64,279 research outputs found
Towards Informative Path Planning for Acoustic SLAM
Acoustic scene mapping is a challenging task as microphone arrays can often localize sound sources only in terms of their directions. Spatial diversity can be exploited constructively to infer source-sensor range when using microphone arrays installed on moving platforms, such as robots. As the absolute location of a moving robot is often unknown in practice, Acoustic Simultaneous Localization And Mapping (a-SLAM) is required in order to localize the moving robot’s positions and jointly map the sound sources. Using a novel a-SLAM approach, this paper investigates the impact of the choice of robot paths on source mapping accuracy. Simulation results demonstrate that a-SLAM performance can be improved by informatively planning robot paths
Electroweak Baryogenesis with dimension-6 Higgs interactions
We present the computation of the baryon asymmetry in the SM amplified by
dimension-6 Higgs interactions using the WKB approximation. Analyzing the
one-loop potential it turns out that the phase transition is strongly first
order in a wide range of the parameters. It is ensured not to wash out the net
baryon number gained previously even for Higgs masses up to at least 170 GeV.
In addition dimension-6 operators induce new sources of CP violation. Novel
source terms which enhance the generated baryon asymmetry emerge in the
transport equations. This model predicts a baryon to entropy ratio close to the
observed value for a large part of the parameter space.Comment: 10 pages, 4 figures, Talk given at the 8th International Moscow
School of Physic
Synthesis of Y1Ba2Cu3O(sub x) superconducting powders by intermediate phase reaction
One of the more striking problems for the synthesis of the Y1Ba2Cu3Ox compound is the high-temperature decomposition of the BaCO3. This compound is present as raw material or as an intermediate compound in chemical processes such as amorphous citrate, coprecipitation oxalate, sol-gel process, acetate pyrolisis, etc. This fact makes difficult the total formation reaction of the Y1Ba2Cu3Ox phase and leads to the presence of undesirable phases such as the BaCuO2 phase, the 'green phase', Y2BaCuO5 and others. Here, a new procedure to overcome this difficulty is studied. The barium cation is previously combined with yttrium and/or copper to form intermediate compounds which can react between them to give Y1Ba2Cu3Ox. BaY2O4 and BaCu2O3 react according to the equation BaY2O4+3BaCu2O3 yields 2Y1Ba2Cu3Ox. BaY2O4 is a stable compound of the Y2O3-BaO system; BaCu2O3 is an intimate mixture of BaCuO2 and uncombined CuO. The reaction kinetics of these phases have been established between 860 and 920 C. The phase evolution has been determined. The crystal structure of the Y1Ba2Cu3Ox obtained powder was studied. According to the results obtained from the kinetics study the Y1Ba2Cu3Ox the synthesis was performed at temperatures of 910 to 920 C for short treatment times (1 to 2 hours). Pure Y1Ba2Cu3Ox was prepared, which develops orthorombic type I structure despite of the cooling cycle. Superconducting transition took place at 91 K. The sintering behavior and the superconducting properties of sintered samples were studied. Density, microstructure and electrical conductivity were measured. Sintering densities higher than 95 percent D(sub th) were attained at temperatures below 940 C. Relatively fine grained microstructure was observed, and little or no-liquid phase was detected
Structure of the chromosphere-corona transition region
Structure and energy distribution of chromosphere-corona transition regio
Phosphorus Immobilization in Poultry Litter and Litter-amended soils with Aluminum, Calcium and Iron amendments
Arkansas produces approximately one billion broilers each year. Phosphorous (P) runoff from fields receiving poultry litter is believed to be one of the primary factors affecting water quality in Northwest Arkansas. Poultry litter contains approximately 20 g P kg-1, of which about 2 g P kg-1 is water soluble. Soils that have received repeated heavy applications of litter may have water soluble P contents of as high as 10 mg P Kg-1 soil. The objective of this study was to determine if soluble P levels could be reduced in poultry litter and litter-amended soils with Al,Ca, and/or Fe amendments. Poultry litter was amended with alum, sodium aluminate, quick lime, slaked lime, calcitic limestone, dolomitic limestone, gypsum, ferrous chloride, ferric chloride, ferrous sulfate and ferric sulfate, and incubated in the dark at 25°C for one week. Three soils which had been excessively fertilized with poultry litter were amended with alum, ferrous sulfate, calcitic limestone, gypsum and slaked lime and incubated for 4 weeks at 25 °C. In the litter studies, the Ca treatments were tested with and without CaF2 additions in an attempt to precipitate fluorapatite. At the end of the incubation period, the litter and soils were extracted with deionized water and soluble reactive P (SRP) was determined. SRP levels in the poultry litter were reduced from over 2,000 mg P kg-1 litter to less than 1 mg P kg-1 litter with the addition of alum, quick lime, slaked lime, ferrous chloride, ferric chloride, ferrous sulfate and ferric sulfate under favorable pH conditions. S.RP levels in the soils were reduced from approximately 5 mg P Kg-1 soil to less than 0.05 mg P Kg-1 soil with the addition of alum and ferrous sulfate under favorable pH conditions. Gypsum and sodium aluminate reduced SRP levels in litter by 50 to 60 percent while calcitic and dolomitic limestone were even less effective. In soils, the Ca amendments were less effective than the Al and Fe amendments, although slaked lime was effective at high pH. The results of these studies suggest that treating litter and excessively fertilized soils with some of these compounds, particularly alum, could significantly reduce the amount of SRP in runoff from littered pastures. Therefore, chemical additions to reduce SRP in litter and soil may be a best management practice in situations where eutrophication of adjacent water bodies due to P runoff has been identified. Preliminary calculations indicate that this .p ractice may be economically feasible. However, more research is needed to determine any beneficial and/or detrimental aspects of this practice
Bulges or Bars from Secular Evolution?
We use high resolution collisionless -body simulations to study the
secular evolution of disk galaxies and in particular the final properties of
disks that suffer a bar and perhaps a bar-buckling instability. Although we
find that bars are not destroyed by the buckling instability, when we decompose
the radial density profiles of the secularly-evolved disks into inner S\'ersic
and outer exponential components, for favorable viewing angles, the resulting
structural parameters, scaling relations and global kinematics of the bar
components are in good agreement with those obtained for bulges of late-type
galaxies. Round bulges may require a different formation channel or
dissipational processes.Comment: Accepted to ApJL. 4 figures, 2 in color Corrected minor typos and
reference lis
- …