, 19
			1.44	m			
19	СН	74.8	5.40	dd	11.6, 2.1	18	18
20	С	194.0				18, 19, 21, 22	
21	СН	122.5	6.65	dd	15.6, 2.0	22	22, 23
22	СН	147.9	6.96	dd	15.6, 3.5		21, 23
23	СН	72.4	3.68	m		21, 22	21, 22, 24
24	CH_2	34.8	1.63	m		22, 30	23
			1.28	m			
25	С	131.1				24, 30	
26	СН	120.1	5.02	bs			24, 27, 30
27	CH_2	65.8	4.07	bd	15.9		26
			3.85	bd	15.9	30	
28	CH_3	21.2	0.86	bd	6.7	10, 12	11
29	CH_2	112.0	4.93	S		12, 14, 15	12, 14
			4.89	S			
30	CH ₃	22.7	1.37	S			26, 27

Table S4. ¹³C, ¹H, HMBC, and COSY NMR Data of Fijianolide J (5) in Benzene-d6.

^{*a*} Carbon type determined by DEPT, HSQC, and HMBC experiments (see Figures S5, S7, and S8 in Supporting Information). ^{*b*}Measured at 175 MHz. ^{*c*}Measured at 700MHz. * Interchangeable assignments.

No.	Type ^a	$\delta_{C}{}^{b}$	$\delta_{\mathrm{H}}{}^{c}$	mult.	$J(\mathrm{Hz})$	gHMBC ^c	gCOSY ^c
1	С	164.9					
2	СН	121.0	5.82	d	11.1	3	3, 4
3	СН	147.7	5.78	m			2, 4
4	CH_2	34.3	3.34	m		3, 5	3, 5
			1.78	m			
5	СН	72.7	4.23	dd	10.2, 6.3	4	6, 4
6	СН	128.7	5.38	bd	10.1		7, 8
7	СН	125.1	5.58	m			6, 8
8	CH_2	31.6	1.73	m		10	
			1.55				
9	СН	65.9	3.46	m			7, 8, 10
10	CH_2	44.9	1.44	m		11, 12, 28	11, 12
			0.84	ddd	14.1, 9.3, 2.0		-
11	СН	27.4	1.86	m		10, 12, 28	
12	CH_2	46.7	2.83	q	16.6		29
			1.73	dd	13.9, 10.1		
13	С	140.8					
14	CH_2	43.2	1.98	m		12	16, 17
15	С	202.2					-
16	СН	54.7	2.96	d	1.9	14, 17, 18, 19	14
17	СН	65.4	3.05	ddd	6.5, 6.0, 1.8	18	18
18	CH_2	33.2	2.08	m		17, 19	17, 19
	-		1.57	m		,	,
19	СН	74.6	5.41	dd	7.8, 5.7	16, 17, 18	18
20	С	193.4					
21	СН	122.2	6.60	dd	15.7, 1.9	18	22
22	СН	147.0	6.96	dd	15.7, 3.6		21
23	СН	72.0	3.66	m	,	22, 27	
24	CH_2	34.8	1.63	m			30
	-		1.27	m			
25	С	130.6					
26	СН	119.7	5.00	bs		24	27, 30
27	CH_2	59.7	3.99	bd	15.8		26, 30
	-		3.83	bd	15.8		,
28	CH ₃	19.2	0.74	bd	6.6	10, 11, 12	10, 12
29	CH ₂	116.0	4.88	S		12, 14	,
	-		4.80	S		,	
30	CH ₃	22.3	1.35	S		24	24, 26, 27
^a Carbo	on type dete	rmined by F	ISOC an	d HMRC ex	neriments (see Figu	res S12 and S13 in	Supporting

Table S5. ¹³C and ¹H NMR Data of Fijianolide L (6) in Benzene-d6.

^{*a*} Carbon type determined by HSQC and HMBC experiments (see Figures S12 and S13 in Supporting Information). ^{*b*}Measured at 100 MHz. ^{*c*}Measured at 400MHz.

Figure S1. ¹H NMR spectrum of Fijianolide B/Laulimalide (3) in C₆D₆ (400 MHz).

Figure S3. ¹H NMR spectrum of Fijianolide J (**5**) in C_6D_6 (400 MHz).

Figure S6. gCOSY spectrum of Fijianolide J (**5**) in C₆D₆ (700 MHz)

f1 (ppm)

Figure S10. ¹³C NMR spectrum of Fijianolide L (6) in C_6D_6 (100 MHz)

Figure S13. HMBC spectrum of Fijianolide L (6) in C₆D₆ (800 MHz)

Figure S14. ESI-HAMS spectrum of Fijianolide B/Laulimalide (3)

Figure S15. ESI-HAMS spectrum of Fijianolide J (5)

Figure S16. ESI-HAMS spectrum of Fijianolide L (6)

Figure S17. Cosedimentation of antiproliferative activity with purified tubulin. Compounds 3, 4, or 5 were incubated with purified tubulin protein at a 5-fold molar excess of drug (100 µM) to protein (20 µM) in GPEM buffer for one hour at 37°C. Control reactions lacking tubulin protein were performed side-by-side. Microtubules were then pelleted from each reaction along with any microtubule-associated compound by centrifugation at 21,000g for 30 min at room temperature to avoid any microtubule depolymerization. The supernatant was removed and pellets resuspended in DMSO. To take into account the difference in potency of the original compounds, the pellets containing the less potent compounds 4 and 5 were resuspended in 10 μ L DMSO while reactions with the most potent compound **3** were resuspended in 100 uL DMSO. Two-fold serial dilutions of these pellet fractions were prepared and 1 µL of each was added to MDA-MB-231 cells for 48 h. The resulting cellular growth over the 48 h treatment period was determined using the SRB assay and graphed as a percent of growth compared to the time of drug addition (y = 0) and vehicle-treated controls (y = 100). The resulting concentration response to growth inhibition was graphed as arbitrary units (AU) comparing the effects of compound in the pellet fraction with or without tubulin to provide an indication of whether a potent compound was able to specifically coprecipitate with purified tubulin. We found that a potent, antiproliferative compound specifically coprecipitated with the microtubule pellet from our stocks of 3, but not 4 or 5, demonstrating that the antiproliferative effects of the latter two compounds do not appear to be due to contamination with a small amount of **3**. No antiproliferative activity was observed in the undiluted pellet fraction of **5** with tubulin.