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ABSTRACT

The structure and energy balance of the chromosphere-corona tran-
sition region is investigated by means of a static, planar model which
is compared with the results of XUV-resonance-line observations, In
this model, the transition region is heated by thermal conduction from
the corona and cooled by radiative losses. Comparison of the model
with observational results implies that this is the dominant process in
the energy balance of the transition region, and that the base of the
transition region is inherently non-static and/or non-planar. The model
explains the observational finding of Noyes et. al. (1970) that the
number density and the downward heat flux both increase by the same
factor from quiet regions to active regions. The implications of these

results are discussed with regard to spicules,
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1. INTRODUCTION

The purpose of this article is to examine the extent to which a
static, planar model may be used to describe and explain the structure
and energy balance of the chromosphere-corona transition region. In
this section we shall briefly present the salient features of the
transition region which motivate such a study.

In this paper, following Pottasch (1964), we shall use the term
"chromosphere-corona transition region'", or just '"transition region",
to designate the region of the solar atmosphere in which the temperature
increases from about 10lL K (typical temperature of the upper chromosphere)
to about 106 K (typical temperature of the lower corona). This is the
region from about 2,000 km to about 10,000 km above the photosphere
(Athay, 1969, Dupree and Goldberg, 1967). Observed energy fluxes of
extreme ultraviolet resonance lines emitted from the outer solar atmos-
phere imply (see Section 3.2.1) that above the 105 K level the atmos-
phere is approximately planar, and that the flux of heat flowing from
the corona down to the chromosphere remains roughly constant from the
106 K level down to the 105 K level, We term this upper part of the

"constant-heat-flux region.” The part of the

transition region the
transition region below the constant-heat-flux region will be called
the "base region'. This schematic picture of the transition region is
summarized in Figure 1,

A major function of the base region is to absorb the downward
flowing heat which passes through the constant-heat-flux region. The
value of this heat flux which enters the base region is not accurately

determined by the ultraviolet line data, but a value greater than 1O5

- - L
erg cm 2 sec™! is indicated (see Section 3.2.,1). At the 10 K level and
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below, the heat conductivity and the temperature gradient are so small
that less than 1O2 erg cm_2 sec = can be conducted out of the bottom of
the transition region, Therefore, the heat entering the base region

from the constant-heat-flux region must be absorbed in the base region.

Optical eclipse spectra indicate that spicule-like inhomogeneities
begin to appear in the chromosphere at heights above about 1,500 km
(Suemoto and Hiei, 1962), and spicules often extend to heights of 10,000
km or more. Thus, some spicules extend through the height range of the
chromosphere-corona transition region, Since spicules are transient and
must have a temperature well below 105 K (Beckers, 1968), the constant-
heat-flux region cannot be completely static and horizontally uniform,
However, above 3,000 km spicules occupy less than a few percent of the
horizontal surface area (Allen, 1963, Beckers, 1968). This suggests
that the static, planar constant-heat-flux region implied by the ultra-
violet emission-line data corresponds to a hot, static background
atmosphere which is penetrated here and there by the cooler spicules,
Thus, although the constant-heat-flux region appears to be inhomogeneous
and fluctuating when viewed optically at the limb in a chromospheric
emission lines, in terms of .overall structure and average heat flow
from the corona to the chromosphere, a static, planar model is still
reasonable,

In view of the static, planar nature of the constant-heat-flux
region (despite the presence of spicules), it is reasonable to consider
a static, planar model for the base region which absorbs the heat which
passes through the constant-heat-flux region. A static, planar model

of the base region is "possible" if the downward heat flux passing the



105 K level can be radiated away above the 1OLL K level. However, Kuperus
and Athay (1967) have suggested that the base region is so thin that the
inflowing heat cannot be balanced by radiation alone, and that the ex-
cess energy goes into the kinetic energy of spicules, Hence, a quan-
titative study of a static, planar model of the transition region may

be relevant to the origin of spicules, and their role and importance in

the energy balance of the base region,



2. MODEL AND FORMULATION

2.1 BASIC PHYSICAL ASSUMPTIONS

The model of the transition region studied in this paper is based

on the following assumed physical conditions and approximations.

(1)
(2)
(3)

(%)

(6)

(7)

(8)

The model is horizontally inform,

The magnetic field is assumed to be vertical.

The model transition region is assumed to be in hydrostatic equi-
librium.

The "turbulent pressure” in the transition region, due to velocity
fluctuations (part of which are produced by the mechanical waves
which pass through the transition region to heat the corona), is
neglected; the model atmosphere is assumed to be supported against
gravity entirely by the thermal gas pressure.

There is no dissipation of the mechanical waves within the model
transition region.

The condition of ionization equilibrium is satisfied at each point
in the model.

All excitations and ionizations are collisional, and all recombina-
tions énd de—excitatioﬁs are radiative.

The presence of elements other than hydrogen is ignored except

for their contribution to the radiative losses,

The aim of each of the above adopted conditions is to simplify

the mathematical model while hopefully retaining the essential physics

involved in the structure and energy balance of the actual transition

region., In particular, approximation (4) simplifies the force equation,



approximation (5) simplifies the energy equation, while approximations
(7) and (8) simplify the ionization equation as well as the force and
energy equations, The degree to which the model resulting from our
simplifying assumptions retains the essential physics of the transition
region is to be judged, in part, from the comparison of the model with
observations,

It should be noted that approximations (5) and (7) optimize the
removal of heat flux by radiation. In general, the energy radiated from
each volume element of the atmosphere may come from three sources: (i)
mechanical energy dissipated in the volume, (ii) radiation absorbed in
the volume, (iii) heat flux absorbed in the volume., Approximations (5)
and (7) require that all of the energy radiated from each volume ele-

ment be supplied by the absorption of heat flux,

2.2 GOVERNING EQUATIONS
The equation which expresses condition (6), the condition of
ionization equilibrium, is

J=% , (1)

where 3 is the rate of ionization per unit volume, and R is the

rate of recombination per unit volume. If the vertical coordinate =z

is taken to be positive upward, the condition of hydrostatic equilibrium
requires that

dp
52 = P (2)

where p is the thermal gas pressure, ¢ 1is the mass density of the
gas and g 1is the acceleration of gravity. Conditions (3), (5), and

(7) and the conservation of energy demand that there be a balance of



heat conduction and radiation. This is expressed by

T dz o (3)

where F 1is the heat flux (positive upward) and £r is the radiative
power output per unit volume., We now proceed to express equations (1),
(2) and (3) in terms of the total number density n, the electron
number density n,, the temperature T, and their derivatives with
respect to the vertical coordinate 2z, to obtain three equations in
three unknowns with which to compute the structure of the model.

Under approximations (7) and (8), equation (1) can be written as

nenHIH = nenpRH 3 ()'l')

where nH is the number density of neutral hydrogen, np is the num-

ber density of ionized hydrogen, IH is the collisional ionization

coefficient for hydrogen, and RH is the radiative recombination co-
efficient for hydrogen. Now with the simple relations for pure hydro-

gen,

n=n + np + ne (5)

and

the ionization equilibrium equation may be solved for ne/n:

fe_ 1 (7

n 2 + RH/IH



For pure hydrogen, the mass density of the gas is
e
p=(__n_)an. (8)
From this expression and the equation of state,

P = nkT s (9)

the equation of hydrostaktic equilibrium can be written in terms of n,

n and T:
e

1 d(aT) (1 - ne/n)mHg 10
nT dz - kT : (10)
The heat flux F 1is proportional to the temperature gradient:
dr
F=-k . (11)

where « 1is the thermal conductivity. Thus, the left hand side of

the energy equation, equation (3), may be expressed as

1§

dF¥ d dT
- —-Z— a——z- (K EE) . (12)

For the radiative power output density £r’ we adopt the results of
Cox and Tucker (1969). They have computed the radiative cooling co-

efficient Lr’ which is related to £T by

L. = ne(nH + np) L. (13)

8

as a function of temperature in the range 101F K to 10 K. 1In addition
to hydrogen, Cox and Tucker have included cosmic abundances of the
next eight most abundant elements: He, C, N, O, Ne, Mg, Si and S, in

L
their calculation of Lr' At temperatures above a few times 10 K,
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these additional elements dominate the radiative cooling, Thus, with
regard to Lr’ we relax our assumption of a pure hydrogen atmosphere.
However, since hydrogen is the major component of the solar atmosphere,
the elements other than hydrogen may be neglected in the equation of
hydrostatic equilibrium, in determining the heat flux and thermal con-
ductivity, and in the ionization equation, which determines the elec-
tron, proton and hydrogen number densities in equation (13). The ex-

pression of the energy equation in terms of n, ne and T 1is then
n n
d ar e €
= ("az)= r (1 - _rr)ner : (14)

2.3. SPECIFICATION OF THE MODEL
The coefficients I, and R, in equation (7), and Kk and L.
in equation (1lL4) are functions of temperature which we now specify.
The ionization and recombination coefficients for hydrogen are
taken from Cox and Tucker (1969):
8 -1/2 -8 3

Ig= 2.3k x 10 B eP cudsec™t s (15)

B = 5.20 x 10" g1/2r0 088 + %-{HB + 0.4698 g7 3jemdsec™ , (16)

B = 158,000/T. (17)



Figure 2 shows the radiative cooling coefficient curve computed

by Cox and Tucker for the temperature range IOLL K to lO6 K. We have
adopted the following straight-line-segment fit for our model:

4.0 < 10g T < k.2: log L_ = 8.00 log T-55.6 )

1

Lo <log T < 4h.5: log Lr = -22.0
4.5 < log T < 4.87: log L = 2.44 log T ~-33.0 (18)
4. 87<log T < 5.5: log L, = -21.1

i

5.5 < log T < 6.0: log L, -1.86 log T -10.9
Figure 3 shows the thermal conductivity curve which we have ob~
tained from the results of Devoto (1968) and Delcroix and Lemaire (1969)

(see Appendix A). The curve is closely fit by three straight line

segments given by

4,0 < log T < 4.05: log Kk = log T + 1.49

1

4,05 < log T < 4.26: log « -3.19 log T + 18.47 (19)

il

L.26 < 1log T < 6.00: log K 2.3 log T - 5.18
This straight-line—segment fit is the conductivity curve used in computing
the structure of the model.

With the above coefficient formulas, we have now completely spe-
cified our model, The structure of the model is completely determined
by appropriate boundary values of n, T, and F. We choose to specify
the values of these quantities at the upper boundary of the model tran-
sition region because the value of the number density is best known at

the top of the observed transition region (Athay, 1969). We define the

9



the upper boundary of the model to be the 1O6 K level. We therefore

fix the temperature TO of the upper boundary of the model at 1O6 K

and study the model by varying the boundary values of n and F, which

are denoted by n and F_.

0 0

10



3. RESULTS

3.1, Numerical Results

To study the behavior of the model with variations in nO and

FO’ we computed the run of temperature and heat flux with height in

the model for several values of no and FO by numerically solving

the governing equations (7), (10), and (14). Examples of the tempera-

ture profiles are shown in Figure L, where F

0
6 -2 -1
107 erg cm sec and n takes the values 1,00, 1.92, 2.24, and 2.82

0
_3.

is fixed at -1.0 X

times 109 cm Curves of the heat flux versus the logarithm of the

temperature for the same cases are shown in Figure 5.

The curves in Figures 4 and 5 may be qualitatively understood as

follows, The radiative power output density is proportional to n2.

On the other hand, if there were no radiative losses, the thickness
of the transition region would be inversely proportional to the (constant)
downward heat flux, Consequently, we expect that for sufficiently

large values of the number density nO and sufficiently small values

of the heat flux FO at the upper boundary, the model will radiate

away all of the downward heat flux. That is, the heat flux will de-
crease to zero at some temperature TZF > IOLL K. Figures 4 and 5 bear

this out: if nO is large enough (no 2 1.92 x 1O9 cm—3) the tempera-~

ture gradient and the heat flux pass through zero at the minimum tempera-

ture (> 10lL K) reached by the curve, but if n, is too small (e.g.

nO = 1,00 ¥ 109 cm_3), no temperature minimum occurs because the model

is unable to radiate away all of the heat flux.

the value of n determines the temperature T

For a given FO’ 0

yA3
at which F = 0. Thus, from sets of cases such as that represented in

Figure 5, we may obtain the sets of (no, TZF) points shown in Figure 6
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for constant values of FO. A smooth curve has been fitted through

each set of points with a common value of FO' From these curves we

then obtain sets of (no, FO) at constant T which we have plotted

ZF

logarithmically in Figure 7. Each set of points for constant TZF lies

along a curve with slope increasing from about 0.9 at log n. = 9.0 to

0

about 1.0 at log n. = 10.0, Thus, for constant T

0 F is approxi-

ZF’ 0

mately proportional to nO.
The fact that FO is approximately proportional to no for con-

stant TZ is readily understood from the governing equations and the

F

fact that the pressure is nearly constant in the model transition re-
gion., With the aid of the heat conduction law, equation (11), the
energy equation (lh) may be written as
T

K

— (nT)2 dr . (20)

e

o
—

o

I
=}

blm

-
=3 =

Equation (7) shows that the quantity in square brackets is a function

of the temperature alone:

n n L
Ee(l._;)_gx - £(1) . (21)
T

In conjunction with the heat conduction law, the equation of hydrostatic

equilibrium yields the integral

T

0
K
nT = n,T, exp l i dari , (22)

12



where H 1is the pressure scale height,

kT
H = o N (23)

(1 -re) e

T

0
The quantity —~/. kK/HF dT 1is positive due to the fact that F is
T
negative (heat flux downward). Even though F goes to zero, so that

goes to infinity, as T approaches T it was found that

X
HF ZF’

T

0
- K
‘l: — dT < 1 (2@)

VA

in all cases for which the model was computed. That is, in the ranges

of no and FO in Figure 6, the pressure remains nearly constant

through the model,

Equation (20) may therefore be written

FdF gnngf(T) ar . (25)

Integration of equation (25) from T to TO gives

ZF

0
ngf £(T) dr , (26)

which shows that for constant TO and TZF’ FO is approximately pro-

portional to nO.

13



3.2 COMPARISON OF THE MODEL WITH XUV-RESONANCE-LINE DATA

3.2.1 Observational Evidence for a Planar Constant-Heat-Flux Region
The analyses of Athay (1966) and Dupree and Goldberg (1967) of the
emission of XUV resonance lines from a planar transition region, in
conjunction with the observed energy fluxes of several XUV resonance
lines, provide the empirical evidence for a planar constant-heat-flux

> K to 106 K. In these analyses the

region in the temperature range 10
energy flux EL observed at the earth in an XUV resonance line is re-~

lated to the structure of the transition region by

2 -1
E =CAPG . (27)

1!

Here P, and G are "representative" values of the electron pressure

divided by Boltzmann's constant (Pe

neT) and of the temperature gra-
dient, respectively, in the layer of the tran§ition region in which

the line is formed. A is the abundance (element:hydrogen ratio) of

the element which emits the line. CL is a constant of proportionality,
which is evaluated for each line by integrating a function of temperature
(proportional to the number density of the ion which emits the line and
the rate of excitation of the line) over the temperature range in which
thé ion is produced. This integrand is a sharply peaked function of
temperature, contributing significantly to CL only at temperatures
within about a factor of two or less from the temperature Tmax,L at

which it is maximum, Hence, equation (27) may be used to obtain an

-1 .
estimate of A(neT)z(%g) at Tmax,L from the observed energy flux EL'

14



The data points in Figure 8 (cf. Figure 3 of Dupree and Goldberg)

were obtained in this way from the values of C and T computed
L max,L

by Dupree and Goldberg. We used the observed values of EL adopted by
them for several XUV resonance lines emitted from oxygen ions and

silicon ions formed in the temperature range of the transition region.
-1
The value of (nT)2 (QZ)

iz for each data point was obtained by assuming

that the abundances of oxygen and silicon are the photospheric abundances

of Goldberg et al. (1960), Ay = 9.3 X 10'4, Ag; = 3.2 X 10'5, and by

taking n = 2ne. Since the pressure remains nearly constant, the

straight lines of slope 2,36 in Figure 8 correspond to constant down-

6
0 K and 10 K, since above 105 K the heat

T2.36

ward heat fluxes between 10
conductivity is proportional to . The solid line is the best
visual fit to the data in the range lO5 K to lO6 K, while the dashed
lines show that the data scatter about the solid line by a factor of two,

5

The data thus imply that, between 10~ K and 106 K, the transition region
is approximately planar, and that in this region the heat flux varies

by less than a factor of four. We see that although the heat flux need
not stay completely constant in the constant-heat-flux region, a sizable

fraction (25% or more) of the heat flux at the top of the transition re-

gion should reach the 105 K level,

3.2.2 Deduction of Values of nO and FO from the Line Data

The energy fluxes analyzed by Dupree and Goldberg were composed of
radiation from all areas of the observable solar hemisphere, including
some active regions. However, Withbroe (1970) concludes from 0S0-1V

XUV-resonance-line observations (with spatial resolution of one minute

of arc) that " ... for XUV lines formed at temperatures less than about

15



6

10" K the flux radiated by the entire solar disk is characteristic of
the equatorial quiet area.” On this basis we assume that at 106 K and
below the data in Figure 8 represent the quiet solar atmosphere. We

6

then obtain from Figure 8 (at T = T, = 10 K) the following constraint

0
on n, and FO for quiet regions:

1

log ny =3 log (—FO) + 6,06 £0.15 (28)

Withbroe (1970) has studied the limb brightening of several XUV
lines observed by OSO-IV in the quiet equatorial region, He finds good
agreement between the observed limb brightening and that computed for
a planar model transition region and lower corona having constant down~
ward heat flux in the region below the 2 X 106 K level. Withroe's
analysis of the limb brightening data allows an estimate of the down-

ward heat flux independent of the number density. Withbroe finds

log zé%y = -12.0 + 0.3 , (29)

where F is the constant downward heat flux and (¢ is the coefficient

in the thermal conductivity used in his model:

5/2

K=o T (30)

-6
For our adopted thermal conductivity, « has the value 1,0 x 10

(cgs units) at the lO6 K temperature of the upper boundary. Using

this value in equation (29), we obtain the value of F

0 which we adopt

for the quiet regions:

log (-Fy) = 6.0 £ 0.3 . (31)

16



Equations (28) and (31) define the (nO, F.) region required by the data

o)
for quiet regions. From equation (28), for log (—FO) = 6.0,

log ny = 9.06 £ 0.15 (32)

which is a reasonable value for the number density at the base of the
quiet corona,

Using the model of Withbroe (1970), Noyes et al., (1970) we have
compared the observed XUV resonance line emission from quiet regions
with that from active regions, They find that, for a fixed temperature,
the total number density and the downward heat flux in active regions
are each about five times larger than in quiet regions. For active re-

gions we therefore adopt, in place of equations (28) and (31),

log n = 1iog (-F,) + 6.76 £ 0.15 (33)

n

and

log (-F,) = 6.7 £0.3 . (34)

In Figure 9, the two (log n_, log FO) regions adopted above for

OJ

quiet regions and active -regions of the sun are compared with the lines

of constant TZF for the model. The data of Figure 8 require that

TZF <1l X 1O5 K in quiet regions, and the results of Noyes et al.

imply that T < 2 X 1O5 K in active regions. Hence, in the shaded

ZF
areas of Figure 9, the model is compatible with the XUV-resonance-

line observations,

17



L. DISCUSSION

Given that TZF < 2 X 105 K in both quiet regions and active regions,

our model yields the observational finding that FO and no increase
by the same factor from quiet regions to active regions. Moreoever,
although there is some discrepancy, the model is compatible with the
magnitudes of FO and nO required by the XUV observations of

quiet regions and active regions, These two favorable results imply
that, in a first approximation, the model is a valid description

of the structure and the energy balance of the transition region,

That is, these results imply that the dominant process in the

energy balance of the transition region is the removal of heat fiux by
radiation, and that, with respect to the overall balance of energy, the
transition region may be considered to be static and planar. The fact
that the model agrees with both quiet regions and active regions implies
that when the downward heat flux increases, the density of the atmosphere
automatically increases enough to radiate away the larger heat flux,

The preceding paragraph interprets the agreement between the model
and the data. It is also instructive to consider the disagreement
between the model and the data. It was found in Section 3.2.1 that the
data require that 25% or more of the heat flux which flows into the
transition region from the corona be absorbed in the base region. But,
as can be seen in Figure 5, the model base region is capable of absorbing
only about 20% or less of the heat flux FO which enters the model tran-

sition region, This is the cause of the discrepancy between the model

and the data in Figure 9, For there would be much better agreement

18



between the model and the data in Figure 9 if, for —FO = 1.0 X lO6 erg

L -
cm sec ~, TZF = 10 were given by nO =1.0 X 1O9 cm 3 instead of

by n, =2.0 X 1O9 cm_3. In Figure 5, we see that this would occur

if about L40% (instead of 20%) of F. were absorbed by the model base

0
region. Thus, we conclude that the discrepancy between the model and
the data in Figure 9, implies that the base region of the model absorbs
only about half as much heat flux as the base region of the actual tran-
sition region,

We expect the actual base region to radiate away more heat than

the planar model base region (see Appendix B). In Figure L4, we see

L
that for T = 1.5 X 10 K, the layer between 105 Kand T

7T is only

ZF

10 or 20 km thick, One effect of oscillations (of scale Q;103

km) in
the base region, due in part to the passage of the compression waves
which heat the corona, should be to increase the surface area of the
thin layer between 105 K and 104 K over that of the planar model, thus
making the base of the transition region a more efficient radiator than
if it were strictly planar. Another effect of the velocity fluctuations
is to increase the number density in the base region, which increases
the radiative power output density. A factor of two increase in the
amount of heat flux radiated away in the base region by these two
mechanisms is quite plausible (see Appendix B). These considerations
suggest, first, that the dominant process in the energy balance of

the base region is the removal of heat flux by radiation and, second,
that with respect to the energy balance, the base region is inherently
non-static and/or non-planar,

The preceding discussion suggests that the energy lost from the

19



base of the transition region in the form of spicule kinetic energy is
secondary to that lost by radiation. However, the spicule kinetic
energy may still be derived from the downward heat flux as suggested

by Kuperus and Athay (1967). If, for a given heat flux F., the number

OJ
density Ny is too low, the point (no, FO) in Figure 9 will lie to the
left of the TZF = 101'L K line where the model is unable to radiate away
all of FO. In this case, we expect the atmosphere to react by in-

creasing nO until FO can be radiated away. This suggests that

the excess heat flux would go into raising material at the base of the
transition region to higher levels. Spicules occu¥ over the boundaries
of the supergranulation cells where the convective motion of the cells
has concentrated the magnetic field. The magnetic field fans out above
the boundaries and funnels the downward flowing heat into regions over
the cell boundaries, giving the supergranule boundary region heat flux
FO which is larger than the average value for quiet regions (Kopp and
Kuperus, 1968). This suggests that. spicules are the manifestation of
the atmosphere attempting to maintain an increased density over the
supergranule boundary regions. The transient character of spicules
suggests an overstable situation in which the density is alternately

higher or lower than the value required to balance the inflowing heat

with radiative losses.
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APPENDIX A: THERMAL CONDUCTIVITY IN THE TRANSITION REGION

For the purposes of our model, we need an estimate of the thermal
conductivity as a function of temperature which differs from the actual
conductivity by less than a factor of two. The temperature range of the
transition region is from 1OLL K, where hydrogen is nearly completely
neutral, to 106 K, where hydrogen is essentially completely ionized.
Since the solar atmosphere is composed of about 90% hydrogen by number,
the thermal conductivity of the transition region is approximated with
sufficient accuracy by the thermal conductivity of partially ionized
hydrogen in the temperature range from lOLL K to 106 K.

It was assumed, in computing the radiative energy losses and the
degree of ionization in the model, that all excitations and ionizations
of the hydrogen atoms are collisional, and all recombinations and de-
excitations are radiative. We also assume this condition in estimating
the thermal conductivity. Under this condition, only the thermal kine-
tic energy of the electrons, protons, and hydrogen atoms contributes
to the heat conduction; the energy of excitation and ionization of the
hydrogen atoms does not contribute.

The thermal conductivity of partially ionized hydrogen due to the
transport of thermal kinetic energy has been computed by Devoto (1968)
from accurate but rather complicated kinetic theory. It appears that
his computed values should approximate the actual conductivity with an
accuracy of the order of 10%. The curves of Figure 10 have been ob-
tained from Devoto's table of the conductivity as a function of tempera-

T 7

-2
ture at constant pressure of 10 , 107, and 10 times 1,013 dyne cm
(1.013 dyne cm—2 = 10_6 atm). None of these curves can be taken for

2l



the thermal conductivity of the transition region for the following two
reasons. First, the conductivity computed by Devoto obviously depends
on the pressure, and the pressures adopted in Devoto's computations are
much larger than the pressure of about 0.2 dyne e 2 (Athay, 1969) in
the transition region. Second, the conductivity depends on the degree |
of ionization. In computing the degree of ionization, Devoto assumed
local thermodynamic equilibrium. In this case, the degree of ionization
depends on the pressure; an increase of pressure at constant temperature
causes a decrease in the degree of ionization, But in the transition
region, under the condition of collisional excitation and ionization,

and radiative recombination and de-excitation, the plasma is not in

local thermodynamic equilibrium; the degree of ionization depends only on
the temperature and not on the pressure (see equations (7), (15) and (16)).
Thus, we would not be justified in adopting Devoto's published values

of the thermal conductivity of partially ionized hydrogen for the thermal
conductivity of the transition region.

However, instead of repeating Devoto's involved and lengthy cal-
culations for the case of the transition region, we can estimate the
conductivity. of the transition region with sufficient accuracy from
Devoto's values by deriving from simple kinetic theory the manner in
which the conductivity scales with pressure and degree of ionization,
Using simple kinetic theory (Vincinti and Kruger, 1965), we can derive
the following formula for the thermal conductivity of partially ionized
hydrogen: &

K= 2 k3/2 Tl/2
L 1/2 (o
m

H HH * np/nH GHp

e

+ k. (35)
)
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Here S and Tp are "collision cross-sections' for energy exchange
between neutral hydrogen atoms, and between neutral hydrogen atoms and
protons, respectively. Since OHH and ch are of the nature of cross-
sections for binary collisions, we expect them to depend on the tempera-
ture but not on the number densities, Ke in equation (35) is the

thermal conductivity of fully ionized hydrogen, which may be computed

from the formula given by Delcroix and Lemaire (1969):

= /2 1 - -
Ky = 1.890 x 10 2 In 7 erg sec Lyl oep?t s (36)
where
2 2
o3 Ko T 2
A_‘\/T“e p12 for T < k.2 x 107 X
, (37)
1/2
2 .2 pR
3 kT b.2 x 10 >
A N 3p1/2( T ) for T > k,2 x 107 K

Here e 1is the electron charge is esu and p is the pressure. Equa-
tion (35), in conjunction with equations (36) and (37), gives explicitly
the dependence of the conductivity on the ion-neutral ratio np/nH and
on the pressure p. We use this property of equation (35) to estimate
the conductivity of the transition region from Devoto's results shown
in Figure 10.

The estimate of the conductivity in the transition region is ob-
tained as follows., UFirst, Devoto's results are used to determine func-
tions of temperature representing GHH and ch such that equation (35)

approxihately reproduces Devoto's conductivity. This is done by fitting

equation (35) to the curves in Figure 10, using Devoto's values of
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np/n and p. The good fit shown in Figure 11 is given by

H
-1h _-1/2 2
O = 9-12 X 107 T cm (38)
and
-11 , -1
Ogp = (-95 X 10 ™t en® | (39)
p
With these functions of temperature for O HE and ch, equation (35)

reproduces Devoto's conductivity with an error of not more than about
10%4. The thermal conductivity for the transition region is then com-
puted from equation (35), keeping these functions of temperature for

fo and o

HH but using values of np/n and p appropriate for

Hp’ H

the transition region., We assumed 0.2 dyne cm_2 for p, and np/nH
was calculated as a function of temperature from equations (7), (15),

and (16). The resulting conductivity curve is shown in Figure 3.
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APPENDIX B: ENERGY BALANCE IN THE BASE REGION

There are three physically distinct energy fluxes which enter into
the energy balance of the solar atmosphere: mechanical energy flux Fm’
radiative energy flux Fr’ and heat flux Fc due to thermal conduc-
tion, We assume that, on the average over a sufficiently large area
and over a sufficiently long time, each of these fluxes is vertical and
steady. In other words, we assume that on the scale of sufficiently
large horizontal lengths and sufficiently long times, the structufe and
energy balance of the solar atmosphere may be considered to be horizon-
tally uniform and steady in time, Each of the energy fluxes may vary
with height in the atmosphere by depositing thermal energy in the
atmosphere or removing thermal energy from the atmosphere, The general
form of the steady-state energy equation in terms of the energy fluxes
is

dF¥ dF dF

m Tr c _
dz+dz+dz_0. (L0)

In our model transition region we have assumed that Fm is constant,

=0, (1)

r
—-Z—>O. (42)

Under these two conditions, the energy equation requires that the down-
ward heat flux in the model transition region be absorbed by radiative

losses. Ultraviolet~resonance-line observations of the transition
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region indicate that the rate at which energy is supplied to the tran-
sition region by heat conduction from the corona and the rate at which
energy is lost from the transition region by radiation are of the same
order of magnitude (106 erg e @ sec_l) (Osterbrock, 1961; Allen, 1965;
Nikolsky, 1969). This is the observational basis for suspecting that
the dominant processes in the energy balance of the transition region
are the absorption of heat and radiative losses.

However, the comparison of our model with XUV-resonance-line data

indicates that the actual base region absorbs about twice as much heat

flux as the model base region (see section 4), This requires that

dF dF
o, _r
. dz dz
base region

dz

for the actual base region be larger than that for the model base region.

An equivalent statement is that one or any combination of the following

statements is true of the actual base region with respect to the model

base region:

(1) The actual base region is thicker than the model base region, i.e,
the volume of the actual base region is larger than that of the
model base region.

dF

(2) EEE is larger in the actual base region than in the model base

region, i.e. the radiative power output per unit volume is larger

in the actual base region than in the model base region,

dF
(3) EEE is larger in the actual base region than in the model base
dF
region, i.e. EEE > 0 in the actual base region,

Each of these statements names a possible mechanism by which the actual
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base region is able to absorb more heat flux than the model base region,
The basic nature of the energy balance of the base region depends upon
which of these mechanisms, if any, is dominant in the actual base region.
If either of the first two mechanisms is dominant, the dominant process
in the energy balance is the removal of heat flux by radiative losses as
is assumed in the model, 1If the third mechanism is dominant, the dominant
process in the energy balance is the conversion of thermal energy to
mechanical energy.

The presence of the mechanical energykflux has been neglected in the
model transition region. In the following paragraphs we estimate the
effect of the mechanical energy flux on the structure of the base region.
We find that the presence of the mechanical energy flux can reasonably
increase the absorption of heat flux in the base region through mechanisms
(1) and (2) sufficiently to account for the amount of heat flux absorbed
by the actual base region. This suggests that the dominant process in
the energy balance of the base region is the absorption of heat flux by
radiation,

The mechanical energy flux which passes outward through the transi-
tion region provides the energy input to the corona which balances the
energy losses of the corona., Energy is removed from the corona by
radiation, by the solar wind, and by inward heat conduction to the tran-
sition region, Of the order 106 erg cm—2 sec ~ is lost from the corona
by inward heat conduction, while the combined radiative and solar-wind

>

- -1
losses are only of the order 10” erg cm 2 sec (Nikolsky 1969, Kopp,

1968). Therefore, the mechanical energy flux which passes through the

s o 6 -2 -1
transition region is of the order of 10 erg cm sec .
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Most of the mechanical energy flux in the transition region is
¢arried by upward propagating compression waves (Uchida, 1967). We can
estimate the velocity fluctuations produced in the base region by these
compression waves from the formula for the energy flux carried by one-

dimensional sound waves,

F = P v2a 5 ()4'3)

m

where p is the mass density, a is the sound speed, and v 1is the .
rms velocity of the oscillations due to the sound waves in the fluid,

The sound speed is given by

- (vi1) (1)

where k 1is Boltzmann's constant, m is the mean particle mass, and
vy 1is the ratio of specific heats. In terms of the temperature T and

the pressure p = nkT, equation (43) is

1/2
m 2 .=1/2
Fm == (‘Y -E) vV p T . (45>
- . 6 -2 -1
At the base of the transition region Fm ~ 10 erg cm sec , p =0.2
dyne cm—z, T';:glOLL K, m A Ty = 10—23'78gm, and y ~ 5/3. So, from equa-

tion (45), the rms velocity fluctuation produced in the base region by

the compression waves'is
-1
v 2.0 X 106 cm sec . (46)

This estimate should be accurate to order of magnitude,
The vertical displacement Az vresulting from the velocity oscilla-

tions of a wave of period P is approximately
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Az = = Pv , (47)

=

The compression waves which carry energy to the corona are expected to
have periods of the order of 10° sec (Osterbrock, 1961), We therefore
expect that vertical displacements of the order of 103 km are produced
at the base of the transition region by the upward propagating com-
pression waves, Assuming that the compression waves are generated by
the motions of the photospheric granules, the horizontal scale of the
velocity fluctuations at the base of the transition should be comparable
to the»distance between centers of adjacent granules., The average dis-
tance between centers of adjacent granules is about 2,000 km, which
length is also representative of the horizontal dimension of vertical
oscillations observed in the chromosphere (Leighton, 1963). Thus, it
appears that the base region cannot be considered to be horizontally

3

uniform on a scale of 10~ km or less.

We are now in a position to estimate the effect of the vertical
oscillations on the radiative capacity of the base region through mecha-
nism (1>. That is, we may now estimate the factor by which the vertical
oscillations increase the volume of the actual base region over that of
the planar model base region. We have found from our model transition
region that the thickness of the base region (the distance between the
10° K level and the IOLL K level) is of the order of 10 km. Therefore,
the actual base region may be thought of as a thin surface layer coating
the 104 K "level"” which is distorted into a wavy surface by the vertical

displacements of the compression waves. The volume of the base region

is the product of its surface area and thickness, The thickness is
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approximately inversely proportional to the heat flux entering the
base region, and the heat flux entering the base region is inversely
proportional to the surface area of the base region, Hence, the frac-
tional increase Va/Vp of the volume of the actual base region over
that of the planar model transition region is approximately the square
of the fractional increase A.a/Ap of the surface area of the actual

Bl

base region over that of the planar model:

Va a
v~z - (48)

To estimate Aa/Ap’ we consider the hexagonal arrangement of
oscillating cells shown in Figure 12. Each +, -, or O marks the
center of a cell., The distance between adjacent centers is assumed
to be 2,000 km, One third of the centers, those marked +, are
assumed to be displaced 1,000 km above the mean level of the IOLL K
surface; another third of the centers, marked -, are assumed to be
1,000 km below the mean level; and the remaining third of the centers,
marked O, are assumed to have no displacement from the mean level of
the 101'L K surface. The 10u K surface is assumed to pass smoothly through
all of the cell centers. The fractional increase in the surface area of
this 1Obr K surface is conservatively estimated by the ratio of the area
of the triangle formed by the centers of any three adjacnet +, -, and
O cells to the projected area of this triangle on the horizontal plane,
An example of such a triangle, viewed from above, is shown in Figure 12.

This estimate gives

A
a



and

<

a
7o~ (50)

T

Thus, the non-planar nature of the actual base region may reasonably be
expected to increase the radiative capacity of the actual base region
over that of the planar model by a factor of 2, which is sufficient to
explain the discrepancy hetween the model and the XUV-resonance-line
data.

We next consider the increase in the radiative capacity of fhe
base region due to the effect of the mechanical energy flux through
mechanism (2), i.e. due to the increase in the radiative power output
density resulting from the presence of the mechanical energy flux. Under
the approximation of collisional excitation and ionization, and radia-
tive recombination and de-excitation, the radiative power output density
is proportional to the square of the number density. Hence, we can esti-
mate the increase in the radiative power output density by estimating
the increase in the number density in the base region due to the presence
of the mechanical flux,

We assume that on the average over a sufficiently long time the

base region is in hydrostatic equilibrium, so that

dp
35 = ~hmg , (51)
where g% is the total pressure gradient and n is the total number

density, The total pressure p is the sum of the thermal pressure

P = nkT and the turbulent pressure p

th

turb due to the velocity

fluctuations in the base region. Therefore,

dp dp
dp th turb
—— + = -
dz dz dz nme (52)
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and we may estimate the increase in the number density An over what

it would be if Piur were absent by setting

b

—QGz = "hmg . (53)

The gradient of the turbulent pressure may be estimated as follows.
Assuming that the velocity fluctuations are isotropic, the turbulent

pressure is given by

2

Y pv (5”)

W

turb

where V 1is the rms velocity of the fluctuations. Assuming that v is

related to F_ by equation (43), we have

1 Fm
Peurb = 37a (55)
dF
The condition E;E = 0, which we have assumed for the base region, then
gives
dpturb o Fm daT (56)
dz =~  6aT dz °

We may now estimate An, From equations (53) and (56),

An = “n ar (57)
= Bm gaT dz °
Here,
dar AT
Tz~ (58)

where AT 1is the temperature change in the base region (AT g¢105 K)
and Az 1is the vertical extent of the region of the atmosphere in

which this temperature change occurs. Due to the vertical displacements
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of the upward propagating compression waves, Az 1is of the order of

lO3 km for the temperature range of IOLL K to 105 K. Adopting Az =

103 km, AT = T = 105 K, and Fm = 1O6 erg cm»2 sec in equations

(57) and (58), we obtain
mn 1. x 1080 em™3 . (59)

This estimate is accurate only to order of magnitude, but it indicates
that the increase in the number density in the base region due to the
turbulent pressure is of the same order as the density in our model base

region (n leolo em 3

at T = 10° K) which has no turbulent pressure.
Therefore, it appears that the presence of the velocity fluctuations
could easily increase the radiative capacity of the base region as
much through density increase (mechanism (2)) as through volume in-
crease (mechanism (1)). Again, this suggests that most of the heat

flux entering the base region is converted into radiation rather than

into mechanical energy flux,
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