1,224 research outputs found

    Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot

    Get PDF
    We report a thermally activated metastability in a GaAs double quantum dot exhibiting real-time charge switching in diamond shaped regions of the charge stability diagram. Accidental charge traps and sensor back action are excluded as the origin of the switching. We present an extension of the canonical double dot theory based on an intrinsic, thermal electron exchange process through the reservoirs, giving excellent agreement with the experiment. The electron spin is randomized by the exchange process, thus facilitating fast, gate-controlled spin initialization. At the same time, this process sets an intrinsic upper limit to the spin relaxation time.Comment: 4 pages, 5 figures (color

    GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing

    Get PDF
    We present measurements of the electron temperature using gate defined quantum dots formed in a GaAs 2D electron gas in both direct transport and charge sensing mode. Decent agreement with the refrigerator temperature was observed over a broad range of temperatures down to 10 mK. Upon cooling nuclear demagnetization stages integrated into the sample wires below 1 mK, the device electron temperature saturates, remaining close to 10 mK. The extreme sensitivity of the thermometer to its environment as well as electronic noise complicates temperature measurements but could potentially provide further insight into the device characteristics. We discuss thermal coupling mechanisms, address possible reasons for the temperature saturation and delineate the prospects of further reducing the device electron temperature.Comment: 8 pages, 3 (color) figure

    Versatile Surface Electrodes for Combined Electrophysiology and Two-Photon Imaging of the Mouse Central Nervous System

    Get PDF
    Understanding and modulating CNS function in physiological as well as pathophysiological contexts remains a significant ambition in research and clinical applications. The investigation of the multifaceted CNS cell types including their interactions and contributions to neural function requires a combination of the state-ofthe-art in vivo electrophysiology and imaging techniques. We developed a novel type of liquid crystal polymer (LCP) surface micro-electrode manufactured in three customized designs with up to 16 channels for recording and stimulation of brain activity. All designs include spare central spaces for simultaneous 2P-imaging. Nanoporous platinumplated contact sites ensure a low impedance and high current transfer. The epidural implantation of the LCP micro-electrodes could be combined with standard cranial window surgery. The epidurally positioned electrodes did not only display long-term biocompatibility, but we also observed an additional stabilization of the underlying CNS tissue. We demonstrate the electrode’s versatility in combination with in vivo 2P-imaging by monitoring anesthesia-awake cycles of transgenic mice with GCaMP3 expression in neurons or astrocytes. Cortical stimulation and simultaneous 2P Ca2+ imaging in neurons or astrocytes highlighted the astrocytes’ integrative character in neuronal activity processing. Furthermore, we confirmed that spontaneous astroglial Ca2+ signals are dampened under anesthesia, while evoked signals in neurons and astrocytes showed stronger dependency on stimulation intensity rather than on various levels of anesthesia. Finally, we show that the electrodes provide recordings of the electrocorticogram (ECoG) with a high signal-to noise ratio and spatial signal differences which help to decipher brain activity states during experimental procedures. Summarizing, the novel LCP surface micro-electrode is a versatile, convenient, and reliable tool to investigate brain function in vivo

    Metallic Coulomb Blockade Thermometry down to 10 mK and below

    Get PDF
    We present an improved nuclear refrigerator reaching 0.3 mK, aimed at microkelvin nanoelectronic experiments, and use it to investigate metallic Coulomb blockade thermometers (CBTs) with various resistances R. The high-R devices cool to slightly lower T, consistent with better isolation from the noise environment, and exhibit electron-phonon cooling ~ T^5 and a residual heat-leak of 40 aW. In contrast, the low-R CBTs display cooling with a clearly weaker T-dependence, deviating from the electronphonon mechanism. The CBTs agree excellently with the refrigerator temperature above 20 mK and reach a minimum-T of 7.5 +/- 0.2 mK.Comment: 3 pages, 3 (color) figure

    Ferritic Nb-alloyed Cr-Steel in simulated strip casting process

    Get PDF
    Nb alloyed ferritic Cr-steel is usually produced by continuous casting with following hot and cold rolling procedure. In the laboratory scale the possible new route via strip casting was studied. The scope of the investigation in simulated process route was the development of microstructure and precipitations. In the experiments process parameters similar to those of the real strip caster were chosen, then those of hot rolling and cold rolling of such cast strips. The quickly solidified layer was produced by immersion of a steel substrate under vacuum into melt. The microstructure showed small niobium precipitates in the grain matrix and at the grain boundaries. Their size and distribution was evaluated for different niobium contents and cooling rates in the as-solidified structure. The diffusion controlled change of the precipitate morphology was also analysed after preheating and rolling. Reprecipitation and precipitate growth, as well as dissolution of precipitations at the grain boundaries were observed. The effect of various cooling rates and niobium content on the shape and formation of niobium containing precipitates and on the grain boundary is discussed. Thermodynamic calculations using FactSage were carried out in order to predict the precipitation of Nb-rich phases in ferritic stainless steels. The effect of the chemical composition and temperature on the thermodynamic stability of these precipitates was evaluated

    Marrow adipose tissue expansion coincides with insulin resistance in MAGP1-deficient mice

    Get PDF
    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2(−/−)) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2(−/−) mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2(−/−) mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2(−/−) mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2(−/−) mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2(−/−) mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2(−/−) mice; and substantial MAT accumulation does not necessitate a proportional decrease in either bone mass or bone marrow cellularity

    Electron attachment to valence-excited CO

    Get PDF
    The possibility of electron attachment to the valence 3Π^{3}\Pi state of CO is examined using an {\it ab initio} bound-state multireference configuration interaction approach. The resulting resonance has 4Σ−^{4}\Sigma^{-} symmetry; the higher vibrational levels of this resonance state coincide with, or are nearly coincident with, levels of the parent a3Πa^{3}\Pi state. Collisional relaxation to the lowest vibrational levels in hot plasma situations might yield the possibility of a long-lived CO−^- state.Comment: Revtex file + postscript file for one figur

    Bisphosphonates Inhibit Expression of p63 by Oral Keratinocytes

    Get PDF
    Osteonecrosis of the jaw (ONJ), a side-effect of bisphosphonate therapy, is characterized by exposed bone that fails to heal within eight weeks. Healing time of oral epithelial wounds is decreased in the presence of amino-bisphosphonates; however, the mechanism remains unknown. We examined human tissue from individuals with ONJ and non-bisphosphonate-treated controlindividuals to identify changes in oral epithelium and connective tissue. Oral and intravenous bisphosphonate-treated ONJ sites had reduced numbers of basal epithelial progenitor cells, as demonstrated by a 13.8 ± 1.1% and 31.9 ± 5.8% reduction of p63 expression, respectively. No significant differences in proliferation rates, vessel density, or macrophage number were noted. In vitro treatment of clonal and primary oral keratinocytes with zoledronic acid (ZA) inhibited p63, and expression was rescued by the addition of mevalonate pathway intermediates. In addition, both ZA treatment and p63 shRNA knock-down impaired formation of 3D Ex Vivo Produced Oral Mucosa Equivalents (EVPOME) and closure of an in vitro scratch assay. Analysis of our data suggests that bisphosphonate treatment may delay oral epithelial healing by interfering with p63-positive progenitor cells in the basal layer of the oral epithelium in a mevalonate-pathway-dependent manner. This delay in healing may increase the likelihood of osteonecrosis developing in already-compromised bone

    The use of biomedicine, complementary and alternative medicine, and ethnomedicine for the treatment of epilepsy among people of South Asian origin in the UK

    Get PDF
    Studies have shown that a significant proportion of people with epilepsy use complementary and alternative medicine (CAM). CAM use is known to vary between different ethnic groups and cultural contexts; however, little attention has been devoted to inter-ethnic differences within the UK population. We studied the use of biomedicine, complementary and alternative medicine, and ethnomedicine in a sample of people with epilepsy of South Asian origin living in the north of England. Interviews were conducted with 30 people of South Asian origin and 16 carers drawn from a sampling frame of patients over 18 years old with epilepsy, compiled from epilepsy registers and hospital databases. All interviews were tape-recorded, translated if required and transcribed. A framework approach was adopted to analyse the data. All those interviewed were taking conventional anti-epileptic drugs. Most had also sought help from traditional South Asian practitioners, but only two people had tried conventional CAM. Decisions to consult a traditional healer were taken by families rather than by individuals with epilepsy. Those who made the decision to consult a traditional healer were usually older family members and their motivations and perceptions of safety and efficacy often differed from those of the recipients of the treatment. No-one had discussed the use of traditional therapies with their doctor. The patterns observed in the UK mirrored those reported among people with epilepsy in India and Pakistan. The health care-seeking behaviour of study participants, although mainly confined within the ethnomedicine sector, shared much in common with that of people who use global CAM. The appeal of traditional therapies lay in their religious and moral legitimacy within the South Asian community, especially to the older generation who were disproportionately influential in the determination of treatment choices. As a second generation made up of people of Pakistani origin born in the UK reach the age when they are the influential decision makers in their families, resort to traditional therapies may decline. People had long experience of navigating plural systems of health care and avoided potential conflict by maintaining strict separation between different sectors. Health care practitioners need to approach these issues with sensitivity and to regard traditional healers as potential allies, rather than competitors or quacks

    Reaction rates for Neutron Capture Reactions to C-, N- and O-isotopes to the neutron rich side of stability

    Get PDF
    The reaction rates of neutron capture reactions on light nuclei are important for reliably simulating nucleosynthesis in a variety of stellar scenarios. Neutron capture reaction rates on neutron-rich C-, N-, and O-isotopes are calculated in the framework of a hybrid compound and direct capture model. The results are tabulated and compared with the results of previous calculations as well as with experimental results.Comment: 33 pages (uses revtex) and 9 postscript figures, accepted for publication in Phys. Rev.
    • …
    corecore