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Zusammenfassung
Acoustic scene mapping is a challenging task as micro-
phone arrays can often localize sound sources only in
terms of their directions. Spatial diversity can be ex-
ploited constructively to infer source-sensor range when
using microphone arrays installed on moving platforms,
such as robots. As the absolute location of a moving ro-
bot is often unknown in practice, Acoustic Simultaneous
Localization And Mapping (a-SLAM) is required in or-
der to localize the moving robot’s positions and jointly
map the sound sources. Using a novel a-SLAM approach,
this paper investigates the impact of the choice of robot
paths on source mapping accuracy. Simulation results de-
monstrate that a-SLAM performance can be improved by
informatively planning robot paths.

Introduction
Robot audition addresses the processing of audio and
acoustic signals obtained from microphone installed on
the body of robots [1]. Applications are often targe-
ted towards human-robot interaction in realistic acoustic
conditions, including interference, noise, and reverberati-
on [2]. Situational awareness of the surrounding acoustic
environment is therefore crucial for intuitive interaction
of a robot with human talkers.

Acoustic scene mapping aims to construct a three-
dimensional representation of the acoustic environment
surrounding a microphone array. Using sound sour-
ce localization, estimates of the instantaneous source
Directions-of-Arrival (DoAs) can be obtained. In prac-
tice, the distance – or range – between the sensor and
each source is often unmeasured. However, the range is
required in order to reconstruct the three-dimensional
Cartesian source positions within the acoustic scene map.

For robot audition, the source positions can be trian-
gulated from the source DoAs obtained at consecutive
positions along the path of a moving robot. Spatial di-
versity of the robot can therefore be exploited construc-
tively for sound source mapping. However, in realistic en-
vironments, reverberation and noise often results in DoA
estimation errors. Moreover, early reflections can lead to
spurious DoA estimates, considered as clutter, as well as
missing source detections.

Multi-source tracking approaches utilize temporal models
of the source dynamics in order to infer the Cartesian
source trajectories from the instantaneous DoAs. Sour-
ce tracking can therefore be used to obtain smoothed
estimates of the source positions, extrapolate sources
through periods of missing detections, and identify in-

coherent clutter DoAs.

Naturally, the estimated DoAs are relative to the origin
of the microphone array. In order to reconstruct abso-
lute source positions from the relative DoAs, the robot
path must therefore be known. However, in practice, the
executed robot motion diverges from the reported robot
motion corresponding to the robot’s internal belief of its
position [3].

Nevertheless, the acoustic scene map can be used to iden-
tify the robot position and orientation that optimally ali-
gns the DoAs with the estimated source positions. Robot
localization and source mapping are therefore jointly de-
pendent and should be solved simultaneously, leading to
the concept of Acoustic Simultaneous Localization and
Mapping (a-SLAM) [4].

We previously proposed a novel and robust a-SLAM ap-
proach in [4], that addresses the challenges of DoA errors,
clutter, as well as missing detections in reverberant and
noisy environments. The novel contribution of this paper
is the investigation of the contribution of the choice of
robot path on accuracy of the estimated acoustic scene
map. Using simulation results, we will demonstrate that
a-SLAM performance can be improved by informatively
planning robot paths.

System Model
The three-dimensional Cartesian position of a sin-
gle sound source is given by the vector, st,n ,[
x̂t,n, ŷt,n, ẑt,n

]T
, specified relative to the robot position,

rt, where n = 1, . . . , Nt and Nt is the number of sources
at time t. In this paper, the sources are assumed static
with subtle movements due to head and body rotations,
such that,

st,n = st−1,n + nt,n, nt,n ∼ N (03×1, Q) , (1)

where nt,n is the process noise with covariance Q.

The localized DoA due to source st,n is defined as

ωt,m ,
[
θt,m, φt,m

]T
where m ∈ {1, . . . ,Mt} and where

Mt is the number of DoAs at t. Each DoA constains the

inclination θ = cos−1
(
z/
√
x2 + y2 + z2

)
and azimuth

φ = arctan (y/x) and is modelled as

ωt,m = g(st,n) + mt,m, mt,m ∼ N (02×1, R) (2)

where g(st,n) is the Cartesian-to-spherical transformati-
on, and where mt,m is the measurement noise with cova-
riance, R.

The multi-source state contains all Nt sources and can
hence be expressed as the random finite set [5], St ,



{st,n}Ntn=1. The multi-source state can be modelled to ex-
plicitly account for source initialisation, survival between
time steps, and termination, such that

St =

Nt−1⋃
n=1

P (st−1,i)

 ∪Bt, (3)

where Bt is a birth process, and P (st−1,i) = st−1,j if
st−1,i persists between t−1 to t, and P (st−1,i) = ∅ other-
wise.

In order to model clutter and missing detections, the
multi-source measurement process is expressed as

Ωt =

[
Nt⋃
n=1

D(st,n)

]
∪ Ct, (4)

where Ct is the clutter process and D(st,n) = ωt,m if st,n
is detected and D(st,n) = ∅ otherwise.

Similar to (1), the robot position, pt =[
xt,r yt,r vt,r

]T
, contains the Cartesian position

(xt,r, yt,r) and speed, vt,r, and is modelled as

pt = Ft,r pt−1 + vt,p, vt,p ∼ N (03×1, Σt,v) (5)

where vt,p is the process noise with covariance Σt,v and
the height, zt,r, is constant and known. The dynamical
model, Ft, is general but expressed as a constant velocity
model in this paper, such that

Ft,r =

1 0 ∆T sin γt,r
0 1 ∆T cos γt,r
0 0 1

 (6)

where ∆T is the time delay between t− 1 and t and γt,r
is the robot orientation, modelled as a random walk,

γt,r = γt−1,r + vt,γ , vt,γ ∼ N
(

0, σ2
vt,γ

)
. (7)

for process noise vt,γ with variance σ2
vt,γ . The unknown

robot state is therefore defined as rt ,
[
pTt γt,r

]T
.

The reported robot motion is defined as yt ,[
zt,v zt,γ

]T
, containing the robot velocity and orienta-

tion, zt,v and zt,γ respectively. In order to account for the
errors between the reported and executed robot motion,
the robot reports are modelled as

zt,v = h pt + wt,v wt,v ∼ N
(

0, σ2
wt,v

)
(8a)

zt,γ = γt + wt,γ wt,γ ∼ N
(

0, σ2
wt,γ

)
(8b)

where wt,v and wt,γ are the speed and orientation noi-

se with variances σ2
wt,v and σ2

wt,γ respectively, and h ,[
0 0 1

]
.

Proposed a-SLAM Approach
The a-SLAM approach used in this paper was original-
ly proposed in [4] and is summarized in this section for
completeness of this paper.

In order to fully describe the statistics of the unknown
process, Xt , (rt,St), its posterior Probability Density
Function (pdf) should be estimated and propagated in ti-
me. For multi-source mapping, however, the pdf is nume-
rically intractable. Rather than propagating the pdf, the
posterior can be approximated by its first-order moment,
the Probability Hypothesis Density (PHD) [5]. The joint
PHD can be factorized into the PHD of the robot state,
λ(rt|y1:t), and the multi-source PHD, λ(st|rt,Ω1:t), con-
ditional on the robot position, such that,

λ(xt|Ω1:t,y1:t) = λ(rt|y1:t)λ(st|rt,Ω1:t). (9)

Source Mapping

The source PHD accounts for the contribution of unde-
tected, detected, and newborn sources and is given by:

λ(st|rt,Ω1:t) = (1− pd)λ(st|rt,Ω1:t−1) (10)

+ pd λs(st|rt,Ω1:t) + λb(st|rt,Ωt) (11)

where pd is the probability of source detection,
λ(st|rt,Ω1:t−1) is the predicted PHD of undetected
sources, λb(st|rt,Ωt) is the PHD of newborn sources, and
λs(st|rt,Ω1:t), is the PHD of surviving sources.

For the Gaussian source model in (1), λs(st|rt,Ω1:t−1)
can be modelled as a Gaussian Mixture Model (GMM) [6]
of Jt−1 components and Gaussian Mixture (GM) weights,

w
(j)
t−1 for all j ∈ {1, . . . , Jt−1}, such that

λ(st|rt,Ω1:t−1) =

Jt−1∑
j=1

w
(j)
t−1N

(
st
∣∣m(j)

t|t−1, Σ
(j)
t|t−1

)
,

(12)

where the GM mean and covariance terms, m
(j)
t|t−1 and

Σ
(j)
t|t−1, are given by the Kalman Filter (KF) prediction

equation [7].

The PHD of surviving components is obtained by up-
dating λ(st|rt,Ω1:t−1) with the source DoAs, ωt,m, such
that

λs(st|rt,Ω1:t) =

Mt∑
m=1

Jt−1∑
j=1

w
(j,m)
t N

(
st
∣∣m(j,m)

t , Σ
(j,m)
t

)
(13)

where the mean, m
(j,m)
t , and covariance, Σ

(j,m)
t , of each

GM component are given by the extended KF equations

[4, 7]. The GM weights, w
(j,m)
t , are given by

w
(j,m)
t =

w
(j)
t−1

`(ωt,m|rt)
N
(
ωt,m

∣∣ g (m
(j)
t|t−1

)
, S

(j)
t

)
, (14)

where S
(j)
t is the KF innovation covariance and g (·) de-

notes the Cartesian-to-spherical transformation. The evi-
dence term, `(ωt,m|rt), corresponds to the probability of
DoA, ωt,m, being due to either clutter, source birth or
source survival, such that

`(ωt,m|rt) = κt,m +

Jt−1∑
j=1

pd w
(j)
t−1, (15)
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Abbildung 1: Source mapping accuracy for an array at 1.195 m height moving in a straight line with specified orientation
from the source. The source is placed at a height of 1.195 m (circles) 1.8 m (bars).

where κt,m = λκ V U(ωt,m) is the clutter PHD for room
volume V with clutter rate, λκ, and assuming uniformly
distributed clutter DoAs.

Similar to (12), the birth PHD can be expressed as

λb(st|rt,Ωt) =
L∑
`=1

w
(`)
b,tN

(
st
∣∣m(`)

b,t , Σ
(`)
b,t

)
, (16)

where L is the number of newborn GM components, the

GM weights are given by w
(`)
b,0 = Nb

L where Nb is the

expected number of source births per time step, and m
(`)
b,t

and Σ
(`)
b,t are the mean and covariance of GM component,

` ∈ {1, . . . , L}.
Newborn sources are initialized from the measurements.
An estimate of the unmeasured range is introduced at
initialisation. The range estimate is propagated in ti-
me by probabilistic triangulation as previously propo-
sed in [8]. For each DoA in {ωt,m}Mt

m=1, newborn sour-
ce states are generated by drawing P random varia-

tes m
(p)
b,0 ∼ N

([
ωTt,m, r0

]T
, Σb,0

)
for p = 1, . . . , P ,

such that L = Mt P , and where r0 is the prior ran-
ge with variance σ2

r0 , and the covariance is given by

Σb,0 , diag
[
R, σ2

r0

]
.

Robot Localization

Recalling (6), the robot position is non-linearly depen-
dent on the robot orientation, γt,r. The non-linearity can
be addressed using a Rao-Blackwellized particle filter [9]
to estimate rt as proposed in [4].

At each time t, P random variates of the orientati-

on, γ̂
(i,p)
t , can be drawn from an importance function,

π(γt,r|γ̂(i)t−1, zt,γ) [9]. For each of the resulting It = P It−1
particles, one KF realisation is evaluated to obtain a po-

sition particle, p̂
(i,p)
t , with covariance, Ψ

(i,p)
t . The robot

PHD hence is given by

λ(rt|Z1:t) =

It−1∑
i=1

P∑
p=1

α
(i,p)
t δ

γ̂
(i,p)
t

(γt,r)N (pt|p̂(i,p)
t ,Ψ

(i,p)
t ),

where δ
γ̂
(i,p)
t

(γt,r) is the Dirac delta function of γt,r eva-

luated at γ̂
(i,p)
t , and α

(i,p)
t are the importance weights at

t, given by

α
(i,p)
t =

L(Ωt|r(i,p)t ) α̂
(i,p)
t

It−1∑
l=1

P∑
m=1
L(Ωt|r(l,m)

t ) α̂
(l,m)
t

. (17)

α̂
(i,p)
t are the un-normalised importance weights given by

α̂
(i,p)
t = α

(i,p)
t|t−1 p(zt,γ |γ̂

(i,p)
t ) p(zt,v|p̂(i,p)

t|t−1), (18)

where p(zt,γ |γ̂(i,p)t ) and p(zt,v|p̂(i,p)
t|t−1) are the likelihood

terms of the robot orientation and velocity obtained from

the KF. The term L(Ωt|r(i,p)t ) in (17) is the multi-source
evidence given by

L(Ωt|r(i,p)t ) ,
Mt∏
m=1

`(ωt,m|r(i,p)t ), (19)

for single-source likelihood terms, `(ωt,m|r(i,p)t ), in (15).

Results
In order to investigate the impact of the choice of robot
path on the mapping accuracy of the proposed a-SLAM
approach, the following experiments were conducted by
simulation. In Experiment 1, the orientation and height
of the robot is investigated, whilst Experiment 2 evalua-
tes the influence of the choice of robot speed.

Experiment 1: Robot path

A single source is located at (4, 4, 1.195) m in a 15 ×
8 × 2.5 m3 room. The robot travels at 20 waypoints in
a straight line from starting position (1, 4, 1.195) m at
a constant speed of 0.2 m/s and with orientation angles
between [0, 90] deg, where 0 deg corresponds to a robot
path in the the North direction and 90 deg corresponds
to a path in the East direction. Assuming negligible error
in the robot reports with σwt,v = 10−9 m/s and σwt,γ =
10−9 rad, the proposed a-SLAM approach is evaluated
using 150 GM components. The source position error is
evaluated as the Euclidean distance between the true and
estimated source position for 50 Monte Carlo (MC) runs.

The resulting source mapping accuracy is plotted in
Fig. 1. The mapping accuracy converges to under 5 cm
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Abbildung 2: Source mapping accuracy for a robot speed
between [0, 2] m/s.

after 7 time steps for robot orientation angles of 50 and
70 deg. For an orientation angle of 0 deg, convergence to
a comparable accuracy is achieved after 17 time steps.
At 90 deg, i.e., facing the source, the estimate position
error of the source diverges to 1.8 m. This divergence is
due to the fact that the source cannot be triangulated
when a robot at the same height heads straight towards
the source.

The experiment is repeated for a source at 1.8 m height.
Results for 50 and 70 deg robot orientation are compa-
rable to the source co-located at robot height. The rate
of convergence is significantly improved for 0 and 30 deg
orientation, where less than 5 cm error are achieved wi-
thin 6 time steps. Moreover, diversity in height results
in convergence for a robot moving straight towards the
source at absolute orientation angle of 90 deg.

Therefore, at 50 − 70 deg robot orientation, i.e., as the
robot “grazes” past the source, the azimuth between the
source and sensor change significantly between each way-
point along the robot trajectory. In comparison, a robot
orientation of 0 deg, i.e., perpendicular to the source, re-
sults in modest rate of change in the azimuth between
consecutive waypoints. Spatial diversity can be further
improved by increasing the difference in height between
the source and sensor, such that the rate of change in
source inclination is maximised between consecutive way-
points along the robot path.

Experiment 2: Robot speed

The trajectory of a moving robot and two static sources
are simulated for 12.5 s with ∆T = 250 ms, such
that t = 1, . . . , 50. The robot trajectory is simula-
ted using (5) with an initial position of (3, 3, 1.195) m,
initial orientation of γ0 = 0 deg and constant velo-
city of 1.5 m/s, and for process noise with Σt,v =

diag
[
0.1 m2, 0.1 m2, 10−3 (m/2)

2
]
, and σvt,γ = 45 deg.

The reported orientation and velocity of the robot are
simulated using (8) for σwt,v = 10−3 m/s and σwt,γ =
5 deg unless otherwise specified in the experimental se-
tup. The sources are initialised at (1.5, 1.5, 1.7) m and
(4.5, 4.5, 1.5) m respectively. Small changes due to head

and body rotations are simulated using (1) over time with

Q = diag
[
0.01 m2, 0.01 m2, 10−3 (m/s)

2
]
. The source

DoAs are simulated as an oracle localizer using (2) with

Root Mean Square (RMS) error of R1/2 = diag [5, 2] deg
for 10 MC runs. The source mapping accuracy is evalua-
ted as the Euclidean distance between true and estimated
source positions averaged over both sources.

The results are shown in Fig. 2. A static robot at 0 m/s
speed results in an average error of 2.75 m between the
estimated and true source positions, as the range to static
sources cannot be inferred from a static robot. By exploi-
ting spatial diversity of a moving robot, source mapping
accuracy of up to 10 cm can be achieved. The results
clearly indicate that source mapping accuracy can be im-
proved by increasing the speed of the robot.

Conclusions
a-SLAM is required in order to localize the positions
along the path of a moving microphone array and joint-
ly map the surrounding sound sources. Using a novel
a-SLAM approach, this paper investigated the impact of
the choice of robot paths in terms of the robot orienta-
tion, height, and speed on the extent of source mapping
accuracy. Simulation results demonstrated that a-SLAM
performance can be improved by informatively planning
robot paths in order to actively exploit time-varying
source-sensor geometries.
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