36 research outputs found

    Acoustic Properties of Solid 4 He in the Limit of Zero Impurity

    Get PDF
    Abstract We have studied the elasticity of solid 4 He in relation with its possible supersolidity. For this we have measured acoustic resonance frequencies in a 1 cm 3 cell filled either with polycrystals or with single crystals of 4 He. We have observed a large stiffening at low temperature as first observed by Day and Beamish in polycrystals. The 3 He impurity content has been varied from 300 ppb to 0.4 ppb. When kept in equilibrium with liquid helium, single crystals should be impurity free. In these crystals, a large stiffening is observed, which should not be the result of the pinning of dislocations by impurities

    Description and Characterisation of a Large Array of Sensors Mimicking an Artifical Olfactory Epithelium

    Get PDF
    Biological olfactory systems show high sensitivity and exquisite discriminatory capacity to odorants. These characteristics are due to hierarchical signal processing of the large numbers of sensory inputs that occurs within the olfactory system. In testing realistic computational models of the olfactory system, large numbers of chemical sensor inputs are required. So far, sensory devices that may serve as model inputs to an artificial olfactory system do not exist. The development of a large scale array of chemical sensors able to mimic the olfactory receptor neurons is described, and these have been characterised in terms of their variability and degree of redundancy. Using this device it is possible to start testing computational hypotheses appropriate to biological chemosensory systems and adapt them to the artificial olfaction

    On The Mobile Behavior of Solid 4^4He at High Temperatures

    Full text link
    We report studies of solid helium contained inside a torsional oscillator, at temperatures between 1.07K and 1.87K. We grew single crystals inside the oscillator using commercially pure 4^4He and 3^3He-4^4He mixtures containing 100 ppm 3^3He. Crystals were grown at constant temperature and pressure on the melting curve. At the end of the growth, the crystals were disordered, following which they partially decoupled from the oscillator. The fraction of the decoupled He mass was temperature and velocity dependent. Around 1K, the decoupled mass fraction for crystals grown from the mixture reached a limiting value of around 35%. In the case of crystals grown using commercially pure 4^4He at temperatures below 1.3K, this fraction was much smaller. This difference could possibly be associated with the roughening transition at the solid-liquid interface.Comment: 15 pages, 6 figure

    NMR Study of Disordered Inclusions in the Quenched Solid Helium

    Full text link
    Phase structure of rapidly quenched solid helium samples is studied by the NMR technique. The pulse NMR method is used for measurements of spin-lattice T1T_1 and spin-spin T2T_2 relaxation times and spin diffusion coefficient DD for all coexisting phases. It was found that quenched samples are two-phase systems consisting of the hcp matrix and some inclusions which are characterized by DD and T2T_2 values close to those in liquid phase. Such liquid-like inclusions undergo a spontaneous transition to a new state with anomalously short T2T_2 times. It is found that inclusions observed in both the states disappear on careful annealing near the melting curve. It is assumed that the liquid-like inclusions transform into a new state - a glass or a crystal with a large number of dislocations. These disordered inclusions may be responsible for the anomalous phenomena observed in supersolid region.Comment: 10 pages, 3 figure

    Mean kinetic energy of helium atoms in fluid He-3 and He-3-He-4 mixtures

    Get PDF
    Momentum distributions and mean kinetic energies of helium atoms, in pure fluid 3He and 3He–4He mixtures, at T = 2 K and 3He concentrations of x = 0.20 and x = 1.00, are presented. The experimental technique employed is deep inelastic neutron scattering measurements in the eV energy range, with wavevector transfer of typically 100 °A−1 < q < 250 °A−1. Single-particle dynamical properties of 3He–4He mixtures are discussed in the context of previous results on mixtures at different concentrations and pure 3He and 4He. In the pure fluids, the kinetic energy of 3He and 4He are remarkably similar for molar volumes above 25 cm3 mol−1, while for smaller molar volumes, upon approaching the liquid–solid transition, the kinetic energy is larger in 3He than 4He. On the other hand, the short-time dynamics of the helium mixture reveal quite a different picture with respect to the pure 3He and 4He: the momentum distribution and mean kinetic energy of the light helium component are independent of the molar volume and concentration

    Large-scale chemical sensor array testing biological olfaction concepts

    No full text
    Biological olfactory systems are characterized by a large number of sensors with broad overlapping specificities. The sensitivity and selectivity of the system may be enhanced by the huge redundancy of the olfactory receptor neurons (ORNs). A European project, NEUROCHEM, was devoted to test computational models of the olfactory system of vertebrates and insects. To test these models, a realistic artifact of the olfactory epithelium was developed as a large sensor array mimicking some features of biological ORNs, in particular, the broad and overlapping selectivity to many odors, the combinatorial response, the high level of redundancy, and the different dynamic ranges exhibited by same types of ORNs. The sensor array is composed of 16 384 elements arranged in four smaller arrays of 64×64 interdigitated electrodes deposited on a borosilicate substrate. To mimic the redundancy of the biological ORNs, tens of organic conductive polymers were chosen as active sensing materials because of their broad and diverse, but overlapping, specificity to different classes of volatile organic compounds. These sensors were characterized by their responses to varying concentrations of test analytes. The collected sensor data were processed with standard multivariate techniques and the results are reported in this paper

    Direct Measurement of Competing Quantum Effects on the Kinetic Energy of Heavy Water upon Melting

    No full text
    Even at room temperature, quantum mechanics plays a major role in determining the quantitative behavior of light nuclei, changing significantly the values of physical properties such as the heat capacity. However, other observables appear to be only weakly affected by nuclear quantum effects (NQEs); for instance, the melting temperatures of light and heavy water differ by less than 4 K. Recent theoretical work has attributed this to a competition between intra- and intermolecular NQEs, which can be separated by computing the anisotropy of the quantum kinetic energy tensor. The principal values of this tensor change in opposite directions when ice melts, leading to a very small net quantum mechanical effect on the melting point. This Letter presents the first direct experimental observation of this phenomenon, achieved by measuring the deuterium momentum distributions n(p) in heavy water and ice using deep inelastic neutron scattering (DINS) and resolving their anisotropy. Results from the experiments, supplemented by a theoretical analysis, show that the anisotropy of the quantum kinetic energy tensor can also be captured for heavier atoms such as oxygen. (The iceberg image in the Table of Contents and Abstract graphics was used with permission of the NOAA’s National Ocean Service, 2012 (http://commons.wikimedia.org/wiki/File:Iceberg_-_NOAA.jpg).
    corecore