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Foreword

Programs and software constitute the most formal products known today since they must
be processed by actual automata. Yet this software should solve problems in many areas,
not all of which are supported by adequate scientific descriptions, let alone formalized
ones. This major challenge of software design and engineering is often taken up in two
phases which are logically distinct but can be carried out in parallel: in the first one,
a clear and truthful formalization, viz. the ‘requirements specification’, of the problem
at hand is built up; in the second one, a correct and efficient software system for the
solution is designed on the basis of that formal specification. The first phase may well
require the elaboration of adequate scientific models or theories, as close as possible to
the semantic universe of the problems considered: bias towards specific solutions is thus
usually minimized.

The present book focusses on the second phase, including the issue of correctness. The
viewpoint it adopts is that the final programs are derived from the initial specifications
through a design process which is decomposed systematically into manageable design
steps. Each such step yields (on the basis of the previous version) a new intermediate
formal version of the system under construction; the correctness of each new version is
ensured by its correct derivation from, or by a verification against, the previous one. The
composition of the records of the design steps serves as a record of the entire design
process; the latter is correct providing each step and the overall composition are correct.

This viewpoint clearly restricts the scope of software design: the problem of building
up an adequate problem description is played down; the design process is assumed to be
decomposable into well-defined steps, each of which can be validated completely and on
its own. These restrictive assumptions actually characterize ‘software design by formal
methods’ which may use property-based formalisms, such as specific logics or abstract
data types, or model-based formalisms such as function algebras, VDM, or Z. Significant
industrial applications have been developed using such precise approaches.

Each formal method supplies specific notations, from algebraic ones to graphical ones,
and specific correctness criteria, from mathematical proofs to plausibility arguments.
Since the final system version is intended for computer processing, at least that version
must be recorded on computer. The previous versions, starting with the specifications,
can be recorded mentally, on paper, or in a computer. It is of course tempting to edit
these intermediate documents with computer aid, as for very much the same reasons, was
the present foreword: adaptability and communicability can be enhanced significantly.
But then the computer aid should hinder as little as possible the suppleness and expres-
siveness provided by the use of the dear pencil and paper; it should rather improve on
these, e.g. by organized handling of substantial bodies of formal texts or by fast display of
beautiful texts. Similarly, the correctness of the design steps can also be ensured by mind-
and-paper or by mind-and-computer. Ensuring a new version is correctly designed with
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respect to a previous one is akin to proving a proposed conclusion can be derived from
given assumptions; hence, the correctness of design steps may need the proof of theorems.
Hand proofs of machine-generated texts risk becoming inhuman, or being boiled down
to proofs by trust; it is thus tempting also to support precise design steps by computer.
In fact, once computer aid enters the design process somewhere, it tends to propagate
everywhere.

The problem is to ensure this computer ‘aid’ really aids: computers must serve minds,
not conversely. Effective aid depends on the ease of using the notations associated with
a given method, on the help provided in elaborating derivations and proofs, and on the
speed. As a matter of fact, not many useful computer support systems are currently avail-
able. Moreover, most assist designers in editing rather than in reasoning, and each gener-
ally supports only one variant of one method; intellectual communication between related
methods is thus handicapped.

The work reported in the present book aims at building and using a system which
supports not only the strict verification of design steps, but also a reasonable range of for-
mal methods. Indeed, design choices and correctness arguments are often similar across
different methods. A generic system could in principle support complementary methods
in different parts, for different levels, or at different times of the same design project;
remember the mindpower required by industrial projects may exceed tens of mind/years.
This aim of genericity is shared by related projects on ‘logical frameworks’ which es-
sentially focus on theorem proving; little research on generic support systems is carried
out for precise and scalable software design. The present book guides us in an unchar-
tered ocean where navigation could become active and attractive. A much needed chart
should indicate reasonable boundaries for the domains of human ideas and for the areas
of mechanizable arguments.

The results reported herein must be seen as careful observations from a scientific ex-
periment rather than as definitive, indisputable answers. They certainly provide valuable
contributions in areas as varied as logical foundations, syntactical context-sensitivity, exe-
cution of specifications as prototypes, interactive proof generation, organized composition
of formal texts, efficient recording and accessing of such texts, pleasant mind-computer
interface, support of specific methods and of specific system designs. Each of these issues
deserves a book or a project of its own; many alternatives can be imagined at various lev-
els. The originality and importance of the present work is in presenting an entire system
approach which integrates all these aspects consistently and which already proves usable,
albeit with some initial sweating.

A number of related systems are under experiment, for instance the generic logical
frameworks for theorem proving. All experiments on such systems must benefit from one
another, so that a gradual consensus emerges on the basis of the best technical character-
istics. It is an essential merit of the present book to be indeed a remarkably substantial
step in this crucial direction of scientific cooperation.

Michel Sintzoff



Preface

Formal methods bring mathematical precision to the development of computer systems.
This book describes the outcome of a project which designed and built a support tool for
formal methods such as VDM. The tool is known as mural and is so named because it was
developed jointly by (the Computer Science department at) Manchester University and
(the Software Engineering Division at SERC’s) Rutherford Appleton Laboratories. The
major component of mural is an interactive proof assistant; another component helps with
the creation of formal specifications and designs. Work on the animation of specifications
is also reported.

The so-called software crisis has been recognised for many years. Software develop-
ment is claimed to be unpredictable and often results in products which are ‘bug ridden’.
In fact there is no reason to confine the criticism to software: the task of developing any
major digital system often appears to be beyond the methods employed by its developers.
‘Formal methods’ are seen as one way of bringing order and precision into the devel-
opment of systems where errors cannot be accepted lightly. The importance of formal
methods is becoming widely recognised. Brian Oakley, who was Director of the UK
Alvey Programme, is quoted as saying:

. . . the main achievement of the Alvey Software Engineering Programme
is the success with which ‘Formal Methods’ from the academic world have
been pulled through to industrial use. The implications of this achievement
are difficult to overestimate, for these Formal Methods are the route to much
better software writing, and the economic consequences will be considerable
– on a par with those of the revolution in civil engineering in the last century.

The industrial relevance of one particular formal method, VDM, can be gauged from the
series of CEC-funded international symposia [BJMN87, BJM88, BHL90].

The term ‘formal methods’ embraces the use of precise notation in specifications, and
verification in design, of computer systems. Such precise specifications employ mathe-
matical notation extended to make it easier to present specifications of computer-related
concepts like programs. These extensions are given a precise semantics in terms of more
basic mathematical concepts. Examples of such specification languages are ‘Meta-IV’
(the specification language of VDM) [BJ78, Jon80], ‘Z’ [Hay87, WL88, Spi89, MN89],
‘Larch’ [GHW85], COLD-K [Jon88], VVSL [Mid90] and RSL (the specification lan-
guage of the RAISE project) [HH90]. Having a formally-based specification language
makes it possible to convert the claim that an implementation (or even a design) satisfies
a specification into the statement of a mathematical theorem. Proof of such a theorem
establishes satisfaction for all cases. Examples of formal development methods with doc-
umented proof obligations include VDM [BJ82, Jon80, Jon90c] and RAISE [BG90].

There are, however, many real obstacles in the way of an organisation which wishes
to apply formal methods. The greatest obstacle is certainly changing the approach of both
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managers and engineers because – in an industry as young as computing – few have been
exposed to a systematic engineering approach to the design of computer systems. A major
commitment to education is the only way to overcome this obstacle. The lack of standards
is also a brake on the adoption of formal methods although work is now underway within
both BSI and ISO towards a standard for VDM.

One of the consequences of the lack of standards has been the limited availability of
support for formal methods. Of all of the supposed inhibitors to the wider use of formal
methods, this is the most over-estimated! Although this book is about the provision of
such support tools, it is worthwhile trying to identify the real needs if only to avoid the trap
of assuming that the appearance of tools will, of itself, result in the widespread adoption
of the methods which they support. Large specifications, such as [BBH+74, Ped87] have
been handled with nothing more powerful than a text processing system. This historical
fact is not to be seen as an argument for under-provision. In fact, relatively simple parsers
and type checkers (e.g. ‘SpecBox’ [BFM89] for VDM or ‘fuzz’ for Z) certainly detect
many simple errors in specifications. Furthermore, they help minimize the dangers of
what is undoubtedly the most difficult task with formal specifications: errors are far more
likely to creep in during changes to a specification than during its initial creation. A
system to support formal methods must therefore provide tools to enter and type check
specifications.

Millennia of mathematics, and even a century of formal logic, show that proofs can
be constructed with pencil and paper. Given today’s technology, it is not difficult to
become more productive at a full-screen editor, if only because of the ability to insert
lines in proofs. This is especially true of so-called ‘natural deduction’ proofs because
of the way they grow from the outside boxes to fill in the internal lines. Providing it
is done conscientiously, the process of constructing even an outline proof should detect
most errors in the statement of a supposed theorem because of the way it cross-checks
the original claim (an obvious example is the way that, in proving that the body of a loop
preserves an invariant, the invariant provides a sideways look at the purpose of the loop;
such an alternative point of view is likely to uncover any error in coding the body).

But the formal development of computer systems can involve large specifications and
many proofs of considerable size. In business environments, requirements are likely
to change part way through development (cf. [Leh89]). Appropriate support tools can
greatly improve the productivity of engineers who are employing formal methods. The
project which is reported in this book addressed the provision of such tools.

This book has been produced by revising a collection of the papers which were written
during the project. They have been edited to make a more coherent text and material has
also been specifically written for this book. In some places, this gives rise to repetition;
this has been left in the hope that the reader can read separate chapters independently of
one another. A good overview of the work can be obtained by reading Chapters 1–3, 6,
7 and 11. Chapters 1 and 2 are introductory. The main component of the mural system
is a proof assistant – this is described in detail Chapters 3 to 6 of this book; Chapters 7
and 8 describe the work on a VDM support tool (VST); and Chapter 9 describes a novel
approach to the animation of specifications. Chapters 10 and 11 are again relevant to all
components of mural : the former describes some applications and the latter draws some
conclusions and sets out further research goals.

A glossary of VDM notation is given in Appendix A and one of terms is included in
Appendix B; Appendices C and D contain VDM specifications. Appendix E looks far
beyond the current project to a vision of a possible future.
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The mural system is available for both research and commercial use; it is written
in Smalltalk’80 and requires a large workstation to run. Details of how to obtain mural
are available from Dr. Richard Moore, PEVE Group, Department of Computer Science,
Manchester University, M13 9PL, U.K. In addition to this book, an introductory video
and a ‘User Guide’ are available.
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the four main authors took responsibility for editing the whole work and all authors read
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Chapter 1

General introduction

This chapter describes the context in which the scientific work reported in later chapters
was undertaken. After a general description of formal methods, VDM is used as an ex-
ample to make the sort of tasks involved in formal development more precise. Section 1.3
outlines the overall project in which the work on formal methods was undertaken. The last
section in this chapter deduces a number of requirements for the support of the theorem
proving process. Chapter 2 offers an introduction to the mural system itself.

1.1 Formal methods
Before focusing on formal methods for the development of computer systems, it is worth
looking at what the adjective ‘formal’ indicates when applied to notations and proofs.
To be called formal, a notation must have some understood meaning or semantics. For
example, in the logic of propositions, the expression A∧(B∨C) depends in a precise way
on what the identifiers A etc. denote. Exactly how such meaning can be defined need not
be discussed here. The important fact is that a claim that the expressions A∧ (B ∨ C) and
A∧B∨ A∧C have the same meaning is, in any given logic, either true or false.1 Unlike in
what computer scientists call ‘natural languages’, expressions in a formal language have
a formal semantics which can settle disputes about their intended interpretation.

One might then expect that a formal specification language for computer systems
should be such that the precise meaning of any particular specification can only be dis-
puted through ignorance. This expectation can be fulfilled. But, without the additional
bonus of being able to reason about such specifications, the cost of their construction
might be hard to justify. Fortunately, formal specification languages, at least for sequen-
tial computer systems, are also tractable in the same way as logic notation: proofs can be
constructed.

The essence of what makes a proof formal is that its steps rely only on symbol ma-
nipulation. Consider the claim made above about the two propositional expressions. One
half of what needs to be proved is that the second expression can be deduced from the
first. This can be written as a sequent A∧ (B ∨ C) ` A∧B ∨ A∧C. One rule of deduc-
tion about ∧ is that from a conjunction either of its conjuncts can be deduced. Thus both
A∧ (B ∨ C) ` A and A∧ (B ∨ C) ` B∨C are valid steps in a proof. An entire proof of the
required result can be built from such simple steps. More remarkably, any true statement

1Of course, in classical logic it is true; as it is in VDM’s LPF – see below; but the symbols like ∧ could
be used for totally different purposes in other languages.
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in propositional logic can be proved using a small repertoire of basic rules.
Rather than imbed proofs in text, it is possible to make them more readable by dis-

playing them. In the style known as ‘natural deduction’ the required proof is

from A∧ (B ∨ C)
1 A ∧-E(h)
2 B ∨ C ∧-E(h)
3 from B
3.1 A∧B ∧-I(1,h3)

infer A∧B ∨ A∧C ∨-I(3.1)
4 from C
4.1 A∧C ∧-I(1,h4)

infer A∧B ∨ A∧C ∨-I(4.1)
infer A∧B ∨ A∧C ∨-E(2,3,4)

Proof that and distributes over or (one
direction)

In this proof, steps 1 and 2 are shown as being justified by a rule known as ‘and elimina-
tion’ (∧-E). It can be expressed by a deduction rule

∧-E
E1∧E2

Ei
1≤ i≤ 2

Such rules are really schema for an infinite set of possible deductions. If known (proven)
expressions can be found to match the hypotheses above the line, then a conclusion which
matches what is written below the line is valid. The matching process in this instance
links E1 with A and E2 with B ∨ C. Thus line 2 of the proof is justified by eliminating the
left conjunct from the overall hypothesis of the proof.

A more interesting rule is that which facilitates the elimination of disjunctions. This
can be thought of as providing a way of reasoning by cases. The rule is

∨-E
E1 ∨ E2; E1 ` E; E2 ` E

E

The final conclusion of the boxed proof above uses this rule with E1 substituted by B, E2
by C, and E by A∧B ∨ A∧C. Notice here that, as well as an expression B ∨ C which is
needed as a hypothesis, two subsidiary proofs are required. To apply the or-elimination
rule, the facts that B ` A∧B ∨ A∧C and C ` A∧B ∨ A∧C are required. In the given
proof, these are shown by the inner boxes 3 and 4. The required proofs for these two
boxes are easy to complete. Step 3.1 follows from the hypothesis of box 3 and the already
proven line 1 by the and-introduction rule (∧-I).

∧-I
E1; E2
E1∧E2

The conclusion of box 3 follows from the rule of or-introduction

∨-I
Ei

E1 ∨ E2
1≤ i≤ 2

The key point about the proof is that each step is mediated by a rule whose application
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can be completely checked by symbol manipulation. There is no room for debate about
whether a formal proof does or does not follow the rules.

In passing, it is also worth mentioning that the steps of such a proof can be understood
either forwards from the hypotheses to the conclusion or backwards from the goal to sub-
goals. In fact, it is frequently useful to attempt both directions when trying to discover
a proof. It is explained below that the freedom to work in any order was a major design
goal of the mural proof assistant.

Having established a benchmark of ‘formality’, the topic of formal methods can be
explored more carefully. It is claimed above – and the claim is illustrated in the next sec-
tion – that specification languages exist which deserve the adjective ‘formal’. Is it then
possible to prove that a program satisfies a specification? Under certain assumptions the
answer is yes. The programming language itself can be regarded as a formal language be-
cause it has a precise semantics. In an ideal world, this semantics is given by something
like the definition of ALGOL 60 in [BJ82]; at the other extreme it can be given by the
code of the compiler. In practice, neither of these texts would be usable in a proof and
what is needed is a series of proof rules for program constructs which are designed in the
same spirit as those for logics. The strongest assumption then – under which programs are
proven to satisfy a specification – is that the implementation (compiler2 and machine) re-
flect the proof rules used in such proofs. There is also an assumption of practicability: the
size of programs for which post facto proof is practical is severely limited. Methods like
VDM respond to this observation by offering ways of decomposing a design into stages
which can be separately justified. This has the additional advantage that errors made early
in design are detected long before running code is created. In traditional software devel-
opment, such errors might well be detected only when the code is available for testing.
Since ‘scrap and rework’ is a major cause of lost time in software development, carefully
applied formal methods such as VDM can actually improve the productivity of the devel-
opment process. One further caveat about proving facts about programs is in order: what
is (theoretically) possible is to show that one formal text – the program – satisfies another
– the specification; this can never prove that the specification describes the system desired
by some user.

There are, within the formal approach to system development, three more-or-less dis-
tinct3 paradigms; implementations can be developed by:

• iterative specification, design, and verification;

• program transformation; or

• constructive mathematics.

VDM [Jon90c] is taken as the principal example of the first paradigm in this book.
The early Floyd/King style of verification condition generation leads to proof obliga-
tions called ‘verification conditions’. These are, however, open to the criticism [Cra85] –
when applied post-facto – that it is often hard to relate the verification conditions to the
program. Methods of ‘data reification’ and ‘operation decomposition’ in VDM provide

2The unavoidable reliance on a compiler is the reason that so much of the early work on formalization
focussed on defining programming languages – see [McC66, JL71, Jon79b].

3Of course these paradigms overlap, and it could be argued that the first and the third are different
aspects of the same paradigm, but such arguments do not concern us here – the point is that they all involve
formal reasoning. Proof obligations arise in each of these paradigms.
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many instances of proof obligations which are made intelligible to the user by having the
steps of development convey the structure of the correctness argument.

The ‘program transformation’ approach is typified by CIP [CIP85, B+87]. The basic
idea is to transform inefficient – but clearly correct – ‘implementations’ into runnable
programs. A transition from recursive functions to iterative procedures is an example of
such transformations. But many transformations have associated applicability conditions
which give rise to proof obligations when used.

The most direct use of formal reasoning is in the ‘constructive mathematics’ paradigm.
Specifications are recast as statements that an implementation exists; and a ‘program’ is
extracted directly from a constructive proof of the claim. NuPRL [C+86] is an example
of a system supporting this paradigm.

1.2 VDM development
In order to provide more specific examples of the sort of proofs which are required in
the formal development of software, an outline of parts of VDM is given. Appendix A
provides a glossary to VDM notation. For a fuller, and more pedagogic description of
VDM the reader is referred to [Jon90c].

1.2.1 Specification
A VDM specification describes the behaviour of a system in terms of the operations which
can be performed by the system. The meaning of these operations is specified by pre- and
post-conditions. Pre-conditions describe under what circumstances the system is required
to perform and post-conditions describe what function is to be performed. In very simple
systems, it is sometimes possible to describe the behaviour by considering only inputs
and outputs; most interesting systems also have a state which reflects the effect of ear-
lier operations. In VDM, pre-conditions define which input and initial state combinations
must be handled by an operation while post-conditions relate inputs and initial states to
outputs and final states. In general, post-conditions are shorter than constructive algo-
rithms to achieve the desired result. Moreover, the use of abstract objects makes even
more dramatic abbreviation possible by allowing a specification to be written in terms of
objects which match the application rather than the intricacies of the final implementation
machine.

The notion of state is then central to a specification in VDM. If one were to be de-
scribing a system4 which handled a collection of signals (Sig is the name of the set of
these objects), one might define the (abstract) state (Abs) as

Abs :: poss : Sig-set
curr : Sig-set

inv (mk-Abs(p,c))4 c⊆ p

Here the sets of possible (poss) and current (curr) signals are stored as fields of the
composite object Abs; furthermore, the data type invariant constrains any valid object
mk-Abs(p,c) ∈ Abs to have its c set contained in its p set.

As has been claimed, VDM offers a formal language (sometimes known – in order
to distinguish it from the method – as ‘Meta-IV’): its expressions can be expanded into

4This system is a simplified view of the reactor protection example which is studied in Chapter 10.
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standard mathematical ones. It is convenient here to present a partial expansion since
this is necessary to present specifications to the mural system. The state Abs can then be
defined via Abs0 as follows

Abs0 :: poss : Sig-set
curr : Sig-set

Abs = {a ∈ Abs0 | inv-Abs(a)}

inv-Abs :Abs0→ B
inv-Abs(a) 4 curr(a)⊆ poss(a)

For most systems that are specified in VDM, there are many operations affecting the
same state. These operations represent the external interface of the system. They are
gathered together with the state into a module. The state itself is considered to be hid-
den within the module and can only be manipulated by the operations. Here, only one
operation is given. Furthermore, in order to minimize the discussion of VDM’s module
construct, its specification is given in a way which ignores some of the sophistication of
VDM.5 An operation (ADD) which adds a new signal to the field curr within the state
could be specified

ADD (new:Sig)
ext wr a : Abs
pre new ∈ poss(a)
post curr(a) = curr(↼−a )∪{new}∧poss(a) = poss(↼−a )

The post-condition relates the fields of the initial state ↼−a to those of the final state a; the
pre-condition invites the developer to ignore cases where the new signal is not in the poss
field of the initial state (a here).

Paradoxically, one test of a specification language is whether it can be used to write
nonsense! VDM’s pre- and post-conditions can be used to specify operations which can-
not be built. But one can make mathematically precise the claim that this has not hap-
pened. An operation is satisfiable if for any possible starting condition (as given by the
pre-condition) there is a possible state and result which satisfies the post-condition. For
the current example, this can be written in the predicate calculus as

∀new ∈ Sig,↼−a ∈ Abs ·
pre-ADD(new,↼−a ) ⇒ ∃a ∈ Abs ·post-ADD(new,↼−a ,a)

This is the first example of a proof obligation from VDM. Its proof is straightforward
and is not pursued here but it is worth noticing the way in which the data type invariant
(inv-Abs) expands for the differing quantifiers

5The ADD operation could be specified as follows

ADD (new:Sig)
ext rd poss:Sig-set,

wr curr:Sig-set
pre new ∈ poss
post curr =↼−−curr∪{new}
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∀new ∈ Sig,↼−a ∈ Abs0 ·
inv-Abs(↼−a )∧pre-ADD(new,↼−a ) ⇒

∃a ∈ Abs0 · inv-Abs(a)∧post-ADD(new,↼−a ,a)

Satisfiability proof obligations are a check on the internal consistency of a specification.
For complex systems, a user might use the mural proof assistant to provide proofs for
those proof obligations which are automatically generated by the VST. Another sort of
proof which might be undertaken before the process of design begins is to prove properties
about combinations of operations. This can, to some extent, ameliorate doubts as to
whether the formal specification does describe a system whose behaviour will be accepted
by users. Chapter 9 of this book describes an alternative approach to the animation of
specifications.

1.2.2 Reification
Development in VDM proceeds by data reification (making more concrete) and/or opera-
tion decomposition. In order to illustrate the sort of proof obligation which arises during
developments, a simple step of reification of the Abs state is considered. The poss set is
represented by a sequence (without duplicates) posl; the curr set is represented by a list
curl, of the same length as posl, which contains Boolean values – a true value in curl
indicates that the corresponding element of posl is considered to be in the set 6

Rep0 :: posl : Sig∗

curl : B∗

Rep = {r ∈ Rep0 | inv-Rep(r)}

inv-Rep :Rep0→ B
inv-Rep(r) 4 len posl(r) = len curl(r)∧ is-uniquel(posl(r))

is-uniquel :X∗→ B
is-uniquel(l) 4 ∀i, j ∈ inds l · i 6= j ⇒ l(i) 6= l(j)

In VDM, the precise relationship between Abs and Rep is normally7 documented by a
‘retrieve function’ which maps elements of the latter to elements of the former. For the
simple example in hand this is

retr-Abs :Rep→ Abs
retr-Abs(r) 4

mk-Abs0(elems posl(r),{posl(r)(i) | i ∈ inds posl(r)∧ curl(r)(i)})

6Again VDM offers the more compact notation

Rep :: posl:Sig∗

curl:B∗

inv (mk-Rep(pl,cl))4 len pl = len cl∧ is-uniquel(pl)

7Chapter 9 of [Jon90c] does, however, describe the use of the more general rules presented in [Nip86,
Nip87]
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The direction of this function is important. As can be seen in this case, there can be
more than one representation for each element of the set of abstract states. This is typical
of steps of reification where representations become more intricate and redundant as the
constraints of the target machine and goals of efficiency are considered.

There is a need to check that the retrieve function is defined over all elements of its
domain. Showing the totality (over Rep) of retr-Abs is not difficult but the reader should
note the way in which the definedness of the expression {posl(r)(i) | i ∈ inds posl(r)∧
curl(r)(i)} depends on the invariant inv-Rep.

Experience in large scale applications of VDM has shown that the adequacy proof
obligation is a cost-effective check on design steps of reification. It is observed above that
there can be more than one element of Rep for each element of Abs; adequacy requires
that there must be – at least – one! Formally, for the step of reification considered here

∀a ∈ Abs · ∃r ∈ Rep ·a = retr-Abs(r)

Here again, expansion showing the invariants explicitly is revealing

∀a ∈ Abs0 · inv-Abs(a) ⇒ ∃r ∈ Rep0 · inv-Rep(r)∧a = retr-Abs(r)

Only because a(∈ Abs0) is restricted by inv-Abs can representations be found (consider
mk-Abs0({a},{a,b})). Whereas inv-Abs being the antecedent of an implication makes the
task easier, inv-Rep is conjoined to the consequent and therefore checks that the designer
has not inadvertently ruled out needed representations. The adequacy proof obligation
corresponds to one’s intuition; experience shows that in non-trivial steps of reification it
identifies mistakes early in the design process; it is inexpensive in the sense that only one
proof is required for a complete reification step.

Once this overall check on a design step has been performed, it is time to consider
each of the operations. In this illustrative example there is only one operation (ADD)
shown on the abstract state and an operation which should exhibit the same behaviour on
Rep can be specified.

ADDR (new:Sig)
ext wr r : Rep
pre ∃i ∈ inds posl(r) ·posl(r)(i) = new
post ∃i ∈ inds posl(r) ·

posl(r)(i)= new∧posl(r)= posl(↼−r )∧curl(r)=modl(curl(↼−r ), i, true)

modl (l:B∗, i:N1,v:B) r:B∗
pre i≤ len l
post len r = len l∧ r(i) = v∧∀j:N1 · j≤ len l∧ j 6= i ⇒ r(j) = l(j)

For each such pair of abstract/representation operations there are domain and result proof
obligations. The former checks that the pre-condition of the reified operation does not
rule out any states which were required to be handled on the abstract level; formally

∀new ∈ Sig,r ∈ Rep ·pre-ADD(new,retr-Abs(r)) ⇒ pre-ADDR(new,r)

At a level of detail which would be used in [Jon90c], the proof might be written
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from new ∈ Sig,r ∈ Rep
1 from pre-ADD(new,retr-Abs(r))
1.1 new ∈ poss(retr-Abs(r)) h1,pre-ADD
1.2 new ∈ elems (posl(r)) 1.1,retr-Abs
1.3 ∃i ∈ inds (posl(r)) ·posl(r)(i) = new LIST , 1.2

infer pre-ADDR(new,r) 1.3, pre-ADD
2 δ (pre-ADD(new,retr-Abs(r))) pre-ADD
infer pre-ADD(new,retr-Abs(r)) ⇒ pre-ADDR(new,r) ⇒ -I(1,2)

Domain proof obligation for ADDR

In this proof there is only one step which is justified by an inference rule of logic: the
final step uses

⇒ -I
E1 ` E2; δ (E1)

E1 ⇒ E2

In classical logic, the ‘Deduction Theorem’ only needs the first hypothesis. VDM uses
a ‘logic of partial functions’ (LPF) – see [BCJ84, CJ91]. This variant of classical logic
was developed because of the preponderance of partial terms in proofs about computer
systems. For example, the term retr-Abs(r) in the consequent of the expanded adequacy
condition could be undefined when the antecedent is false. The rule for implication-
introduction in LPF requires that the antecedent be proved to be defined. Most of the other
steps rely on the folding or unfolding of definitions. Step 1.3 uses a lemma which would
be proved in the LIST theory. This proof actually hides some of the detail of the proof and
should be regarded as ‘rigorous’ rather than completely formal. The mural proof assistant
can be used to create fully formal proofs – such a proof of this result is about the right
size to squeeze screen dumps of mural onto the pages of this book (cf. Chapter 2).

Although it is not pursued below, the result proof obligation for ADDR is

∀new ∈ Sig,↼−r ,r ∈ Rep ·
pre-ADD(new,retr-Abs(↼−r ))∧post-ADDR(new,↼−r ,r) ⇒

post-ADD(new,retr-Abs(↼−r ),retr-Abs(r))

1.3 The IPSE 2.5 project
The work described in this book was part of the IPSE 2.5 project which was funded by
the UK Alvey directorate. The project ran from October 1985 to March 1990. The overall
list of collaborators in the project was STC, ICL, Dowty, Plessey, British Gas, Manchester
University and SERC (RAL). Of these, Manchester University and Rutherford Appleton
Laboratory were the ‘academic partners’ responsible for the work described in this book.
The people involved included Juan Bicarregui, Jen Cheng, Ian Cottam, David Duce, Neil
Dyer, Bob Fields, John Fitzgerald, Julie Haworth, Jane Gray, Cliff Jones, Kevin Jones,
Ralf Kneuper, Peter Lindsay, Richard Moore, Lockwood Morris, Tobias Nipkow, Brian
Ritchie, Michel Sintzoff, Mark van Harmelen, Chris Wadsworth, and Alan Wills.

The overall IPSE 2.5 project set out very ambitious objectives (see [DDJ+85] for the
project proposal) to integrate formal methods support with tools which covered famil-
iar industrial objectives for a project support environment like version control and project
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management. The project stalled on this level of ambition and it was decided to split it into
a series of ‘themes’ two of which were to support formal reasoning. The academic part-
ners in the project concentrated on the formal reasoning support. The industrial partners
worked on providing support for the processes involved in the commercial development
of software systems. The principle means underlying such provision was the development
of an approach described as ‘process modelling’. An overview of this aspect of the project
is given in [Sno89, War90].

The main effort of the academic partners has been on the construction of a generic
proof assistant. It became clear during the project that the industrial partners were not
going to provide a formal methods environment which would exercise the proof assis-
tant and it was decided that the academic partners had to create an example specification
support tool which would make it possible to input specifications and generate proof obli-
gations. Since the main purpose was to create useful (software engineering) tasks for
the proof assistant, it was considered acceptable to generate a tool which was specific in
a number of ways. For example, an obvious decision was to support only VDM. The
specification support tool is therefore known as the VDM Support Tool (VST): it is far
less generic than the proof assistant. In fact, because the whole mural project has been
built on Smalltalk’80, much of the VST code would be re-used if another specification
language were to be supported.

1.4 Proof assistant requirements
Based on the original project proposal [DDJ+85], a series of ‘concept papers’ were writ-
ten which set out the requirements for different aspects of the IPSE 2.5 project. The
concept paper for formal reasoning [JLW86] contains a detailed rationale for the research
which led to mural ; a published overview of this material with an intermediate project
report is given in [JL88]; this section provides only a sketch of the main requirements. It
must be realized that, because of various pressures, not all of the project objectives were
met (cf. Chapter 11).

The VDM proof obligations in Section 1.2 are specific to the development in hand. It
is also desirable to develop ‘theories’ (see below) which can be re-used across many devel-
opments. Such theorems are more general than those for a specific program. Furthermore
there is sometimes a need for even more general results such as justifying (against a de-
notational semantics) the rules which generate proof obligations. If a very high degree of
confidence is required in the correctness of proofs they ought to be checked by a computer
program. As is obvious from the discussion of formality in Section 1.1, it is not difficult
to write a program which checks that all steps of a formal proof are justified by stated in-
ference rules. The snag is that completely formal proofs are at such an excruciating level
of detail that they take enormous effort to prepare. The natural question to ask is whether
a computer can be programmed to assist the process of constructing such proofs. There
have been attempts to build automatic theorem provers. In general, automatic discovery
of proofs is theoretically impossible; in practice, systems like that described in [BM79]
have proved very difficult to steer. The obvious compromise is to find a balance where hu-
man intuition guides an interactive program which performs mechanical tasks smoothly.
To maximise this synergy, the system must offer a more inviting environment than pencil
and paper. One might think that this was not difficult, but a survey at the beginning of
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the project8 showed that users viewed most systems as something to wrestle with once a
proof had been planned by hand. Even recently, the authors of [RvH89] describe their use
of EHDM thus

One of us broke the published proof of Lamport and Melliar-Smith down
into elementary steps, while the other encoded these in EHDM and persuaded
the theorem prover to accept the proofs. . . . All this work was done by hand,
and only cast into EHDM and mechanically verified towards the end.

A large part of the problem results from the fact that, in existing systems, the machine
usually dictates (to greater or lesser extent) how the proof proceeds, and when – as often
occurs – it leads down an obscure path, the user is left to work out what is happening and
how to get back on the right track.

It is currently the case that very few proofs are written completely formally. There
are a number of reasons for this. It must be clear that a comparison between proofs in
mathematics – where what is provided is no more than a plan for a proof – and comput-
ing can be confusing. Many proofs required in program development are basically long
and somewhat tedious. Rather than recording a brilliant insight, the proof is intended to
cross-check that no details have been overlooked in a design. The sheer amount of detail
involved renders machine support and formal verification essential.

Given this view of the sort of proof to be created, mural has to genuinely help with
proof construction. A synergy of man and machine is required in which each performs
the tasks to which it is best suited. The human guides the proof (based on insight into the
reasons for belief in its truth); the machine makes faultless mechanical steps together with
(constrained) searches. A proof assistant has to be designed so that the human, rather than
the program, is in control of the proof creation. The key requirement is that the formal
reasoning tools of IPSE 2.5 facilitate proof ‘at the workstation’ rather than the machine
being a challenge one faces after having planned a proof.

If proving that programs satisfy specifications is hark work, one is naturally prompted
to see if the work can be re-used. An obvious example of the reuse of work is to employ
the same module in more than one system. An overall project support environment can
facilitate such reuse and there is here a clear need for formal methods because of the
central role of specifications in such re-use. There are, however, severe limitations to the
impact of the reuse of modules in standard programming languages: most modules are so
specific that they are of use in at most one system.

A requirement which we considered crucial was to support the gathering of results
into ‘theories’. As seen in [Dah77, Jon79a, Hay89, Möl91], the development of ‘theories’
presents one of the major hopes for getting formal reasoning more widely used. Such
theories become one way of establishing ‘levels’ in proofs: a detailed proof at one level
becomes a simple inference rule at another. The use of such derived rules was seen as one
of the essential ways of obtaining higher-level proofs in mural .

The need for generic formal reasoning tools has been alluded to above. A key area
where the need for genericity was recognised from the beginning was that of logics. The

8One of the first steps taken towards writing a set of requirements for the proof assistant was to experi-
ment with theorem proving systems developed by others. To a large extent, we were able to obtain copies of
such systems and import them to run on our own machines (e.g. work with Iota is reported in [All86]). The
overall conclusions of the survey were published as [Lin88]. (See also [Kem86] – which has only recently
become available to us – in which two of the key goals for ‘next generation verification systems’ are the use
of graphics interfaces and the development of reusable theories.) The impression gained was that machines
were not being used well in the support of formal reasoning.
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framework provided enables users to instantiate mural for a wide range of logics. The
process of going from generator to generated system should be one of parameter instan-
tiation, in contrast to writing (procedural) programs. There is, however, a further re-
quirement: the generated systems should not be significantly more difficult to use than
hand-constructed ones.

We decided to stop short of the sort of searching implied in automatic theorem prov-
ing. We did not believe, in any case, that automatic theorem proving is what was needed
in IPSE 2.5 . In particular, it seemed clear that the paradigm ‘write code plus assertions
then do verification condition generation’ is unworkable even for quite small programs –
see [Cra85]. At the same time, conducting proofs interactively very soon becomes impos-
sibly tedious without some automated aids. There is a need to capture and import relevant
automated tools. Some data types have decision procedures which, although often very
costly (exponential), are worth implementing. Certainly, it has proved worthwhile to have
a simple checker for propositional calculus; other examples might include finite lists and,
possibly, Presburger arithmetic.

The aim to create a system in which the insight of the user as to why a result holds is
used to steer proof construction puts the emphasis on interaction. It is important to realize
that an incomplete proof is an object of interest. In fact, a proof is of interest while it is
incomplete; once proved, only the statement of the theorem is needed for most purposes.
The user might pursue different avenues until a proof is found. Keeping track of these
threads and facilitating movement between them is essential. When the proof is finally
completed there is the problem of ‘garbage collecting’ in a sophisticated way. Many
interaction styles were considered (see [CJNW83, CJN+85, CJN+86, JM88])9 before that
implemented in mural was finally chosen.

In a useful instantiation of mural , there are likely to be very many applicable infer-
ence rules and tactics. Derived rules for the logic and underlying data types will also be
present and, along with tactics and basic inference rules, will often be specific to certain
theories. This leads to the problem of displaying such rules and tactics, since users cannot
be expected to hold them all in their minds. Another (major) challenge is how help can
be provided which displays only the applicable rules at the current (sub-)goal.

It should be clear from the above that UI considerations (of generated systems) are
crucial to the success of the formal reasoning. A distinction can be made between surface
and deep UI issues. The UI is designed so that the (generated) system is more like a helper
than a master. It must, on request, show what needs to be done rather than try to dictate
the order in which the user must work. There must also be alternative ways for a user (or
different users) to view the status of an ongoing proof. Multiple views of different parts
of proofs must be possible consistently and naturally across the whole of the UI.

It is essential that it be possible to project different – orthogonal – views of formal
objects. The Veritas proof trees [Han83] are a nice test case for what should be possible.
In general, it must be possible to view objects at different levels of detail.

It is clear that the user of any complex system will make mistakes. The effect of
erroneous input and the control of its removal required serious study. A related need is
the ability to invoke any system subroutines from the UI (e.g. substitution). We should
even accept that it might be worth simplifying a formula with some (test-case) values
before trying to prove that it holds.

9Even at the stage of the Muffin prototype [JM88] has a formal specification of the system – cf. Chap-
ter 6.
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The requirements for mural reflect the training of the people who are likely to be using
the formal reasoning tools. Such users are likely to be expert programmers who have
received training in formal methods: users cannot be assumed to be mathematicians by
training. The tools mural provides are intended to expedite the proof process and, together
with more education in formal reasoning, will help introduce these harder concepts to
‘typical’ users.



Chapter 2

Introduction to mural

This chapter attempts to give a general overview of the whole of the mural system by
working through the development described in Chapter 1. It should be noted, however,
that, whilst most of what’s contained herein is the truth (and where it’s not the appropriate
confession appears), it is by no means the whole truth – not only has much detail been
omitted but the example development has been specifically chosen to make it possible to
skip over, or even ignore completely, some of the more esoteric features of the system.
These are largely covered in the more detailed descriptions of the separate components of
mural to be found in Chapters 3 to 8.

2.1 General introduction
The mural system consists of two parts, a VDM support tool and a proof assistant. Both
components were themselves specified in VDM (see Appendix C for the specification of
the proof assistant) and together they provide support for the construction and refinement
of VDM specifications and for the proof of the associated proof obligations. In addition,
some research work was done on the symbolic execution of specifications, seen as a means
of increasing the specification writer’s confidence in the initial formal specification by
providing a way of ‘animating’ that specification, and on the basis of this a prototype
system was built (see Chapter 9). This prototype was never developed sufficiently for
integration with the other components of mural , however.

The mural interface is based around a series of tools. Each tool occupies a separate
window and provides a means of creating, inspecting and interacting with the different
types of object within the system. Use of a tool generally proceeds via a series of opera-
tions like selecting an item from a list of possible items, selecting an action from a menu
of possible actions, pressing a “button” to indicate a choice between two alternatives, etc.
etc. Most of the interaction is performed with the mouse, though some facilities (e.g.
naming of identifiers, use of parsers) clearly require keyboard input1. The system tries
to be as free as possible both by placing no restriction on the number of tools that can
be active at any time and by allowing a task started in one tool to be set aside while still
incomplete and the focus of attention to be switched to another task in a different tool.
The basic philosophy of the system is that it enforces consistency constraints but permits
and records incompletenesses. Thus, for example, it is possible to prove a given result

1Further details of the design of the UI can be found in Chapter 6.
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using some lemma without first being forced to prove the lemma, and the result is then
proven modulo the lemma being eventually proven.

The top-level access to both the proof assistant and the VDM support tool is provided
by the store tool (Figure 2.1). Access to the proof assistant is via the right-hand side of
this tool, whilst its left-hand side provides access to the VDM support tool.

Figure 2.1: The Store Tool

2.2 The proof assistant
The proof assistant essentially provides a way of creating and storing mathematical the-
ories hierarchically such that information stored in one theory can be inherited by other
theories. A list of (the names of) all the theories currently stored is displayed in the store
tool, and new theories can be added or existing ones displayed, renamed or removed from
there.

A theory is built or edited with the help of the theory tool. This lists the components
of the theory around the edge and provides a central area for displaying and editing these
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components. Figure 2.2 shows the theory tool for propositional LPF2 which will be used
for illustration throughout the beginning of this chapter.

Figure 2.2: The Theory Tool for Propositional LPF

A theory has three main components: a signature, a set of axioms and a set of rules.
The signature records the declarations of the symbols which can be used to construct
valid formulae in the theory, whilst the axioms record the ‘primitive’ properties of these
symbols, that is those properties which are accepted as being true without proof. Addi-
tional properties of the symbols which do require proof are represented by the theory’s
rules. Rules having a complete proof can be thought of as derived rules, those having an
incomplete proof as conjectures.

Symbols can be declared as ‘primitive’, in which case their declaration simply records
their arity (the number of arguments they expect), or they can be defined in terms of

2Logic of Partial Functions. See [BCJ84].
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other symbols by giving the formula representing that definition. Thus, for example,
the constants ¬ (not) and ∨ (or) are primitive constants in propositional LPF, having
declarations (1,0)3 and (2,0) respectively. The constant ∧ (and), on the other hand, is
defined in terms of ¬ and ∨ via:

∧ 7→ ¬(¬ [[e1]] ∨ ¬ [[e2]])

The expression placeholder [[ei]], i = 1,2 represents the ith (expression) argument of the
defined symbol ∧ (you can think of the definition as a∧b 4 ¬(¬a ∨ ¬b) if you prefer –
the placeholders simply represent arbitrary values of a and b). The symbol ∧ thus expects
two (expression) arguments according to this definition.

Axioms and rules represent valid logical deductions in mural . In general they consist
of a set of hypotheses and a conclusion and are to be interpreted as a statement that their
conclusion is a direct logical consequence of their hypotheses, alternatively that if all their
hypotheses are, or can be proved to be, true then their conclusion is, or can be proved to
be, true also.

In mural axioms and rules are written with their hypotheses and conclusion respec-
tively above and below a horizontal line. Thus, for example, the axiom ∨-I-right (‘or
introduction on the right’) of propositional LPF is written as:

∨-I-right
A

A ∨ B

and effectively states that A ∨ B is true if A is true.
Axioms and rules can also have sequents as well as expressions4 amongst their hy-

potheses. A sequent consists of a set of premises, each of which is an expression, and an
upshot, which is also an expression, and is generally written

premises ` upshot

The axiom ∨-E (‘or elimination’) in propositional LPF contains sequent hypotheses:

∨-E
A ∨ B, A ` C, B ` C

C

Here the interpretation is that the conclusion C is true if A ∨ B is true and if C can be
shown to be true by assuming first that A is true and second that B is true. The premises of
each sequent thus represent additional local hypotheses which can be assumed to be true
when attempting to show that the sequent’s upshot is true.

Actually, axioms and rules are considerably more powerful than the above might have
implied as the symbols A, B and C appearing in the examples don’t stand for specific
objects but instead represent any object, that is they can themselves be complex expres-
sions. In mural -speak they’re metavariables5 and the axioms ∨-I-right and ∨-E in fact
represent valid deductions for any expressions A, B and C.

Generally axioms are only needed to express the primitive properties of primitive
symbols – all properties of defined symbols are usually provable and thus appear as rules.

3The 1 represents the number of expression arguments, the 0 the number of type arguments. More about
expressions and types later, but for the moment just ignore types.

4For a full description of how to construct expressions in mural see Section 4.2 or the full formal
specification in Appendix C.

5There are also type metavariables which stand for any type, but we’ll ignore those for now. They’ll
crop up soon enough anyway in Chapters 3 and 4.
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Thus, for example, the standard introduction and elimination properties for the symbol ∧
appear as (derived) rules in mural when ∧ is defined in terms of ¬ and ∨ as above:

∧-E-left
A∧B

B

∧-E-right
A∧B

A

∧-I
A, B
A∧B

These are proved from the definition of ∧ and the axioms for the primitive constants ¬
and ∨. As an example, the proof of the rule ∧-I is shown in Figure 2.3.

Figure 2.3: The Proof of ∧-I
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The proof assistant is extensible in that a user can at any stage add new theories to the
store using the store tool or new symbol declarations, axioms and rules to an existing the-
ory using the appropriate theory tool. This latter is particularly important as it means that
the reasoning power of the system can be increased by adding (and hopefully proving!)
more and more powerful rules. These can then be used in attempting to prove yet more
powerful rules, and so on.

One rule that might be added to the theory of propositional LPF is the ∧∨-dist rule
we’ve already met in Chapter 1:

∧∨-dist
A∧ (B ∨ C)

(A∧B) ∨ (A∧C)

This can be added to the theory either by structure editing a template rule or by simply
typing the required expressions into the template and invoking the parser. Its proof can
then be attempted with the help of the proof tool.

A proof consists of a set of hypotheses, which can include both sequents and expres-
sions, a list of lines and boxes, and a conclusion which is also a line. A line consists of
an expression and a justification of that expression in terms of some deduction applied to
preceding lines, boxes and hypotheses. A box has the same components as a proof except
that its hypotheses must all be expressions. The hypotheses and conclusion of a proof
should be the same as those of the rule it purports to prove, and the proof is said to be
complete if and only if its conclusion has been shown to be a direct logical consequence
of its hypotheses.

The proof tool supports five different kinds of justification, though justification by the
application of a rule is by far the most commonly used. It also supports three distinct
modes of reasoning, namely forward, backward and mixed reasoning. These are best
illustrated by returning to the example and showing how the proof of ∧∨-dist might be
constructed in mural .

When the ∧∨-dist rule is added to the theory of propositional LPF a template proof is
automatically attached to it. This is shown in Figure 2.4. The hypotheses and conclusion
of this proof are the same as those of the rule, and it has no lines or boxes.

The bold-face (null!) justification <Justif> indicates that the justification of the con-
clusion line is incomplete6. Bold-face line numbers, on the other hand, indicate knowns
of the proof, that is lines which have been shown to be direct logical consequences of the
proof’s hypotheses. Currently the only known is the hypothesis h1 itself!

The first step in the construction of the proof might be to apply the ∧-E-left rule to
the hypothesis h1. This can be done using the justification tool, a sub-tool of the proof
tool which essentially supports the construction of a single justification at a time.

The justification tool allows the user to designate some subset of the lines, boxes and
hypotheses of the proof as local assumptions and some line of the proof as a local goal and
to attempt to justify the local goal by some valid deduction applied to a set of lines, boxes
and hypotheses including all the local assumptions. Additional lines and boxes which
don’t appear amongst the local assumptions but which are needed as assumptions in order
to make the deduction valid will be called ancillary assumptions. Cases where a local goal
is designated but where the set of local assumptions is empty are instances of backward
reasoning and correspond to the reduction of the local goal to subgoals. Cases in which no
local goal is given and in which no ancillary assumptions are necessary constitute forward

6A bold-face justification might also indicate that the validity of the justification has not been checked.
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Figure 2.4: The Template Proof for ∧∨-dist

reasoning. All other cases are instances of mixed reasoning.
Justifications built using the justification tool are only actually incorporated into the

proof when the user presses an ‘update proof’ button within it. The justification tool thus
provides a means of exploring the consequences of different sequences of actions before
the actions are actually performed. In this way, the user might investigate the effect of
changing the local assumptions, the local goal, the rule being applied, or indeed try to use
a different type of justification altogether before selecting which seems to be the ‘best’
combination. In each case the tool will show both any necessary ancillary assumptions
and, in cases where no local goal is designated, a new conclusion. When the user chooses
to update the proof, the ancillary assumptions will be added to the proof as new unjustified
lines and boxes. In addition, either the local goal will be justified by the justification just
constructed or the new conclusion will be added to the proof justified by that justification,
whichever is appropriate.

In our simple example the user will select the hypothesis h1 as the single local as-
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sumption and no local goal will be designated. Selecting the ∧-E-left rule from the list
of available rules will then cause the justification tool to display the expression B ∨ C
as a new conclusion. This will be added to the proof as line 1, justified by applying
the ∧-E-left rule to the hypothesis h1, when the proof is updated (see Figure 2.5). Note
that the line has a bold-face line number, indicating that it is a known of the proof.

Figure 2.5: The Proof for ∧∨-dist after first step

This sort of procedure is fine in simple cases where we already know which rule
we want to try to apply, but if we have no idea then trying all possibilities could be
somewhat time-consuming. To help with this case, the justification tool has a built-in
pattern-matching facility which the user can invoke. This causes the tool to search a user-
controlled subset of all potentially applicable rules to find ones which have hypotheses
matching each of the local assumptions and whose conclusion similarly matches the local
goal, if any. Selecting the new line 1 as the single local assumption and the conclusion
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of the proof, line c, as the local goal and invoking this facility shows that there is only
one rule which could possibly be used to try to justify the conclusion line from a set of
assumptions including line 1, namely the ∨-E rule7.

Figure 2.6: The Proof for ∧∨-dist after second step

Selecting this causes the justification tool to display two ancillary assumptions, in fact
the two sequents

B ` (A∧B) ∨ (A∧C)

C ` (A∧B) ∨ (A∧C)

These appear as boxes when the proof is updated, the premises of the sequent forming

7Assuming that the theory of propositional LPF only contains its axioms and the introduction and elim-
ination rules for ∧, that is!
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the hypotheses of the box and the upshot of the sequent the conclusion of the box. The
proof after this step is shown in Figure 2.6. Note that the conclusion line does not have
a bold-face line number as its justification depends on unproven assumptions, namely the
two boxes 2 and 3 just added8.

A series of similar manipulations results in the complete proof shown in Figure 2.7.

Figure 2.7: The Complete Proof for ∧∨-dist

2.2.1 Advanced topics
So far we’ve only considered building a simple proof by a series of applications of rules.
In fact the proof assistant is much more powerful than this in many ways.

8A box is known when its conclusion is known.
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Other kinds of justification
The proof assistant supports four other types of justification in addition to justifica-
tion by the application of a rule:

justification by application of a sequent hypothesis
Sequent hypotheses can be used in justifications in a similar way to rules ex-
cept that no substitution for their metavariables is allowed. Thus, for example,
the sequent hypothesis A ` B may be used as a valid justification of the line B
from the line A as in

n A
n+1 B by seq hyp A ` B on n

but would not be a valid justification in any other case.

justification by unfolding a definition
When a line in a proof contains an expression in which defined symbols occur,
the definitions of those symbols may be expanded. The line with the expanded
definition is justified by unfolding the definition on the other line, as in the ex-
pansion of the definition of ∧ in

n A∧ (B ∨ C)
n+1 ¬(¬A ∨ ¬(B ∨ C)) by unfolding from n

justification by folding a definition
The reverse of the above, that is the replacement of an expanded definition by
its contracted form. Note that the system helps with the construction of both
this and the previous kind of justification by highlighting the subterms of the
expression which are foldable or unfoldable, whichever is appropriate.

justification by oracle
An oracle is essentially a piece of raw Smalltalk code which is attached to
a theory and which can decide whether or not a particular deduction is valid
in that theory. Oracles are based on the axioms of the theory but don’t make
use of them in any real sense, so care has to be taken to ensure that oracles
remain in step with changes to the axioms9. There’s actually not much we
can do to enforce this automatically, just as there’s no way of enforcing that
you don’t build a theory with an inconsistent set of axioms, unfortunately.
However, there’s currently no interface to allow general users to add oracles
to the system so you have to make do with the one that’s there. By an amazing
coincidence, this is one for propositional LPF! Using this, all the hard work
expended on that wretched proof of ∧∨-dist could have been avoided and the
proof could have been done in a single step! (see Figure 2.8).

Multiple proof attempts
If you get stuck whilst trying to do a proof you might like to set it aside and try a
different approach. The proof tool supports this by allowing multiple attempts at a
proof to coexist. One attempt is designated the main attempt and this is the one with

9In principle there would be nothing to stop one writing an oracle which simply returned ‘true’ for
all possible inputs. This would, of course, make all proofs fairly straightforward, but could be said to
compromise the soundness of the system somewhat!
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Figure 2.8: The Proof for ∧∨-dist using the Oracle

which the proof tool interacts. However, you can at any stage make new attempts,
either as copies of existing attempts or as new template proofs, and you can switch
the designation of the main attempt at will.

In-line lemma creation
If you’re in the middle of a proof and feel that some inference would be best sep-
arated off as a lemma you can do this in-line by simply designating which lines,
boxes and hypotheses are to form the hypotheses of your new lemma and which
line its conclusion. You can then use the newly-created lemma immediately to
build the justification you want in your current proof without having to go off and
prove the lemma first. The proof assistant thus supports a notion of rigorous, as
opposed to fully formal, proof – rules are only fully formally proved if none of the
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justifications in the proof appeal to unproven lemmas10.

Naturally, the proof tool also provides a facility whereby all unproven lemmas on
which a proof depends can be found. It also keeps track of the dependency rela-
tionship between rules induced by this facility and doesn’t allow circularities in this
dependency relationship to develop.

Tactics
So far we’ve only considered the process of building a single justification at a time.
However, mural also provides a tactic language, which allows users to write tactics
and attach them to theories, and a tactic tool, another sub-tool of the proof tool, for
running them.

Tactics effectively provide a means of encoding and parametrizing commonly used
proof strategies; for instance, a tactic might be written which steps through a list of
rules and attempts to apply each rule in turn somewhere in the proof. In this way it
is possible for a tactic to perform many steps of a proof. However, it is also possible
to make a complete mess of a proof with tactics, for instance by asking a tactic to
apply a rule that is always applicable as often as it can11. For this reason the tactic
tool copies the current main proof attempt before it runs the tactic and then works
on the copy. It also displays some information as the tactic executes. If things do
go awry you can always stop the execution and throw the copied attempt away.

Removal of garbage
When (the main attempt of) a proof is complete, the proof tool offers a garbage
collection facility which goes through the proof and throws out any redundant lines
and boxes, that is lines and boxes which are not crucial to the logical completeness
of the proof. It also throws out all other proof attempts.

2.3 The VDM support tool
The VDM support tool provides facilities for creating and storing specifications and reifi-
cations between specifications in VDM12. Related13 specifications and their associated
reifications are grouped together as developments, which are added, accessed, renamed
and removed via the store tool (see Figure 2.1). The left-hand column of the store tool
displays a list of (the names of) all the developments currently stored in the system.

A development is built using the development tool, which lists the specifications and
reifications making up a particular development and allows new ones to be added and old
ones to be displayed, renamed or removed. Figure 2.9 shows the development tool for the
development described in Section 1.2, which will be taken as the example development
throughout the remainder of this chapter.

A general VDM specification consists of a set of type definitions, a set of constant def-
initions, a set of function definitions, a state definition (optional), and a set of operations.
These are built or edited with the help of the spec tool (see Figure 2.10). The various

10Note that this appeal might be direct or indirect, e.g. all lemmas used in the justifcations in the proof
itself might have complete proofs but these proofs might appeal to unproven lemmas, etc.

11I once created a line in a proof with 14 ¬ ’s in it by applying the ¬¬ -I rule in exactly this way!
12Actually a subset of BSI standard VDM.
13If only in the mind of the user!
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Figure 2.9: The Development Tool

components of the specification are listed down the left-hand side of the tool under the
appropriate headings, whilst the right-hand side of the tool provides an area for displaying
and editing them. The various components are constructed by structure editing a template
object of the appropriate kind.

The abstract specification in our example development contains three14 type defini-
tions (Abs0, Abs and Sig) and one operation (ADD). These are shown displayed in the
spec tool in Figure 2.10. Note that there is no need for a separate function definition
describing the invariant inv-Abs on Abs as this is included as part of the definition of
Abs. If the form of the other declarations contains the least element of surprise, however,
you are advised to go back and read Section 1.2 before continuing. On the basis of this,
you should be able to work out for yourself what the components of the corresponding
concrete specification look like15.

Having built the two specifications, you have to return to the development tool to
designate the concrete specification as a refinement of the abstract specification. This
is done by selecting the two specifications in the left and right portions of the tool as
appropriate and adding a reification. You can then use the reif tool and the op model
tool to build the retrieve function16 and to designate the operation ADDR in the concrete
specification as the concrete form of the abstract specification’s operation ADD.

14Note that an alternative formulation would have been to make Abs the state and not a type definition.
15If not you might as well give up now!
16Again, depressingly similar to that given in Section 1.2.
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Figure 2.10: The Spec Tool

2.4 Reasoning about developments
It is, of course, perfectly feasible to reason informally about a development as it stands
simply by using your knowledge of what its various components ‘mean’. Indeed, you
probably do so, even though you might not think of it in those terms, when you’re writing
each specification and reification, at least to the extent of trying to convince yourself
that the whole thing hangs together properly. On the other hand, it is very difficult to
reason formally about it in its current form as we have no formal language in which to
do so. We thus have to somehow extract the ‘meaning’ we use in our informal reasoning
in a form which does admit formal reasoning. This facility is provided in mural in the
form of a mechanism whereby a specification or a reification in the VDM support tool
can be ‘translated’ automatically into a theory supporting reasoning about it in the proof
assistant17.

One thing we have to consider here is that the components of a particular development
are built up not only out of user-defined type, constant and function definitions but also
out of the ‘primitive’ constructors of the specification language itself. Thus, for example,

17But a reification can only be translated if the specifications it reifies have already been translated.
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in order to be able to reason about a VDM development we need to be able to reason about
things like sets, sequences, integers, etc. which are part of the VDM language. Of course,
these objects are common to all VDM developments and can thus be factored out. This is
done in mural by making use of the proof assistant’s inheritance hierarchy on theories and
introducing the notion of an instantiation of the proof assistant to a particular specification
language: theories describing the properties of the primitive data types of the specification
are built and one theory, which will inherit from all these, is designated as the theory of
the specification language. Theories generated by translation from a specification support
tool18 are then placed in the theory hierarchy so that they inherit from the theory of the
appropriate specification language. Theories of specifications are currently placed so that
they inherit directly from this theory, theories of reifications so that they inherit directly
from the theories of the specifications they reify.

Returning to our example, translation of the abstract specification gives rise to a the-
ory called abs theory in (a VDM instantiation of) the proof assistant. This is shown in
Figure 2.11. Its signature contains declarations of symbols representing the types and
invariants defined in the specification (Abs0, Abs, Sig and inv-Abs) and of symbols repre-
senting auxiliary functions implicitly associated with the composite type Abs0, that is a
symbol mk-Abs0 representing the mk-function and symbols s-poss and s-curr19 represent-
ing the selector functions for its fields. With the exception of Abs and inv-Abs, which are
translated to a defined type constant and a defined constant respectively (see Figure 2.11),
all these symbols are translated to primitive symbols in the signature. Thus, Sig and Abs0
both have arity (0,0), s-poss and s-curr both have arity (1,0), and mk-Abs0 has arity (2,0).

The translation process also generates axioms describing the properties of these sym-
bols. There are two axioms for each of the selector functions (s-poss and s-curr) of Abs0,
a formation axiom and a definition axiom. The former states the typing information asso-
ciated with the particular selector function, whilst the latter defines which component of
the composite object it selects. For the s-poss selector function their explicit forms are:

poss-formation
a:Abs0

s-poss(a):Sig-set

poss-definition
mk-Abs0(p,c):Abs0

s-poss(mk-Abs0(p,c)) = p

Note that the colon ‘:’ represents type assignment – the expression a:Abs0 is thus to be
read ‘a is of type Abs0’ or ‘a is an Abs0’. In words, the formation axiom states that if a
is an Abs0 then s-poss applied to a is a set of Sigs, whilst the definition axiom states that
s-poss selects the first component of any composite object of type Abs0 (in this axiom
mk-Abs0(p,c) simply represents the most general form of an object of type Abs0). The
axioms describing s-curr are unremarkably similar.

The properties of the composite type Abs0 are similarly described by two axioms, a
formation axiom and an introduction axiom. This time, the formation axiom states that

18Although the current version of mural only supports developments in VDM, the proof assistant is suffi-
ciently generic that it could be used in conjunction with tools supporting a wide range of other specification
languages in exactly the same way.

19Since the BSI standard for VDM hadn’t been fixed as we neared the end of the project, we were forced
to adopt what seemed to be the most stable part of what passed for it around the end of 1989 when building
our VDM support tool. Inevitably, this turned out to be not as stable as we had hoped, and this notation has
now been changed. When the standard finally settles down it’s fairly easy to change these names, but until
then it seems a bit futile. In the meantime, our apologies for the anachronism.
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Figure 2.11: The Theory Tool for the Abstract Specification

you can build an object of type Abs0 by applying the mk-function to component objects
of the appropriate type (i.e. two sets of Sigs):

Abs0-formation
p:Sig-set,c:Sig-set
mk-Abs0(p,c):Abs0

whilst the introduction axiom states that the selector functions and the mk-function are
inverse, in the sense that if we smash an object of type Abs0 to pieces using the selector
functions then combine the pieces using the mk-function we get back the original object:

mk-Abs0-introduction
a:Abs0

mk-Abs0(s-poss(a),s-curr(a)) = a
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There are no axioms describing Abs and inv-Abs since these are translated to defined
symbols20.

Other components of the theory arise from translating the operation ADD. This pro-
cess adds defined symbols pre-ADD and post-ADD to the signature21 and additionally
generates the satisfiability proof obligation22 associated with the operation (see Sec-
tion 1.2) as a rule23. This rule has the form:

ADD-satisfiability
new:Sig,↼−a :Abs0,pre-ADD(new,↼−a )

∃a:Abs ·post-ADD(new,↼−a ,a)

The proof assistant can then be used to attempt to prove this rule via a series of steps like
those outlined in Section 2.2.

By a similar process we can generate the theory corresponding to the concrete specifi-
cation and discharge the proof obligation stating the satisfiability of the operation ADDR.

Having constructed the theories of our two specifications we are now in a position to
try to prove that our reification is valid. The relevant theory can again be constructed auto-
matically and is placed in the theory hierarchy so that it inherits directly from the theories
of the two specifications that we’ve just created. This theory has a signature which con-
tains only one symbol, the defined symbol retr-Abs corresponding to the retrieve function
in the reification, and it has no axioms24. It does contain three rules, however, namely
those stating the proof obligations associated with the reification (that is the adequacy,
domain and result obligations. See Section 1.2). Again, the proofs of these can be at-
tempted using the proof assistant. As an example, the rule stating the domain obligation
has the form

ADDR-domain-obl
new:Sig,r:Rep,pre-ADD(new,retr-Abs(r))

pre-ADDR(new,r)

Its proof is shown in Figure 2.12. Note that this proof is somewhat longer than the ‘text-
book style’ version given in Section 1.2. This is because it shows all the formal manipu-
lations performed – some ‘obvious’ steps are elided in Section 1.2.

20Actually, at the time of writing this is a lie! Abs is indeed translated to a defined symbol but axioms
are generated to describe the properties of inv-Abs. Work on the translation process is still being carried
out, however, and it is expected that inv-Abs will be translated to a defined symbol by the time you read
this. We’ll assume so here anyway, if only because it makes the proof appearing at the end of the chapter
shorter! (Translating to a defined symbol means that the definition can be expanded or contracted in a single
step using the justifications by folding and unfolding definitions – with the axiomatic approach currently
adopted each of these processes requires two steps.)

21Again a lie! But the same applies here as to the invariant (see above).
22Aka the implementability proof obligation, ADD-implementability!
23We are (deliberately!) ignoring the generation of ‘well-formedness rules’ stating that preconditions,

etc. are correctly typed here. See Section 8.2 for a discussion of these.
24More lies! But again the same applies to the retrieve function as to the invariant (see above).
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Figure 2.12: The Proof of the ADDR Domain Obligation
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Chapter 3

Instantiation

The mural proof assistant is generic in that it can be instantiated with many different
logics and theories. The user is provided with a logical frame which can be configured
to support reasoning in any number of different logics. The purpose of this chapter is to
illustrate how to instantiate mural for some common logics. It can be used to gain famil-
iarity with the proof assistant or as a kind of cookbook for people intending to configure
mural for formalisms of their own interest.

3.1 Symbolic logic in mural

The two main logics illustrated are classical predicate calculus and a logic of partial func-
tions (LPF). For both logics, many different theories are axiomatized, including the the-
ories of commonly used mathematical constructs such as sets and lists, and along the
way many subtle points and potential pitfalls are noted. The theory of VDM is given
in some detail, providing an interesting case study of what can realistically be achieved
using mural . Later sections are devoted to other powerful logics.

The chapter is addressed to all mural users, but for convenience we shall distinguish
two different kinds of user:

1. ‘the instantiator’, who configures the system so that it can be used for reasoning in
a particular formalism – by axiomatizing the basic concepts and instantiating the
underlying logic, etc.

2. ‘the verifier’, who wants assistance reasoning in a particular problem domain – say,
to validate a particular VDM specification, or to derive new properties of an abstract
data type.

The main difference between these two kinds of user is that the first is concerned with
setting up the right axiom system, perhaps from scratch, while the second is more inter-
ested in proving theorems. (In fact, the two activities cannot be separated quite so easily:
the instantiator chooses axioms at least partly on the basis of their ease of use, and the
verifier has to understand the theories provided by the instantiator.) This chapter will be
of interest to both kinds of user, but many remarks will be addressed to one over the other.

For any particular theory there are often many different possible formulations, de-
pending for example on which concepts are taken as primitive and which derived, or even
on the order in which concepts are introduced. Such distinctions may be important, espe-
cially on a philosophical or methodological level, or simply for pedagogical reasons. In
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what follows, however, the primary motivation is to illustrate properties of the mural log-
ical frame; concepts are often introduced simply to make a point, to illustrate a subtlety
or to show alternative approaches to formalization.

This chapter is not supposed to be an introduction to symbolic logic: the reader is
assumed to have at least a passing familiarity with the notions being formalized. Intuitions
about the correctness of axioms can only be gained by careful study of the semantics of
the mathematical objects involved, and understanding the problem domain well is the
only way to achieve simple, manageable proofs. The other vital consideration is choice
of formalism, but this chapter can offer only general words of advice and illustration by
example.

3.1.1 Terminology and notation
Only a brief informal introduction to the terminology and notation used in this chapter
will be given here. Formal details of the mural logical frame are presented in the ‘Foun-
dations’ chapter, Chapter 4 below.

Theories

A theory is a grouping of results that have something in common. A mural theory consists
of:

• a signature, indicating which symbols are available;

• a set of inference rules, some of which are axioms (self evident truths or assump-
tions), some of which are derived from axioms using proofs, and some of which are
merely conjectures which the user may or may not prove at some later date;

• a set of tactics, which are strategies for building proofs in this theory;

• a set of oracles, which are hand-coded decision procedures.

A logic is just a theory of special significance: logics and theories are not distinguished
in mural .

mural theories are stored in an inheritance hierarchy. Theories have a (possibly
empty) set of ‘parent’ theories from which they inherit symbols, rules, tactics and ora-
cles. Thus for example, a theory of lists might inherit results from the theory of natural
numbers which would be used when it comes to reasoning about the length function on
lists, say. Turning it around the other way, we sometimes say the child theory extends its
parents. Theories inherit from their parents, their parents’ parents, and so on. Thus in fact
a theory inherits from all of its ‘ancestor’ theories.

Signatures

Four different kinds of symbol (atoms) can be declared in a signature:

• constants, such as ‘true’, ‘∧’, ‘∈’, ‘=’

• binders, such as ‘∀’, ‘∃’, ‘λ ’

• type constructors, such as ‘N’, ‘×’, ‘-set’
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• type binders, such as dependent products

By ‘constant’ we mean functions, operators, predicates, relations, metavariables and so
on. Similarly, ‘type constructors’ covers type constants, type functions, type metavari-
ables, etc. The syntax is considerably simplified by grouping things in these ways.

As well as declaring symbols, signatures perform several other roles. Information
about how the symbol is to be displayed on the screen is stored there. The arity of con-
stants and type constructors (how many arguments they expect) is also declared there.
(Note that arities are fixed in mural .) And signatures can store definitions, such as

P∧Q 4 ¬(¬P ∨ ¬Q)

which defines ∧ in terms of ∨ and ¬ , and

∃x:A ·P[x] 4 ¬∀x:A ·¬P[x]

which defines ∃ in terms of ∀ and ¬ .

Formulae

Symbols from signatures and variables are put together to form terms, the abstract syntax
of which can be defined in Extended BNF (Backus-Naur Form) roughly as follows:

Term = Exp | Type
Exp = VSymb

| CESymb{Exp}{Type}
| DESymb VSymb‘:’Type‘·’Exp

Type = CTSymb {Exp}{Type}
| DTSymb VSymb‘:’Type‘·’Type
| ‘<’VSymb‘:’Type‘·’Exp‘>’

where {} means zero or more occurrences and symbols in inverted commas are concrete
syntax, introduced to enhance legibility.

In more detail, there are two different kinds of term: expressions (Exps) and Types
(Types). All mathematical formulae are Exps in mural syntax. Expressions are built up
from variables (VSymbs) using two kinds of combinators:

• compound (or ordinary) expressions, whereby a constant (CESymb) is ‘applied’ to
(possibly empty) lists of expressions and types, called its operands or arguments;1

• binder expressions, whereby a binder (DESymb) is supplied with a dummy variable
(the variable it binds), a type (the universe of the bound variable) and an expression
(the body of the binder expression).

Types are built up using three kinds of combinator:

• compound (or ordinary) types, whereby a type constructor (CTSymb) is applied to
expression and type argument lists;

1What mathematicians would normally call constants are compound expressions with empty argument
lists, in this syntax.
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• dependent types, whereby a dependent-type symbol (DTSymb) is supplied with a
dummy variable and two types (the universe of the bound variable and the body of
the dependent type, respectively);

• subtypes of given types, specified by giving a dummy variable, the universe over
which it ranges (a Type) and a defining predicate (an Exp).

Collectively, constants and type constructors will be called constructors. Binder expres-
sions, dependent types and subtypes will be called variable binding constructs since they
bind occurrences of their dummy variables in their bodies.

The arity of a constructor is a pair of natural numbers, the first indicating how many
Exp arguments it expects and the second indicating the number of Type arguments. So
for example, ∧ is a CESymb of arity (2,0) and -set is a CTSymb of arity (0,1).

The full syntax also allows indexed placeholders (called expression holes and type
holes) which act as formal parameters in definitions, instantiations, and so on. Thus for
example, the definition of ∧ above must actually be given to mural in the form

¬(¬ [[e1]] ∨ ¬ [[e2]])

where [[ei]] stands for the ith Exp placeholder.
That finishes our brief summary of the mural syntax for expressions and types: for

formal details see Section 4.2. Note that although mural provides a syntax for writing
types, it does not impose a type discipline: that is the instantiator’s job.

Some examples

Here are some examples from VDM to illustrate the mural approach:

• P∧Q and cons(a, l) are compound expressions, with CESymbs ∧ and cons respec-
tively;

• ∀x:Z ·0≤ x2 and λy:R · y2 +1 are binder expressions, with DESymbs ∀ and λ ; and

• N-set and A m−→ B are compound types, with CTSymbs set and map.

Note that the name and the display form of a symbol are not necessarily the same thing.
In VDM, subtypes are defined by specifying an invariant on a constructed or pre-

existing type. VDM subtypes must be given names, but our syntax provides for direct
construction, such as

EvenNumbers4 < n:N ·n mod 2 = 0 >

VDM doesn’t have dependent types, but most readers will have come across dependent
products such as

∏
n:N

< m:N ·n2 ≤ m >

consisting of functions f :N→N such that n2≤ f (n) for all n:N, and dependent sums such
as

∑
n:N1

< s:A∗ · len s = n2 >

consisting of pairs (n,s) from N1×A∗ such that len s = n2.
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Rules

Inference rules are the primary unit of reasoning in mural , covering axioms, theorems,
lemmas, conjectures and so on. An inference rule consists of:

1. a set of zero or more ordinary hypotheses

2. a set of zero or more sequent hypotheses

3. a conclusion

In Extended BNF this can be defined roughly as:

Rule = {Ohyp}{SHyp}Concl
OHyp = Concl = Exp
SHyp = {VSymb}{Premise}Upshot

Premise = Upshot = Exp

For example, the law of induction over natural numbers can be expressed as

P[0],
{n:N, P[n]} `n P[n+1]

∀m:N ·P[m]

This has a single hypothesis of each kind. The ordinary hypothesis is P[0], which corre-
sponds to the base case of the induction. The sequent hypothesis is

{n:N, P[n]} `n P[n+1]

corresponding to the induction step. (Since subscripting is not available in the mural
screen format, such a sequent is displayed on the screen as

[n]{n:N, P[n]} ` P[n+1]

Sequents are explained in detail in Section 4.3. In brief: a sequent consists of a set of
premises and an upshot, and a sequent can ‘bind’ variables, e.g. n in the above case.)
Finally, the conclusion of the rule is written below the horizontal line. The notation

P
Q

stands for the pair of rules P
Q and Q

P .

Metavariables

As the induction example above shows, mural rules can in fact represent whole schemas
of inference rules. For example, P[x] might be instantiated by

P[x] 7→ ∀y:N · x+ y = y+ x

to give a rule instance with conclusion

∀m:N · ∀y:N ·m+ y = y+m

new base case ∀y:N · 0+ y = y+ 0, and so on. P is called a metavariable, and it is a
parameter to the rule. (In fact, it is the only parameter to the rule above.) Ordinary free
variables are not allowed in rules.
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Simple proofs

New inference rules are derived from old inference rules by building a proof. Essentially,
a proof is simply a chaining together of instances of rules. For example,

A∧B
B∧A

can be derived by putting together appropriate instances of the rules

P∧Q
P

P∧Q
Q

P, Q
P∧Q

in the following way:

A∧B A∧B
B A

B∧A

For larger derivations it is more convenient to express the proof in the flattened form

from A∧B
1 A rule 1 (h1)
2 B rule 2 (h1)
infer B∧A rule 3 (2,1)

which is roughly how it is displayed in mural .
Let’s look a little more closely at the components of the above proof. It consists of:

• a single hypothesis (A∧B – implicitly labelled h1),

• a sequence of lines (labelled 1, 2), and

• a conclusion (B∧A).

Non-hypothesis lines are justified by rule instances: e.g. line 1 follows from h1 by an
appropriate instance of the first rule. The justification – on the right-hand side of each
non-hypothesis line – notes which rule is used and on which lines the justification depends
(its antecedents). The actual instantiation used is not displayed in the proof, but is stored
by mural to speed correctness checking.

Other forms of justification are possible, such as by unfolding a definition, or by
making appeal to an oracle: see Section 4.7.5 for more details. Antecedents are always
noted, by listing them in parentheses at the end of the line. There are restrictions on which
lines can be used to justify other lines, mainly to do with precluding circular reasoning:
see Section 4.7.4 for details. Roughly, justifications should only appeal to lines appearing
earlier in the proof.

Proofs with subproofs

Things are a bit more complicated when justifications involve sequents. Consider a proof
by induction for example: the induction step involves making some temporary, ‘local’
assumptions (the so-called induction hypotheses) – so we must allow for subproofs which
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have their own additional hypotheses. Such subproofs are called boxes in mural . A box
consists of a set of hypotheses, a sequence of lines and boxes, and a conclusion. Boxes can
be nested within boxes to any degree. Boxes may also introduce their own local variables,
corresponding to variables bound in sequents. In fact, a sequent is just a ‘squashed’ box.

These ideas are illustrated in the following simple proof, involving induction over
natural numbers:

from
1 0+0 = 0 + axiom 1 ()
2@n from n:N, 0+n = n
2.1 0+(n+1) = (0+n)+1 + axiom 2 (2.h1)

infer 0+(n+1) = n+1 substitution (2.h2,2.1)
infer ∀m:N ·0+m = m N induction (1,2)

The box structure of the proof is indicated by indenting and using from and infer key-
words. At the outermost level, this proof has zero hypotheses, a single line (1) and a
single box (2). Box 2 is the subproof corresponding to the induction step: it introduces
a new variable n – shown here as a subscript on the box’s label – such that n is a natural
number (hypothesis 2.h1) and 0+n = n (hypothesis 2.h2). No other assumptions can be
made about n, and its scope is restricted to box 2 and its subboxes, if it had any; in other
words, n cannot be used elsewhere in the proof outside box 2. (Similarly, lines outside the
box cannot make appeal to lines within the box.) Finally, as a notational convention, all
lines within the box are labelled with prefix ‘2.’, including hypothesis lines and subboxes,
if any.

The rule extracted from the above proof is

∀m:N ·0+m = m
Note that the main proof itself is a box, but it is not allowed to introduce variables since
rules cannot have free variables.

Figure 3.1 shows a proof of the – not very deep – fact that sets can be represented by
non-repeating lists; in symbols:

s:Set
∃l:List · elems l = s

Tactics

The interactive approach to verification can call for a considerable amount of work on the
user’s part. LCF [GMW79] and its descendants [C+86, Gor85, Pau86] showed how that
burden can be lessened by providing the user with a simple imperative language for ex-
pressing certain commonly-used proof strategies, called tactics. In technical terms, LCF
tactics are functions which reduce ‘goals’ to lists of ‘subgoals’, together with a validation
function which is supposed to build an ‘achievement’ of the goal from achievements of
the subgoals. Tactics in mural , on the other hand, operate directly on proofs, extending
them non-destructively. The mural tactic language gives the same access to basic mural
operations as is available from the user interface, in addition to imperative constructs such
as sequencing, branching and backtracking. Tactics can be parameterized, can call other
tactics – including themselves – and can even poll the user for additional information at
runtime.
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from s:Set
1 elems [ ] = {} elems axiom1 ()
2 [ ]:List [ ]-formation ()
3 ∃l:List · elems l = {} ∃-introduction (1,2)
4@a,wfrom a /∈ w, ∃l:List · elems l = w
4.1@l0 from l0:List, elems l0 = w
4.1.1 a /∈ elems l0 substitution (4.1.h2,4.h1)
4.1.2 cons(a, l0):List cons-formation (4.1.h1,4.1.1)
4.1.3 elems cons(a, l0) = elems l0∪{a} elems axiom2 ()
4.1.4 elems cons(a, l0) = w∪{a} substitution (4.1.h2,4.1.3)

infer ∃l:List · elems l = w∪{a} ∃-introduction (4.1.4,4.1.2)
infer ∃l:List · elems l = w∪{a} ∃-elimination (4.h2,4.1)

5 ∀u:Set · ∃l:List · elems l = u set induction (3,4)
infer ∃l:List · elems l = s ∀-elimination (h1,5)

Figure 3.1: An example proof.

Oracles

It would be impossibly tedious to perform all reasoning at the level of inference rules,
even with the aid of tactics. There are large classes of problems for which fully automated
solutions are feasible: decision procedures exist for classical propositional calculus (via
truth-tables), simple arithmetic, linear algebra, naive set theory, and many other theories.
Such decision procedures can be incorporated into mural as oracles.

Basically, an oracle is a procedure which, when invoked on a proof line, checks the
validity of that line in terms of its antecedents. Oracles must be hand-coded and so require
some knowledge of the internal workings of the mural software. Oracles are axiomatic,
in as much as their truth is never questioned. Their validity is entirely the responsibility of
the person instantiating the logic, and it is obviously important they be logically consistent
with the axioms of the theory in which they are placed. Instantiators are thus advised to
use this facility with great care.

Morphisms

Theory morphisms were proposed as the mural solution to inheritance with renaming and
after-the-fact inheritance (cf. Section 3.4.4) but are not currently implemented in mural .

3.1.2 Chapter outline
For the most part, the present chapter is concerned with theories, inference rules and
proofs; tactics (see Chapter 5) and oracles are only briefly touched upon.

First order predicate calculus

As its name indicates, Section 3.2 develops predicate calculus – the logic of propositions,
properties, variables and quantifiers – from a ‘classical’ point of view. ‘First order’ means
quantifiers range over sets of values and functions have fixed arities. As is well known,
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first order predicate calculus is sufficiently expressive to formalize all of mathematics.
The reader needn’t know much symbolic logic to commence reading this section, although
obviously some familiarity with the underlying concepts would help. The development
consists of a series of smaller theories introducing equality, propositional connectives,
quantifiers and conditionals (if-then-else) step by step.

Data types

Section 3.3 explores the formalization of some commonly used data types: lists, finite
sets, subtypes, cartesian products, records, etc. This is all pretty straightforward and
should be easily accessible to anyone who has completed a first course in discrete mathe-
matics. Section 3.4 is an optional section which can easily be skipped on first reading. It
looks at some slightly less straightforward techniques, such as

• extending a theory of finite sets with a notation {x:A ·P[x]} for set comprehension

• defining maps (finite partial functions) as sets of pairs

• defining lists as maps whose domains are initial segments of the natural numbers

• forming a theory of ‘abstract collections’ which generalizes the notions of sets, lists,
bags, etc.

The topics are chosen fairly much at random, and are intended to broaden the reader’s
strengths in formal reasoning.

VDM

An axiomatization of the formal software development method known as VDM [Jon86]
is outlined in Section 3.5. Since VDM uses a non-classical logic (LPF), the beginner will
get a first taste for the genericity (logic independence) of mural . We go on to discuss how
the ‘data model’ of a VDM specification gives rise to a theory in which proof obligations
must be discharged. To illustrate the ideas involved, a couple of little ‘scenarios’ are
given, namely:

• a small reification

• a validation of part of the mural specification itself

The abstract mural specification is introduced in Chapter 4, but enough of the details are
summarized here that the example should easily be understandable.

Other logics

Section 3.6 deals with some other kinds of logics, including:

• Lambda Calculus
or more precisely, the dependently typed lambda calculus

• Higher Order Logic

• Modal Logic (S4)



42 3 Instantiation

• Hoare Logic

It also discusses the propositions-as-types analogy which underlies certain other logical
frames.

3.2 Classical first order predicate calculus
In this section we build a few simple theories (‘calculi’) about different forms of reason-
ing, and then put them together to form First Order Predicate Calculus (FOPC) – a theory
in which all of mathematics can be formulated. This is not to say that FOPC is always
the most elegant or practical way of formulating all mathematical reasoning, but it has
certainly proven to be the simplest and most versatile. Almost any good book on mathe-
matical logic2 will explain FOPC and its semantics (model theory). Here we are primarily
interested in having a useful set of axioms from which we can easily build the kinds of
inference rules we’ll need for later applications.

3.2.1 Equality
As a first, very simple, example we develop a theory of equality. The essential properties
we wish to capture are the symmetry, reflexivity and transitivity of ‘=’, together with
its properties as a congruence relation (viz. that equal values can be substituted for each
other in any expression without changing that expression’s meaning). To define the theory
of equality – which we shall simply call ‘Equality’ – we shall first describe its signature
and its axioms, and then give some example derived rules; the same pattern is followed
throughout the chapter.

Signature

Because it is such a basic theory, ‘Equality’ requires no parents. Its signature can consist
simply of the primitive constant ‘=’ of arity (2,0). The symbol will be displayed infixed
between its arguments, which can be achieved simply by declaring it to have display form

[[e1]] = [[e2]]

In mural , [[ei]] stands for the ith expression placeholder; thus if the arguments to = are a
and b then the whole will be displayed as a = b.

Axioms

The properties of equality as a congruence relation can be deduced from two axioms:

1. The axiom of ‘reflexivity’

a = a
which says that any value is equal to itself (equality is reflexive). This rule has no
hypotheses.

2e.g. [Bar77, End72, GG83, Kle52].
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2. The axiom of ‘substitution’
a = b, P[a]

P[b]
which says that if a = b then b can be substituted for a in P.

Here a and b are metavariables of arity (0,0) and P is a metavariable of arity (1,0). In
future we won’t explicitly note metavariables and arities, since they are usually clear from
context.

A brief note about the mural substitution mechanism is in order here (see Section 4.2.2
for more discussion): P can be instantiated in ways which will result in b being substituted
for zero, one, or more occurrences of a in an expression. For example, four different con-
clusions can be deduced from ‘0 = 0+0’ and ‘0∗1 = 0’ by using different instantiations
of the Substitution rule: namely,

(0+0)∗1 = 0+0, (0+0)∗1 = 0, 0∗1 = 0+0, 0∗1 = 0

The instantiations in question send a to 0, b to 0+0 and P[x] to x∗1= x, x∗1= 0, 0∗1= x
and 0 ∗ 1 = 0 respectively. (In fact, there are even more possibilities if we don’t assume
a = b is matched against ‘0 = 0+0’.)

Example derivations

Here are a couple of simple derivations. As you can probably imagine, there aren’t many
mind-blowingly deep rules about ‘=’ on its own.

(1) The symmetry rule
a = b
b = a

can be derived from the axioms as follows:

from a = b
1 a = a reflexivity ()
infer b = a substitution (h1,1)

The proof has a single box comprising two ordinary lines (the ‘intermediate’ line 1 and
the main conclusion) and a single hypothesis line (h1). Line 1 has no antecedents since
‘reflexivity’ has no hypotheses.

As usual, instantiations are suppressed from display, but can be inferred by pattern-
matching: e.g. the instantiation for ‘substitution’ in the above proof is

{a 7→ a, b 7→ b, P[x] 7→ x = a}

and the rule instance in question is

a = b, a = a
b = a

The mural justification tool can find this instantiation for you by pattern matching.

(2) As a second example, the transitivity rule

a = b, b = c
a = c
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can be derived as follows:

from a = b, b = c
infer a = c substitution (h2,h1)

The reader is invited to uncover the relevant instantiation.

3.2.2 Classical propositional calculus
Let’s turn to a more expressive theory – the so-called Propositional Calculus. This is the
theory in which basic logical reasoning is formalized in terms of the so-called proposi-
tional connectives: ‘and’, ‘or’, ‘not’, ‘implies’, etc. Propositional Calculus is often given
as the first example of a simple algebra, since all propositional statements (‘formulae’)
are built up from

• ‘true’ and ‘false’ and

• primitive propositions (‘sentence symbols’)

using

• unary connective ‘¬ ’ and

• binary connectives ‘∧’, ‘∨’, ‘ ⇒ ’, etc.

The algebraic properties of these connectives were originally studied by Boole in the
mid-nineteenth century.

Various interpretations

The reader is probably aware that Boole’s interpretation of the ‘laws’ of propositional con-
nectives is not the only possible one. In fact, for some applications other interpretations
are sometimes more appropriate. For example:

• If the ‘constructive content’ of a proof or theorem is important, an intuitionistic (or
‘constructive’) logic [Pra65, C+86] should be employed – one in which the law of
excluded middle, for example, is not valid. (See Section 3.6.3 for more discussion.)

• When reasoning about partial functions or non-terminating computations, on the
other hand, it becomes important to know how to deal with ‘non-denoting’ terms,
and a three-valued logic such as LPF [BCJ84, Jon86, CJ91] might be more appro-
priate. LPF is explored in Section 3.5.1.

In this section we’ll stick to Boole’s original formulation – the so-called classical propo-
sitional calculus – since it is the most straightforward and probably the most familiar of
them all.
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Signature

Let ‘Propositional Calculus’ be the base theory (i.e., without parents) with the following
primitive constants in its signature:

• ‘true’ for truth

• ‘¬ ’ for negation (‘not’)

• ‘∨’ for disjunction (‘or’)

Their display forms are
true, ¬ [[e1]], [[e1]] ∨ [[e2]]

respectively. The following definitions will also be added to the signature:

false 4 ¬ true
P∧Q 4 ¬(¬P ∨ ¬Q)

P ⇒ Q 4 ¬P ∨ Q
P⇔ Q 4 (P ⇒ Q)∧ (Q ⇒ P)

They stand for falsehood, conjunction (‘and’), implication (‘implies’), and logical equiv-
alence (‘iff’), respectively. The usual operator precedences will be used: i.e. from highest
to lowest:

¬ ∧ ∨ ⇒ ⇔
Henceforth precedence priorities will not be given explicitly. (They will be clear enough
from context.)

Axioms

The following rules will be taken as the axioms of classical propositional calculus:

1. truth introduction:

true
2. ∨ introduction (right):

P
P ∨ Q

3. ∨ introduction (left):
Q

P ∨ Q

4. ∨ elimination:
P ∨ Q, {P} ` R, {Q} ` R

R
5. excluded middle:

P ∨ ¬P
6. contradiction:

P, ¬P
Q

The reader should consider himself/herself privileged, since the writer has graciously
provided names for the rules. Don’t get used to it – it won’t last; there’s not enough space
for such a luxury. (And to tell the truth, it’s very time consuming coming up with good
names – as you’ll find when you start to use mural yourself.)
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Example derivations

From the axioms and definitions we can build up a large collection of useful derived rules.
In what follows we shall derive the following rules from the axioms above:

false
Q

P ∨ Q
Q ∨ P

P, P ⇒ Q
Q

{¬P} ` false
P

The reader may care to try to prove each of these before looking at the solutions given
below.

(1) The rule we’ll call ‘false elimination’

false
Q

can be derived as follows:

from false
1 ¬ true unfolding (h1)
2 true truth introduction ()
infer Q contradiction (1,2)

It’s our first example of a proof involving unfolding a definition – in this case ‘false’. We’ll
denote the appropriate justification by unfolding, with the line containing the term to be
unfolded given as antecedent. In mural the index of the term being unfolded must also
be given as part of the justification; it has been ‘suppressed from display’ here (just as
instantiations are suppressed from display throughout these examples).

(2) The rule ‘∨ commutes’
P ∨ Q
Q ∨ P

can be derived as follows:

from P ∨ Q
1 from P

infer Q ∨ P ∨ introduction (left) (1.h1)
2 from Q

infer Q ∨ P ∨ introduction (right) (2.h1)
infer Q ∨ P ∨ elimination (h1,1,2)

The proof has two subboxes

from P infer Q ∨ P, from Q infer Q ∨ P

which are used to justify the sequent hypotheses of the relevant instantiation of ‘∨ elimi-
nation’:

P ∨ Q, {P} ` Q ∨ P, {Q} ` Q ∨ P
Q ∨ P
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(3) The rule ‘modus ponens’
P, P ⇒ Q

Q
can be derived as follows:

from P, P ⇒ Q
1 ¬P ∨ Q unfolding (h2)
2 from ¬P

infer Q contradiction (h1,2.h1)
infer Q ∨ elimination (1,2)

Line 1 follows from the second hypothesis by unfolding P ⇒ Q. Box 2 (or rather,
its conclusion Q) follows from the first hypothesis and the box’s local assumption by
contradiction. As for the main conclusion, note that the second sequent of the relevant
instance of ‘∨ elimination’

{Q} ` Q

holds trivially and so has no corresponding antecedent in the proof.

(4) The next example involves a new kind of justification: justification by sequent hypoth-
esis. The rule to be derived is

{¬P} ` false
P

For future reference we’ll call the rule ‘otherwise contradictory’. It’s our first example of
a derived rule having a sequent hypothesis. Here’s its proof:

from {¬P} ` false
1 P ∨ ¬P excluded middle ()
2 from ¬P
2.1 false sequent hyp 1 (2.h1)

infer P false elimination (2.1)
infer P ∨ elimination (1,2)

The sequent hypothesis is used to justify line 2.1 in the following way: when all the
premises of the sequent have been established then its upshot can be deduced.3 Unlike
justifications by rules, metavariables must be used unchanged: they cannot be instanti-
ated. Note also that the sequent hypothesis is not formally a line in the proof. Finally, on
a different point, note that one of the sequent hypotheses of (the relevant instantiation of)
‘∨ elimination’ holds trivially.

3As an informal explanation of justification by sequent hypotheses, think about how ‘otherwise contra-
dictory’ will be used in other proofs: The proof will have a box, b say, which establishes the upshot from
the premises. We could replace the use of ‘otherwise contradictory’ by a copy of the above proof, with the
contents of b interpolated into box 2 before line 2.1 (so line 2.1 corresponds to the conclusion of b) and
with the sequent hypothesis deleted. Full details of this procedure are beyond the scope of this chapter.
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Other derivable rules

The reader might care to try deriving the following rules:

P
¬¬P

{P} ` Q, {¬P} ` Q
Q

P, Q
P∧Q

{P} ` Q
P ⇒ Q

{P} ` false
¬P

P, P ⇔ Q
Q

P ⇒ Q, Q ⇒ R
P ⇒ R

Many more examples can be found in the sections below.

Remarks:

(1) Note that by the time we get to ‘otherwise contradictory’ we’re actually starting to use
some of our derived rules – in this case ‘false elimination’.

(2) (This is a slightly esoteric remark.) One of the limitations of the mural system is that
only ‘directly derivable’ rules can be derived: viz. rules which are built by fitting other
rules together.4 For an example of an indirectly derivable rule, consider

P ⇔ Q
R[P] ⇔ R[Q]

which asserts the substitutivity of equivalents. If we were working in a ‘closed system’
– one in which no further extensions could be made to the signature of the theory –
the rule could be derived by induction over the structure of possible instantiations of
R[x].5 Of course, such a proof only remains valid as long as there are no new ways of
forming propositions; each time a new predicate is introduced (with its own axioms) the
proof must be redone. But it is implicit in the requirements that mural is to be an ‘open’
system (cf. [JL88]), whereby users can add new theories without invalidating any of the
proofs that went before; hence the restriction to directly derivable rules. In practice, the

4Kleene calls these ‘[derived] rules of the direct type’: cf. p.94 of [Kle52].
5For possible instantiands of R[x] it’s enough to consider expressions formed from primitives and the

formal parameter x. (The definitions in this theory are non-recursive and hence reducible to primitives.)
The base cases of the induction would thus be

R[x] 7→ true, R[x] 7→ x

and the induction steps would correspond to

R[x] 7→ ¬R′[x], R[x] 7→ R′[x] ∨ R′′[x]

The proof follows easily from the following (directly derivable) lemmas:

true ⇔ true
P ⇔ Q
¬P ⇔ ¬Q

P ⇔ Q, R ⇔ S
P ∨ R ⇔ Q ∨ S
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restriction to directly derivable rules does not seem to be much of a hindrance: the odd
exception only proves the rule, if you’ll excuse the dreadful pun (and mangled reasoning).

Rules which cannot be derived directly must be added as axioms.

(3) As it happens, the rule
P ⇔ Q

R[P] ⇔ R[Q]

would not be a good axiom to add, since it allows complete nonsense to be deduced in
descendant theories. For example, there is nothing to stop us instantiating R[x] by ‘2+2’
to derive

2+2 ⇔ 2+2

from a trivially true equivalence such as ‘true ⇔ true’.6

A much better formulation of the rule would be

P ⇔ Q, R[P]
R[Q]

since it ‘conserves sense’. That is, the conclusion R[Q] could only be nonsense (ill-
formed) if R[P] is already nonsense – assuming of course, that P ⇔ Q is not non-
sense. To infer ‘2+2 ⇔ 2+2’ from ‘true ⇔ true’ we would already have to know
‘2+2 ⇔ 2+2’.

Note that, with the exception of ‘contradiction’, the axioms given above all conserve
sense. It follows that any rules derived from them similarly conserve sense. (‘Contra-
diction’ only gets used in arguments by contradiction, at which times it is sometimes
necessary to introduce nonsense.7) For people using this logic, this is a very reassuring
property of our formulation, since no-one wants to derive nonsense. But of course it
goes further than this: it also means that when we come to formulate new conjectures we
should be careful that they in turn conserve sense, since otherwise there will be no way of
proving them.

(4) The rule in the previous remark is a relatively innocuous example of an ill-advised
axiom. In Section 3.5.2 we give an example where a careless formulation of an axiom
leads to outright inconsistency.

(5) Readers familiar with other logical frames – such as ELF [AHM87] – might wonder

6In some textbooks (e.g. [End72]) such problems are circumvented by defining an appropriate notion of
‘well-formed formula’ (wff) and only allowing rule instances whose components are wffs. Thus e.g. P∧Q
is a wff but ‘2+ 2’ isn’t. See Section 4.3.2 for a brief discussion of the decision not to follow such an
approach.

7e.g. in the following proof the law of contradiction is used to infer the nonsensical expression 0 < 1/n
when n = 0:

from ¬(0 = n2 +2n)
1 n = 0 ∨ n 6= 0 . . .
2 from n = 0
2.1 0 = n2 +2n . . .

infer 0 < 1/n contradiction (2.1,h1)
3 from n 6= 0

infer 0 < 1/n . . .
infer 0 < 1/n ∨ elimination (1,2,3)
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why we didn’t introduce a type Prop and write e.g.

∨:Prop×Prop→ Prop

This would require first formulating a type system, to give some meaning to such a ‘decla-
ration’. (See Section 3.6.2 for a way of doing this.) But as we’ve seen, there is no need for
a typing mechanism in order to build up such a basic theory of reasoning as Propositional
Calculus. Our reasoning capabilities are being developed independently of any particular
assumptions about typing, and will be reused in many different situations.8

3.2.3 Conditionals
This section introduces a small theory which combines the theories of propositional cal-
culus and equality. Such a theory is the appropriate place to define inequality ( 6=), for
example, and to introduce the notion of the conditional constructor (if then else) for def-
inition by cases.

Signature

‘Conditionals’ will be the theory with ‘Propositional Calculus’ and ‘Equality’ as parents,
and with signature – or ‘extension signature’, to give its full name – consisting of

• primitive constant ‘ITE’ with display form

if [[e1]] then [[e2]] else [[e3]]

• the definition
a 6= b 4 ¬(a = b)

Axioms

The axioms of the theory are:

P
(if P then a else b) = a

¬P
(if P then a else b) = b

Derived rules

The reader is invited to derive the following rules:

¬(a 6= b) ⇔ a = b

a 6= a ⇒ Q

(if (P ⇒ Q) then a else b) = (if P then (if Q then a else b) else a)

(Hint: do case analysis on P and Q.)

8A closely related – but rather more esoteric – objection is that we want a ‘predicative’ system: this is
discussed further in Section 3.2.4.
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Remarks:

In some ways, adding the definition of 6= actually causes more work than it saves, at least
initially. The mural pattern-matcher does not unfold definitions, so it becomes necessary
to ‘double up’ on many rules: e.g. we’ll need a new form of the contradiction rule

a = b, a 6= b
Q

In fact, for almost every rule of propositional calculus involving negation, a corresponding
rule would need to be written in terms of inequality. Although such rules can be easily
deduced, it’s annoying to have to spend time putting them into mural (thinking of good
names for them, which theory to put them into, etc.). If a definition is used often this is a
small price to pay, but it’s worth bearing in mind when considering less frequently used
definitions.

3.2.4 Classical predicate calculus
Before we look at the theories of various data types it will be useful to build up some
machinery for reasoning about types and quantifiers. In this section we axiomatize many-
sorted classical predicate calculus.

Signature

The theory ‘Predicate Calculus’ will have ‘Propositional Calculus’ as parent, and its sig-
nature will contain

• a primitive binder ‘∀’ for universal quantification (‘for all’)

• a primitive constant ‘:’ for typing assertions, with display form 9 [[e1]]: [[t1]]

• a defined binder ‘∃’ for existential quantification (‘there exists’), with definition

∃x:A ·P[x] 4 ¬∀x:A ·¬P[x]

Intuitively,

• a:A means that a is a value of type A,

• ∀x:A ·P[x] means that P holds for all elements of A, and

• ∃x:A ·P[x] means that P holds for some element of A.

Scoping of binders

In mural , quantifier scopes are ‘as long as possible’, so that for example

∀x:A ·P ⇒ Q

should be parsed as
∀x:A · (P ⇒ Q)

9In mural , [[ti]] is used as a placeholder for the ith Type argument (cf. the use of [[ei]] in Section 3.2.1).
Note also that the CESymb ‘:’ should not be confused with the colon used as separator in the display form
of binder terms such as ∀x:A · . . . (although the similarity is obviously intended).
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Axioms

The following two rules can be taken as the axioms of classical predicate calculus (as an
extension of propositional calculus):

1. ‘∀ introduction’
{x:A} `x P[x]
∀x:A ·P[x]

which says that, if P[x] holds for an arbitrary term x of type A, then it holds for all
terms of that type.

2. ‘∀ elimination’
a:A, ∀x:A ·P[x]

P[a]

which says that, if P holds for all elements of type A, then it holds for any particular
term a which can be shown to be of type A.

The usual ‘variable occurrence side-condition’ on ‘∀ introduction’ – viz. that x does not
occur free in any assumption on which P[x] depends, other than x:A – is handled by
the treatment of variable bindings in mural . (See Section 4.3.3 for details.) Roughly, if
we suppose the sequent hypothesis is established by a box b in a proof, then x must be
introduced by box b and no other box; and mural ensures the conclusion of box b can
depend only on lines from b or enclosing boxes.

Example derivations

(1) The rule ‘∃ introduction’
a:A, P[a]
∃x:A ·P[x]

can be derived as follows:

from a:A, P[a]
1 from ¬∃x:A ·P[x]
1.1 ¬¬∀x:A ·¬P[x] unfolding (1.h1)
1.2 ∀x:A ·¬P[x] ¬¬ elimination (1.1)
1.3 ¬P[a] ∀ elimination (h1,1.2)

infer false contradiction (h1,1.3)
infer ∃x:A ·P[x] otherwise contradictory (1)

(2) Perhaps of more interest is the proof of the rule ‘∃ elimination’

∃x:A ·P[x], {y:A, P[y]} `y Q
Q

which can be derived as follows:
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from ∃x:A ·P[x], {y:A, P[y]} `y Q
1 ¬∀x:A ·¬P[x] unfolding (h1)
2 from ¬Q
2.1@x from x:A
2.1.1 from P[x]
2.1.1.1 Q sequent hyp 1 (2.1.h1,2.1.1.h1)

infer false contradiction (2.1.1.1,2.h1)
infer ¬P[x] otherwise contradictory (2.1.1)

2.2 ∀x:A ·¬P[x] ∀ introduction (2.1)
infer false contradiction (2.2,1)

infer Q otherwise contradictory (2)

Line 2.1.1.1 is justified by a sequent hypothesis which binds a variable (y). In such justi-
fications the variable can be renamed (in this case to x): see Section 4.7.5 for full details.

Variants of rules

A useful variant of ‘∀ elimination’ is the following:

a:A, {x:A} `x P[x]
P[a]

In classical logic this can be proven as follows:

from a:A, {x:A} `x P[x]
1 ∀x:A ·P[x] ∀ introduction (seq hyp 1)
infer P[a] ∀ elimination (h1,1)

In essence, ∀x:A ·P and {x:A} `x P are different ways of saying the same thing, at least
in classical logic. (In fact, the same derivation works equally well for appropriate formu-
lations of many other logics: e.g. intuitionistic logic and LPF.)

To see why the variant of ‘∀ elimination’ given in example 3 above can be useful, imagine
the following scenario:

When trying to establish goal G suppose you recognise that it would be easier to prove
a more general statement, G′ say. More often than not, G′ will be the result of replacing
(one or more occurrences of) a subterm t in G by a variable, x say. There’s no need to
prove a separate rule, however; we can use the variant as follows:

• write down – or find a line which gives – the type of t, say t:T

• use the justification tool to generate the relevant instance of the above rule
(by matching a:A against t:T and P[a] against G)

• apply the rule.

This will have the effect of opening a new subproof
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from x:T
infer G′

(with box variable x) which will be used to establish G.
Since this kind of procedure is fairly common, it could be streamlined by writing it as

a tactic. By using the facility for user input, the tactic could be designed to

• ask the user which subterm is to replaced, then

• ask which particular occurrences of the subterm are to replaced (using the ‘select
subterm’ facility), and

• if it can’t find a line in the proof which already asserts the subterm’s type, ask the
user for the type

and then do all the rest itself.

Other derivable rules

The reader is invited to derive the following rules:

∀x:A · ∀y:B ·P[x,y]
∀y:B · ∀x:A ·P[x,y]

∃x:A · ∀y:B ·P[x,y]
∀y:B · ∃x:A ·P[x,y]

(Hint: try justifying the conclusion by ‘∃ elimination’.)

∀x:A · (P[x]∧Q[x])
(∀y:A ·P[y])∧ (∀z:A ·Q[z])

∀x:A · (R ⇒ P[x])
R ⇒ ∀x:A ·P[x]
∀x:A · (P[x] ⇒ R)
(∃x:A ·P[x]) ⇒ R

Note that there is no need for a side-condition saying that x does not occur free in R since
it is enforced by the mural frame.

Remarks:

(1) Note that these axioms say nothing about whether types can be empty or not. This
question must however be resolved (say by adding an axiom ∃x:A · x = x) before rules
such as

(∃x:A ·P[x]) ⇒ R
∀x:A · (P[x] ⇒ R)

can be derived.

(2) The syntax does not allow for multiple simultaneous bindings such as

∀x:A,y:B ·P(x,y)



3.2 Classical first order predicate calculus 55

In most cases such bindings can be expressed by equivalent sequential single bindings:
viz.

∀x:A · ∀y:B ·P(x,y)
An alternative is to use pairing: viz.

∀z:A×B ·P(fst z,snd z)

(3) Although multiple simultaneous bindings do not present a serious problem from the
theoretical point of view, it is rather awkward to have to write e.g.

∀x,y,z:A · . . .

in the verbose form
∀x:A · ∀y:A · ∀z:A · . . .

Unfortunately the mural concrete syntax mechanism does not help with this problem.

(4) Note that we now have two new primitives – ‘:’ and ‘∀’ – for forming propositions.
We hinted that the meaning ‘for all elements x of A . . . ’ can be assigned to ∀x:A · . . .,
polymorphic in A. Continuing one of the remarks from Section 3.2.2, here is another
reason for not introducing a type Prop for propositions: if A is instantiated by Prop the
meaning assignment becomes circular; ∀x:Prop·means ‘for all propositions x’ – including
this one. There are foundational difficulties with such ‘impredicative’ definitions and,
since it is difficult to give them a semantics while avoiding self-reference, they are felt by
logicians to be rather unpalatable. (See Hazen’s chapter on Predicative Logics in [GG83]
for a good discussion.)

For software engineers the upshot is, you can introduce ‘Booleans’ as a type – al-
though if you’re careful you often won’t need to – but try to keep the distinction between
Boolean values (true and false, or 0 and 1 if you prefer) and propositions in mind. Some-
times it’s OK to mix the two with care (cf. Sections 3.5.2 and 3.6.5).

3.2.5 First order predicate calculus
‘FOPC’ is formed by combining the theories of ‘Equality’ and ‘Predicate Calculus’. In
fact, we’ll go slightly further than this and also include the theory ‘Conditionals’ and the
following new binder symbols:

1. The quantifier ‘there exists a unique’ can be defined by

∃!x:A ·P[x] 4 ∃x:A ·P[x]∧ (∀y:A ·P[y] ⇒ y = x)

2. The ‘unique choice’ operator ‘ι’ (iota) is a primitive binder with defining axioms

∃!x:A ·P[x]
P[ι x:A ·P[x]]

∃!x:A ·P[x]
(ι x:A ·P[x]):A

3. The Hilbert choice operator ε (for arbitrary choice) can be defined similarly, but
with ∃ replacing ∃!:

∃x:A ·P[x]
P[ε x:A ·P[x]]

∃x:A ·P[x]
(ε x:A ·P[x]):A
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(Many standard logic textbooks have explanations of these concepts.) The resulting the-
ory would be an appropriate place to store derived results such as

(∃x:A · x = a∧P[x]) ⇔ a:A∧P[a]

This finishes our formulation of FOPC. As explained in for example [Kle52], FOPC
is a sufficiently rich theory to formulate all of mathematics.

3.2.6 Rigorous proofs
In Section 3.3 a number of mathematical theories are formulated as extensions to FOPC.
We finish the current section by making a temporary diversion to explore a minor liberal-
ization of the definition of proof.

Fully formal proofs give absolute assurance that derived rules are logical consequences
of the axioms from which they are derived. In practice however, it is often not feasible to
fully derive every inference rule one would like to use. For example, in following through
the consequences of a design decision in the development of a piece of software, one
would like to leave the more ‘obvious’ truths unproven and concentrate instead on the
‘dubious’ or ‘convoluted’ (purported) truths. Candidates for ‘obvious’ truths would in-
clude arithmetic results (‘2+2= 4’), simple algebraic identities ((x+1)2 = x2+2∗x+1),
simple properties of basic data types (elems (s1y s2) = elems s1∪ elems s2), and so on.

Several mechanisms for dealing with such truths are provided in mural . Oracles can
be written to handle large classes of problems such as the above, and tactics can automate
common patterns of inference. (Of course, both these approaches still lead to fully formal
proofs.) Here we shall present a simple but effective way of breaking out of the shackles
of fully formal proof.

The solution is simply to add an ‘and-then-a-miracle-occurred’ rule of the form

Q

where Q is a metavariable which can be instantiated by any expression. Now, it would be
pretty stupid to suggest adding this rule as an axiom – obviously it would make a mockery
of theorem proving altogether! But it is useful to add it as a defined rule. (With any luck)
it should never be derivable.10 Obviously the ‘miracle rule’ should be used with some
caution, and only in places where you’re very confident it is valid – that is to say, at places
where you believe you could supply a complete proof but don’t feel it is worth your effort.
The exact circumstances are a matter for the user to decide.

Rules proven using instances of the above rule will be said to be proven rigorously.
You can find out which proofs are rigorous – as opposed to being fully formal – by asking
mural for the list of unproven rules on which this rule depends (cf. Section 4.5.2). If
the ‘miracle rule’ appears in the list you’ll know your rule is (at best) only rigorously
established. Finally, by declaring the ‘miracle rule’ to be ‘assumed’, the mural facility
for reporting the status of a rule – as proposed in Section 4.5.2 – can be used to full
advantage.

10It’s certainly not derivable in FOPC, since the latter is provably consistent. (You might ask what logic
is used to prove FOPC is consistent, but this is not the place to go into all that – see instead any good book
on mathematical logic, such as [End72].)
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Remark:

In fact, it would be better to introduce a whole set of different ‘miraculous’ rules, each
with a different number of hypotheses: viz.

H1, H2, . . . , Hn
Q

The user would choose the rule with the number of hypotheses corresponding to the
number of lines in the proof on which the desired conclusion depends (its so-called
antecedents). Hypotheses would get bound to antecedents one-to-one. In this way an-
tecedent information is maintained by mural , and any changes to the lines on which the
conclusion depends would cause the ‘miraculous’ line to be flagged as no longer being
justified, not even ‘rigorously’.

3.3 Some common data types
This section explores the theories of some commonly used (generic) data types, such as
lists, finite sets, subtypes, cartesian products and records. All the theories will build upon
‘FOPC’ as defined in the previous section: so, unless otherwise stated, it can be assumed
they have ‘FOPC’ among their parents.

3.3.1 List theory
The generic ‘list’ data type consists of finite sequences of elements from a given type.
Thus we want a theory which is equally good for lists of natural numbers as for lists of
trees, or booleans, or whatever. On the other hand, let’s suppose we don’t want to allow
lists with mixed types of elements. (This will show how naturally polymorphism can be
handled in mural .)

Signature

The signature of ‘List Theory’ will consist of

• a primitive type constructor ‘list of’ with display form [[t1]]∗

• a primitive constant ‘[ ]’ for the empty list

• a primitive constant for adding an element onto the front of a list, with display form
cons([[e1]], [[e2]])

• primitive constants for list destructors ‘head’ and ‘tail’, with display forms hd [[e1]]
and tl [[e1]] respectively

and definitions

[a] 4 cons(a, [ ])
a in s 4 a = hd s ∨ a in tl s
sy t 4 if s = [] then t else cons(hd s,(tl s)y t)

for singleton lists, list membership and concatenation of lists, respectively. (The last two
are examples of recursive definitions in mural .)
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from s:A∗, s 6= []
1 [ ] 6= [] ⇒ hd [ ]:A =reflex lemma ()
2@h, tfrom h:A
2.1 hd cons(h, t) = h hd -axiom ()
2.2 hd cons(h, t):A substitution (2.1,2.h1)

infer cons(h, t) 6= [] ⇒ hd cons(h, t):A conseq true (2.2)
3 ∀w:A∗ ·w 6= [] ⇒ hd w:A list induction (1,2)
4 s 6= [] ⇒ hd s:A ∀-elimination (h1,3)
infer hd s:A modus ponens (h2,4)

Figure 3.2: A proof of the formation rule for the ‘head of a list’ function.

Axioms

We shall take the following as axioms for ‘List Theory’:

[ ]:A∗
a:A, s:A∗

cons(a,s):A∗

cons(a,s) 6= []

hd cons(a,s) = a tl cons(a,s) = s

P[[ ]],
{h:A, t:A∗, P[t]} `h,t P[cons(h, t)]

∀s:A∗ ·P[s]
Of course, the last one is the induction rule for lists.

Derived rules

A proof for the ‘formation rule’ for head

s:A∗, s 6= []

hd s:A

is given in Figure 3.2. Note that the pattern of using induction, then ∀-elimination and
modus ponens is a very common one, and is a good candidate for a tactic. Likewise, use
of the induction rule itself could be usefully semi-automated, by writing a tactic ‘SetU-
pListInduction’ which polls the user for the subterm t and for the particular occurrences
of t in the conclusion, and then sets up P from this information. This is a good illustration
of the usefulness of an interactive tactic language, and how it can be used to customize
the user interface of mural .

Other example derivable rules are

s:A∗, s 6= []

s = cons(hd s, tl s)

s:A∗, t:A∗

sy t:A∗
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a:A, s:A∗, t:A∗

a in sy t ⇔ a in s ∨ a in t
s1:A∗, s2:A∗, s3:A∗

(s1
y s2)

y s3 = s1
y (s2

y s3)

Remarks:

(1) Note how the typing hypotheses of the formation rule for ‘cons’ ensure that only ele-
ments of the correct type are appended to lists. The cons function needs no type argument
– unlike its counterpart in strongly typed logical frames such as ELF – and thus is truly
polymorphic. Of course, there is a cost associated with such flexibility: mural does not
automatically type-check expressions. There are (at least) two good reasons for this:

• One of the goals of mural (cf. [JL88]) is to support different type structures for
different applications.

• For some applications type-checking is not even decidable.

Generally speaking, the mural approach to automated type-checking is to write a domain-
specific tactic to do as much as possible. Early experience suggests that this is quite
effective, although it adds considerably to the length of proofs. A viable alternative might
be to use an oracle.

(2) The role of typing assertions in the above formulation of list theory is roughly to
‘filter out nonsense’. An unstated principle is at work in the above axiomatization: a term
is typable if and only if it is meaningful. For example, there is nothing to stop someone
writing ‘hd [ ]’ in mural , but it’s not possible to deduce a type for it using the rules above.
In fact, because of the way the axioms are formulated, the only ‘facts’ that can be deduced
about ‘hd [ ]’ are essentially trivial, such as ‘hd [ ] = hd [ ]’. (In Section 3.5.1 we look at a
logic in which not even this equation can be deduced.)

(3) Note that, as formulated above, ‘[ ]y t = t’ holds for any expression t, not just for
lists. If instead the theory called for a stronger typing on y, the symbol should instead
be introduced as a primitive constant with its properties defined axiomatically – with due
care to add the relevant typing hypotheses: viz.

t:A∗

[ ]y t = t
a:A, s:A∗, t:A∗

cons(a,s)y t = cons(a,sy t)

(4) An alternative form of the induction rule is

t:A∗,
P[[ ]],

{a:A, s:A∗, P[s]} `a,s P[cons(a,s)]
P[t]

Formally, the two rules are equivalent (at least, in the presence of FOPC) but there are
certain practical reasons for preferring the original version.

To see this, note that ‘P[t]’ matches any expression and does so in many different ways
(cf. the examples in Section 3.2.1). Thus the mural justification tool will return many
different matches for the conclusion of the rule above. On the other hand, the conclusion

∀s:A∗ ·P[s]
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is much more constrained in the matching it allows, and if the user is prepared to first state
the appropriate generalization of the assertion – going from ‘rev(rev x) = x’ to ‘∀x:A∗ ·
rev(rev x) = x’ for example – the justification tool would find a unique match against the
conclusion of the original rule, and in a much shorter time. With practice, such ‘tricks’
become almost second nature.

(5) As a final point in this section, note that the above formulation essentially treats lists
as an algebra, with generators ‘[ ]’ and ‘cons’. But lists can also be viewed, for example,
as a special kind of map (finite partial function) with domain an initial segment of the
natural numbers. Such an approach can be reconciled with the above: see Section 3.4.2
for further discussion.

3.3.2 Basic set theory
The basic generic ‘set’ data type – consisting of finite sets over a given type – can be
formalized in a similar fashion to ‘List Theory’ above. We’ll go through an axiomatization
here (even though it contains few surprises) since there are deeper questions about finite
sets to be explored later.

Signature

As usual, ‘Basic Set Theory’ will have ‘FOPC’ as a parent. Its signature will consist of

• a primitive type constructor ‘set of’, with display form ‘[[t1]]-set’

• a primitive constant ‘{}’ for the empty set

• a primitive constant for the function which adds an element to a set, with display
form ‘[[e1]]∪{[[e2]]}’

• a primitive constant ‘∈’ for the set membership relation (infixed)

• a defined constant defining the singleton set as the addition of an element to the
empty set ({a}4 {}∪{a} – note that the right-hand side of this definition is simply
the concrete syntax for the function which adds an element to a set and has nothing
to do with the normal union operator which will be discussed in Section 3.4.1)

• a defined constant for the anti-membership function, defined in the obvious way
(a /∈ s4 ¬(a ∈ s))

Axioms

The axioms of this theory are:

{}:A-set
a:A, s:A-set
s∪{a} :A-set

a 6∈ {} a ∈ s∪{b} ⇔ a ∈ s ∨ a = b

s:A-set, t:A-set,
∀x:A · (x ∈ s ⇔ x ∈ t)

s = t
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P[{}],
{x:A, s:A-set, x 6∈ s, P[s]} `x,s P[s∪{x}]

∀s:A-set ·P[s]

Example derived rules

(1) Consider the following proof of the fact that ‘a ∈ s∪{a}’:

from
1 a ∈ s∪{a} ⇔ a ∈ s ∨ a = a ∈-axiom2 ()
2 a ∈ s ∨ a = a ⇔ a ∈ s∪{a} ⇔ symmetry (1)
3 a = a =-reflexivity ()
4 a ∈ s ∨ a = a ∨ introduction (left) (3)
infer a ∈ s∪{a} ⇔ -elimination (2,4)

This is an example of how even quite simple reasoning can be awkward at times. Note
that the reasoning here is almost purely propositional, having almost nothing in particular
to do with sets. The desired conclusion could thus be simply justified using lines 1 and 3
and an oracle for propositional logic.

(2) The fact that ‘s∪{a} 6= {}’ can be derived as follows:

from
1 from s∪{a}= {}
1.1 a ∈ s∪{a} lemma ()
1.2 a ∈ {} substitution (1.h1,1.1)
1.3 a /∈ {} ∈-axiom1 ()

infer false ∈ contradiction (1.2,1.3)
infer s∪{a} 6= {} otherwise contradictory (1)

(3) The reader is invited to derive the following rules:

a:A, b:A, s:A-set
(s∪{a})∪{b}= (s∪{b})∪{a}

(Hint: use extensionality and the associativity of ∨, for example.)

a ∈ s, s:A-set
a:A

(Hint: first prove ∀t:A-set · (a ∈ t ⇒ a:A) by induction.)

3.3.3 Subtypes
Recall that the mural syntax makes provision for a ‘subtype’ constructor, displayed as
‘< x:A ·P >’. The following pair of axioms capture the notion that ‘< x:A ·P[x] >’ rep-
resents those elements a of A that satisfy P[a]:

a:A∧P[a]
a:< x:A ·P[x]>
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The subtyping syntax was ‘hard-wired’ into mural because of its peculiar form (a type
binder with an expression body). That is not to say that subtyping is mandatory; rather that
it is the choice of the person configuring mural whether or not the above axioms should be
included. In fact, there are times when it definitely should not be used (cf. Section 3.6.1).

Remarks:

Subtyping (or ‘inclusion polymorphism’) is a very powerful technique, and gives mural
a distinct advantage over logical frames based on strong typing in which any term has at
most one type. For example, ‘2’ is both an even number and a prime number, which can
be represented as the following two statements:

2 : < n:N · (n mod 2 = 0)>

2 : < n:N · ∀m:N+ · (n mod m = 0 ⇒ m = 1 ∨ m = n)>

In many formalisms based on set theory (e.g. VDM, Z) it is important to be able to regard
types as sets, and consequently to allow types to overlap. In particular, subtyping is vital
for a natural axiomatization of VDM’s data type invariants – coercion functions are far
too awkward; cf. Section 3.5.3. Strong typing systems just don’t allow such flexibility.

3.3.4 Other common type constructors
In this section we look at a number of other common ways of constructing types, including
intervals of numbers, enumerated types, type unions, and type products.

Signature

Let’s assume we’re working in a theory which has ‘Basic Set Theory’ and an appropriate
theory of integer arithmetic as parents. We’ll add the following primitives:

• a type constructor ‘Interval’ – with display form ‘[[[e1]]..[[e2]]]’ – for constructing
intervals of natural numbers

• a type constructor ‘EnumType’ for coercing finite sets into ‘enumerated types’; in
what follows we’ll often write ‘ŝ’ as the display form of ‘EnumType(s)’ although
mural doesn’t actually allow superscripts

• type constructors ‘|’ and ‘×’ for type union and type product, respectively (both
infixed)

• constant ‘,’ for pairing (infixed)

• constants ‘fst’ and ‘snd’ for projection functions

Axioms

The axioms of the theory are:

m≤ j∧ j≤ n
j: [m..n]

a ∈ s
a: ŝ

a:A ∨ a:B
a:A | B
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a:A, b:B
(a,b):A×B

p:A×B
fst p:A

p:A×B
snd p:B

fst (a,b) = a snd (a,b) = b
p:A×B

(fst p,snd p) = p

3.3.5 Record types
Another useful way of constructing types is the record type (or ‘tagged tuple’). Unfor-
tunately there seems to be no simple way of axiomatizing this concept all in one go in
mural , although individual examples are easy enough.

For example, consider the VDM-like record type

Record :: sel1 : Field1
sel2 : Field2
sel3 : Field3

where Field1, Field2 and Field3 are assumed to have been defined in some ancestor
theory of the theory in which the particular record type is needed. We simply extend the
signature by new primitive constants sel1, sel2, sel3 and mk-Record and new primitive
type constructor Record, and add the following axioms:

a1:Field1, a2:Field2, a3:Field3
mk-Record(a1,a2,a3):Record

r:Record
sel1(r):Field1

r:Record
sel2(r):Field2

r:Record
sel3(r):Field3

sel1(mk-Record(a1,a2,a3)) = a1

sel2(mk-Record(a1,a2,a3)) = a2

sel3(mk-Record(a1,a2,a3)) = a3

r:Record
mk-Record(sel1(r),sel2(r),sel3(r)) = r

3.4 More complicated formulations
This section discusses a number of more advanced techniques, including

• extending a theory of finite sets with a set constructor ‘{x:A ·P[x]}’

• defining maps (finite partial functions) as sets of pairs

• defining lists as maps whose domains are initial segments of the natural numbers

• forming a theory of ‘abstract collections’ which generalizes the notions of sets, lists,
bags, etc.

This section can easily be skipped on first reading.
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3.4.1 Set comprehension
Defining a theory of set comprehension (formation of sets according to a defining predi-
cate, as in ‘{x:A ·P}’) is complicated if we only want to allow finite sets. If we’re to use
the basic set theory we built up in Section 3.3.2 above, we can’t suddenly say that we’ll
allow infinite sets: the induction axiom commits us to finite sets. So how do we restrict P
so that only finitely many elements of A satisfy it?

If A is countably infinite, one solution would be to assert the existence of a natural
number n and a one-to-one function f mapping A to N such that

∀x:A · (P[x] ⇒ f (x)< n)

Since f is 1-1, less than n elements of A must satisfy P. But this is far too complicated!
For a start, it would require us to formulate higher order logic (to express the existence
of f ) and that’s a lot of work: cf. Section 3.6.1 and [Gor85]. Fortunately, a much simpler
solution is possible, based on the well-known Zermelo-Frankel (ZF) approach [Bar77].

Signature

First of all, it’s easy enough to add a set comprehension constructor to the theory. ‘Set
Comprehension’ will be the theory which extends ‘Basic Set Theory’ by a primitive
binder ‘those’, with display form

{[[e1]] · [[e2]]}

Axioms

There will be three axioms in our formulation. The fundamental axiom of set comprehen-
sion is

a ∈ {x:A ·P[x]} ⇔ a:A∧P[a]
This is very similar to the formulation of subtyping in Section 3.3.3 above, except that
subtypes are types whereas subsets are values, which makes them different kinds of term
as far as mural is concerned.

The other two axioms are ‘formation rules’ for sets: rules which tell us how to form
new sets from existing sets. In ZF there are two basic methods:

1. The first is called ‘Separation’ and simply forms subsets of existing sets:

s:A-set,
∀x:A · (P[x] ⇒ x ∈ s)
{x:A ·P[x]} :A-set

Since only subsets of existing sets can be created this way, only finite sets result.

2. The second method is called ‘Replacement’ and forms images of existing sets under
a given mapping F:

s:A-set,
∀x:A · (x ∈ s ⇒ F[x] :B)

{y:B · ∃x:A · (x ∈ s∧ y = F[x])} :B-set

Again, the resulting set has at most as many elements as s and so must be finite,
assuming s is.
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If A has a constant, a0 say, which is known to satisfy P then the first form becomes a
special case of the second upon instantiating

{B 7→ A, F[x] 7→ if P[x] then x else a0}

Remarks:

(1) To keep the mural syntax simple, only Types were allowed as the universes of bind-
ings. As a consequence we must write

{x:A · x ∈ s∧R[x]}

instead of
{x ∈ s ·R[x]},

although the awkwardness can be circumvented to some extent by making use of enumer-
ated types (cf. Section 3.3.4) to write

{x: ŝ ·R[x]}.

(2) Given a fixed type X, we can define the intersection and difference operations on sets
of X by

s∩ t 4 {x:X · x ∈ s∧ x ∈ t}
s− t 4 {x:X · x ∈ s∧ x 6∈ t}

and derive rules such as
s:X-set, t:X-set

s∩ t :X-set
Alternatively, we could define them polymorphically by making use of enumerated types:
e.g.

s∩ t 4 {x: ŝ · x ∈ t}

It is left as an exercise for the reader to show that, given the definition

s∪ t 4 {x:X · x ∈ s ∨ x ∈ t}

one can derive
s:X-set, t:X-set

s∪ t:X-set
(Hint: use induction on s and the Separation axiom.) There would seem to be no way,
however, of defining ‘∪’ polymorphically with the machinery developed up to this point.
By analogy with ZF, a full formulation of set theory would need to introduce the union,
powerset and distributed union operators and the subset relation as primitives, with their
properties defined axiomatically. (Left as an exercise for the reader.)

(3) The set
{y:B · ∃x:A · (x ∈ s∧ y = f (x))}

resulting from replacement is more usually written in the form

{f (x) · x ∈ s}
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but our simple syntax does not support such expressions. As a compromise, we could
introduce a new binder ‘replace’ with display form

{[[e2]] · [[e1]]}

and write {f (x) · x: ŝ}. More generally, we would like to be able to define

{F[x] · x:A} 4 {y:B · ∃x:A · y = F[x]}

but, because of restrictions on the use of formal parameters in definitions, B must have a
fixed value. Thus, the new binder must instead be added as a primitive, with its properties
formalized axiomatically: viz.11

{x:A} `x F[x] :B
{F[x] · x:A}= {y:B · ∃x:A · y = F[x]}

3.4.2 Map theory
In this section we show how the theory of maps (finite partial functions) can be defined
in terms of set theory. For illustrative purposes, we develop the theory of the data type
‘X m−→ Y’, consisting of maps from X to Y , for fixed (but arbitrary) types X and Y .

Signature

The theory will have as parents ‘Common Type Constructors’ (see Section 3.3.4) and the
extension of ‘Set Comprehension’ by an appropriate formulation of the set-union function
‘∪’. Maps will be represented as sets of pairs of elements from X and Y . This leads to the
the following definitions:

is-maplike(s) 4 ∀e1: ŝ · ∀e2: ŝ · (fst e1 = fst e2 ⇒ e1 = e2)

X m−→ Y 4 < s:(X×Y)-set · is-maplike(s)>
dom m 4 {x:X · ∃y:Y · (x,y) ∈ m}
rng m 4 {y:Y · ∃x:X · (x,y) ∈ m}
{x 7→ y} 4 {(x,y)}

m at x 4 ι y:Y · (x,y) ∈ m
m1 † m2 4 {e:X×Y · e ∈ m1∧ fst e 6∈ dom m2}∪m2

s−Cm 4 {e:X×Y · e ∈ m∧ fst e /∈ s}

and so on. (ι is the unique choice operator introduced in Section 3.2.5 and ‘ŝ’ is the
enumerated type introduced in Section 3.3.4.)

11The sequent hypothesis might be thought of as asserting that F represents a function from A to B. More
generally however, F[x] can be any expression involving x: e.g.

{x:N} `x x2 +1 :N
{x2 +1 · x:N}= {y:N · ∃x:N · y = x2 +1}

is a legitimate instantiation of this rule.
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Derived rules

The usual axioms for maps can be deduced from the rules for set theory: e.g.

m:X m−→ Y
dom m :X-set

x:X, y:Y

{x 7→ y} :X m−→ Y

m:X m−→ Y, x ∈ dom m
(m at x) :Y

m1:X m−→ Y, m2:X m−→ Y

m1 † m2 :X m−→ Y
(Hints: for the first use ‘Replacement’ and for the last use ‘Separation’.)

The rule ‘map induction’

P[{}],
{m:X m−→ Y, x:X, y:Y, x 6∈ dom m, P[m]} `m,x,y P[m †{x 7→ y}]

∀m:X m−→ Y ·P[m]

can be derived from set induction.

Remarks:

(1) Here’s a hint of how to prove ‘map induction’. First prove

∀s:(X×Y)-set · is-maplike(s) ⇒ P[s]

by induction over sets. The sequent hypothesis of ‘map induction’ is used in the induction
step. Unfortunately it cannot be used directly and instead must be converted into an
equivalent formula: viz.

∀m:X m−→ Y · ∀x:X · ∀y:Y · ((x 6∈ dom m ∧P[m]) ⇒ P[m †{x 7→ y}])

The following lemma is also useful

is-maplike(m∪{e}), e 6∈ m
fst e 6∈ dom m ∧m∪{e}= m †{fst e 7→ snd e}

in the induction step.

(2) Note that the definitions given in the signature are specific to the type ‘X m−→ Y’ for
the given (fixed) types X and Y . A generic theory is possible, of course, but most of the
constants would have to be introduced instead as primitives, with their properties defined
axiomatically (cf. the comments on ∪ in Section 3.4.1 above).

3.4.3 Lists as maps
In Section 3.3.1 above we remarked that an alternative way of formulating list theory
would be to regard lists of X as a special case of maps from natural numbers to X. In
mural there are (at least) two different ways this observation can be exploited:

(1) The first way is to construct a theory morphism from ‘List Theory’ to (a polymorphic
formulation of) ‘Map Theory’, where the latter has been extended by arithmetic concepts,
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including a notion of cardinality. (See Section 4.8 for an explanation of morphisms.) The
following signature morphism is one candidate

A∗ 7→ N m−→ A′

[ ] 7→ {}
cons(a,s) 7→ s′∪{card s′ 7→ a′}

hd s 7→ s′ at (card s′−1)
tl s 7→ (card s′−1)−C s′

where A′ is the appropriate translation of A, etc. The effect of this morphism is to translate

cons(x1,cons(x2, . . .cons(xn,nil) . . .))

to
{0 7→ xn,1 7→ xn-1, . . . ,n−1 7→ x1}

This gives a way of viewing lists as maps and lets us translate results about lists into
results about the corresponding maps. Unfortunately, it doesn’t help us translate results
about maps back to results about lists, even though the morphism is ‘almost’ an isomor-
phism. (It’s not an isomorphism because it translates the unprovable equation ‘tl nil= nil’
to a provable statement.) It seems that the reverse ‘morphism’ is well beyond the expres-
sive capabilities of the simple ‘syntactic’ (homo-) morphisms described in Section 4.8. It
would be an interesting research topic to see whether there is a suitable generalization of
morphisms which will handle cases like this while still being easy to apply.

(2) A second – more profitable – way to bring the two different formulations of lists
together is to define a new subtheory of ‘List Theory’ and ‘Map Theory’ in which one
representation is ‘coerced’ into another via an inference rule. For example, assuming the
subtheory also inherits a theory of arithmetic and the definition

is-initial(ns) 4 ∃n:N ·ns = {m:N ·m≤ n}

then the following axiom pair

s:A∗

(s:N m−→ A)∧ is-initial(dom s)

lets us move freely back and forth between the two different views of lists.

3.4.4 Abstract collections
Next we illustrate how morphisms can be used for ‘after-the-fact abstraction’ by consider-
ing a theory which extracts the properties common to various forms of finite collections.

Let the ‘Theory of Abstract Collections’ be the theory which extends the FOPC with
the following primitives:

• a type constructor ‘coll of’

• constants

– © (for the empty collection)
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– ? (for adding an element to a collection)

– ∈ (for the membership predicate) and

– ⊕ (for combining two collections)

and the following axioms:

©:coll of A
a:A

¬ (a ∈©)

a,b:A, c:coll of A
a ∈ (b? c) ⇔ a = b ∨ a ∈ c

c:coll of A
©⊕ c = c

a:A, c,c′:coll of A
(a? c′)⊕ c = a? (c′⊕ c)

P[©],
{a:A, c:coll of A, P[c]} `a,c P[a? c]

∀c:coll of A ·P[c]
In this theory one can show, for example, that ⊕ is associative, that© is a right identity
for ⊕, and that ? never yields ©. In addition a group of rewrite rules can be identified
which will reduce terms to ‘normal form’, and these could be used as input to a general
simplification tactic.

There are morphisms from the above theory into theories of various different kinds of
collection: e.g.

• sets, with

– coll of A 7→ A′-set
– © 7→ {}
– a? c 7→ c′∪{a′}
– a ∈ c 7→ a′ ∈ c′

– c1⊕ c2 7→ c′1∪ c′2

• lists, with

– coll of A 7→ A′∗

– © 7→ [ ]

– a? c 7→ cons(a′,c′)
– a ∈ c 7→ a′ ∈ elems c′

– c1⊕ c2 7→ c′1
y c′2

bags, and so on. (In the above, A′ stands for the translation of A under the morphism, and
so on.)

Remarks:

(1) One of the advantages of morphisms is that they allow symbols to be renamed:
e.g. from ‘©’ to ‘{}’. To a certain degree the same effect could be achieved (much
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more simply) by adding renaming to the inheritance mechanism. More generally how-
ever, morphisms can rename symbols to expressions: e.g. from ‘_ ∈ _’ to ‘_ ∈ elems _’.
How much of an advantage over simple renaming this represents remains to be seen.

(2) Perhaps the singular advantage of morphisms is that they allow ‘after-the-fact abstrac-
tion’, in as much as generalizations such as ‘Abstract Collections’ can be made without
disturbing the existing theory hierarchy and without the risk that the generalization actu-
ally changes the target theory. Thus, in terms of the above example, before the morphism
can be used – say to deduce that list concatenation is associative – it must be shown that
all the axioms of abstract collections (appropriately translated) hold in List Theory. But
if the Theory of Abstract Collections were merely to be added to the parents of List The-
ory there would be no such guarantee that it is not fundamentally changing what can be
deduced about lists.

3.5 The theory of VDM
In this section we outline how the formal development method VDM can be axiomatized,
based on the presentation given in [Jon86].12

• We start by describing in Section 3.5.1 the underlying logic LPF [BCJ84], a three-
valued logic which differs from the classical logic of Section 3.2 in subtle ways.

• Section 3.5.2 discusses the theory of VDM primitives: sets, lists, maps, Booleans,
‘let’ clauses, etc.

• Section 3.5.3 describes how a theory can be extracted from the ‘data model’ of a
VDM specification module (roughly, its data types and auxiliary functions). This
theory then serves as the context in which reasoning about the specification takes
place.

• Section 3.5.5 deals with the ‘reification’ of one specification module by another,
and what is involved in proving it correct. A (very simple) reification – sets imple-
mented as nonrepeating lists – is used to illustrate the main points.

• Finally, in Section 3.5.6 we illustrate the ideas on a more substantial example, by
validating part of the abstract specification of mural itself.

Many of the techniques and issues discussed are not restricted to VDM, but are relevant
to all model-oriented specification methods and (to a lesser extent) to algebraic methods.

3.5.1 LPF
This section describes the predicate calculus underlying VDM. A three-valued logic, LPF
(for ‘Logic of Partial Functions’) was chosen as the basis for VDM since it is well suited
to reasoning about partial functions. LPF is broadly similar to the classical predicate
calculus developed in Section 3.2 above, the main differences being in the propositional
part and in the treatment of equality. Here we formulate a many-sorted version of LPF by
modifying the single-sorted version presented in [BCJ84].

12The axiomatization given here is largely the same as that given on-line in the standard release of mural ,
although the exact set of axioms and the names given to rules differ at some points.
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Propositional part

LPF has all the propositional connectives (primitive and defined) from Section 3.2.2
above, but a different set of axioms. The new axioms are:

true

P
P ∨ Q

Q
P ∨ Q

P ∨ Q,
{P} ` R, {Q} ` R

R

P, Q
P∧Q

P∧Q
P

P∧Q
Q

P
¬¬P

¬¬P
P

P, ¬P
Q

These are paraphrased from [BCJ84].13

Note that LPF is in some sense a subset of classical logic, in that all the above axioms
are valid classically and thus so too are any rules that can be derived from them. The
converse is definitely not true however. For example, as explained in [BCJ84], the law
of excluded middle does not hold in LPF since ‘P ∨ ¬ P’ might be undefined (e.g. if
computation of ‘P’ does not terminate).14

Although not all of the rules of classical logic are valid in LPF, they can often be mod-
ified – by adding ‘definedness’ hypotheses – to do so. For example, the LPF counterpart
of ‘ ⇒ -introduction’ is

δP, {P} ` Q
P ⇒ Q

where δP 4 P ∨ ¬ P. In essence, the assertion ‘δP’ says that P denotes a meaningful
proposition (or well-formed formula). Of course, δ is not needed in classical logic, since
‘δP’ simply evaluates to ‘true’.

The reader is referred to [BCJ84] for more discussion.

A many-sorted version of LPF

When formulating a typed version of LPF we are faced with two choices:

• assign types to all terms, including non-denoting terms such as ‘hd [ ]’;

• type only denoting terms.

The first approach is explored in [Mon87], where it is used for what is sometimes called
‘static analysis’ (or ‘syntactic type-checking’) of VDM specifications. Invariants are ig-
nored and pre-conditions of functions are not checked, in a kind of rough first pass through

13The undefined (‘bottom’) element ‘undef’ and corresponding axioms (such as undef
Q ) have been omit-

ted since they never seem to be used in practice. They were included in [BCJ84] as part of the basis of a
semantic explanation (model theory) and the corresponding completeness theorem.

14LPF also differs from intuitionistic logic (cf. Section 3.6.3) in that it admits the rule of ¬¬ -elimination.
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the specification looking for type clashes. Such reasoning will detect certain forms of er-
ror at an early stage in a specification’s life and can be fully automated, which makes it a
very useful tool. But it is too coarse-grained for general verification purposes.

Here we shall follow the second alternative, arranging things so that the typing predi-
cate bears a direct relationship to typing in the data model – so that ‘a:A’ means the value
of expression a is an element of type A and satisfies any invariants associated with A. As
a consequence, the typing relation is only semi-decidable, since arbitrarily complicated
predicates can be used as invariants in VDM.

Implicit in our decision is the intention to only assign types to expressions which
denote actual values. Thus for example we shall be careful not to assign a type to ‘hd [ ]’.
The axiom defining ‘hd’ (for the head of a list) will be stated as

a:A, s:A∗

hd cons(a,s) = a

From this can be derived rules such as

s:A∗, s 6= []

hd s :A

but no type can be deduced for the head of an empty list. Apart from having good theo-
retical reasons for making such restrictions there are strong practical reasons: many LPF
rules become much simpler to state.

For reasons which will become apparent below, we shall also restrict type assignment
to first order terms.15 In particular, functions cannot be typed. As it happens, this is not a
terribly inconvenient restriction: it’s just a matter of getting used to using formation rules
such as

x:X, s:X∗

cons(x,s):X∗

instead of declarations such as

cons:X×X∗→ X∗

Equality

In LPF, equality is strict: that is, it is defined only on denoting terms. Thus for exam-
ple ‘hd [ ] = hd [ ]’ is undefined. In particular, equality does not satisfy the usual law of
reflexivity

a = a
when a is nondenoting. As a consequence, the axioms for equality are a little more com-
plicated than the classical laws given in Section 3.2.1. The solution takes advantage of
our typing restrictions, making use of the fact that ‘a:A’ only if a denotes an actual (first
order) value. In particular, the rule of reflexivity for equality will be stated as

a:A
a = a

15This is also the reason we haven’t introduced the ‘function space’ constructor → before now. See
Section 3.6.1 for the treatment of higher order concepts such as→.
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So this is the reason for restricting to first order terms: weak equality is not defined on
higher order terms (such as functions).

We shall take the following as the main axioms of equality in LPF:

a:A, b:B
δ (a = b)

a = b, P[a]
P[b]

a = b
b = a

The first says equality is a total predicate across all types; note the use of typing hypothe-
ses to ensure that a and b are denoting terms. The second axiom says that equal terms can
be substituted for each other. The third axiom says that equality is symmetric. From these
we can deduce

a = b
a = a

a = b
b = b

and the transitivity of equality, but not its reflexivity.
For completeness, the following three axioms also seem to be required:

a 6= b
a = a

a 6= b
b = b

a 6= a
false

however they rarely seem to get used in practice – at least, beyond establishing early,
basic properties of equality (such as reflexivity).

Remarks:

It is important that user-supplied axioms respect the principle that equality is defined only
on denoting terms. In practice this means that whenever an axiom is introduced which
has ‘=’ or ‘ 6=’ in its conclusion, enough hypotheses should be included to ensure that
subterms are semantically well-formed. Thus for example the typing hypotheses in

a:A, s:A∗

hd cons(a,s) = a

ensure that the conclusion ‘hd cons(a,s) = a’ is defined.
By using typing hypotheses systematically it is easy to adhere to the above princi-

ple (although rules now need more hypotheses than their presentation in [Jon86] might
suggest). If all axioms respect the principle then any rules derived from them will auto-
matically also respect the principle; this is of course good news from a consistency point
of view, but the flipside of the observation is that users should remember the principle
when formulating conjectures to be proven.

Quantifiers

The quantifiers ‘∀’ and ‘∃’ from Section 3.2.4 above will be used again here, with the same
axioms for ‘∀-introduction’ and ‘∀-elimination’.16 Unlike the classical case however,

16Apart from a few small terminological differences, the formulation of quantifiers given here is almost
the same as that in [BCJ84]. The main difference is that here we use the typing assertion to distinguish
denoting terms, whereas the treatment given in [BCJ84] is based around the use of equality. Thus e.g. the
rule for ∃-introduction in [BCJ84]

s = s, P[s]
∃x ·P[x]
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these two axioms are not enough on their own: the rules for ‘∃-introduction’ and ‘∃-
elimination’ must also be given as axioms. (Classical proofs of these rules essentially
depend on the law of excluded middle.)

Since it will sometimes be necessary to say when a quantified expression is semanti-
cally well-formed, we also add

{x:A} `x δP[x]
δ (∀x:A ·P[x])

as an axiom: i.e., ‘∀x:A ·P[x]’ denotes a truth value provided ‘P[x]’ denotes a truth value
for each element x of A. (The corresponding rule for ∃ can be deduced from this.)

It will also be useful to add a definition which says that a type is non-empty:

A is-nonempty 4 ∃x:A · true

Conditionals

The axioms for conditionals are:

a:A, P
(if P then a else b) = a

b:A, ¬ P
(if P then a else b) = b

Note that, if ‘P’ is true then the value of ‘if P then a else b’ is ‘a’ irrespective of whether
or not ‘b’ denotes a value: the conditional constructor is said to be non-strict. Similarly,
if ‘¬P’ is true, then it doesn’t matter if ‘a’ is undefined, provided ‘b’ is denoting.

3.5.2 The theory of VDM primitives
The next step in our axiomatization of VDM is to treat the VDM primitives – its primitive
data types, type constructors, predicates and destructors, and so on. We’ll define a ‘Theory
of VDM Primitives’ which pulls together all the facts about predicate calculus, equality,
set theory, and so on, which might be used in any VDM specification. This would be done
by extending the predicate calculus by

• a theory of arithmetic,

• theories of data type primitives (sets, sequences, maps, etc.),

• theories of type constructors (unions, products, enumerated types, etc.),

and so on. It should be clear by now how this could be done, at least for most VDM
primitives. Some things – such as record types (cf. Section 3.3.5) and case statements –
are better introduced on an as-required basis, since it is awkward to give schema which
cover the general case.

In the rest of this section we will discuss some of the subtleties involved. The reader
with no particular interest in the finer details of VDM can easily skip this section.

has as its counterpart
a:A, P[a]
∃x:A ·P[x]

in the current formulation.
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The Boolean type

In VDM, propositions and Boolean-valued terms are used interchangeably. Let us thus
introduce a primitive type ‘B’ to stand for Boolean values. To relate the two views we can
add the axiom pair

b:B
δ b

to our formulation.
Rules such as

P:B, {P} ` Q:B
(P∧Q) :B

can be easily derived. Paraphrased, this rule says that ‘P∧Q’ is a well-formed formula
(wff) if

• ‘P’ is a wff, and

• ‘Q’ is a wff under the assumption that P is true.

This explains why it is alright to write something like ‘x 6= 0∧ x/x = 1’ in VDM.
For many purposes ⇔ can be used as equality on Booleans. For completeness

however we should add the axiom
P ⇔ Q

P = Q
From this we can derive rules such as

b:B
b = true ∨ b = false

which says that there are only two possible Boolean values. It also now becomes possible
to give a direct derivation of the rule for substitutivity of equivalents (cf. Section 3.2.2):

P ⇔ Q, R[P]
R[Q]

Remarks:

Note that the axioms given above ‘conserve sense’ (in the sense of Section 3.2.2). It
would be fatal to the consistency of the theory to use an axiom of the form

(b:B) ⇔ δ b

since for example from the (perfectly reasonable) assertion that the numeral 0 is not a
Boolean we could derive a contradiction as follows:

from ¬(0:B)
¬ δ 0 ⇔ -substitution
¬ (0 ∨ ¬0) unfolding
¬0∧¬¬0 de Morgan’s law
¬0 ∧-elimination (left)
¬¬0 ∧-elimination (right)

infer false contradiction
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Our formulation avoids this fate because it is not possible to infer ‘¬ δ 0’ from ‘¬(0:B)’.17

Disjoint types

Elementary types (such as B and N) are non-overlapping and are disjoint from composite
types (such as ‘set’ types, record types, etc). For most applications it’s not necessary to
make such assumptions explicit: it’s usually simply enough to note that such overlaps
cannot be derived (provided the specification is type-consistent, of course). Every now
and then, however, such assumptions must be made explicit, and the easiest way to do this
is probably by adding an axiom of the form

a:A, b:B
a 6= b

for the relevant types A and B.

Definitions

When making definitions care should be taken that non-denoting cases are not inadver-
tently overlooked. For example, the definition of the list membership predicate used in
Section 3.3.1 above

a in s 4 a = hd s ∨ a in tl s

should not be used here, since it leaves ‘a in [ ]’ undefined (non-denoting). The solution
would be to use

a in s 4 s 6= []∧ (a = hd s ∨ a in tl s)

instead.
Note that it is not necessary for the definiendum (rhs) of a definition to denote a value,

since the definition symbol (4) is interpreted as strong equality (cf. [CJ91]): in other
words, a4 b does not imply a = b.

Predicates

In the VDM view, predicates are functions which return Boolean values. Thus for each
user-supplied predicate symbol Q – with domain A say – an axiom of the form

a:A
δQ(a)

should be added. Such rules are called δ -rules. For example, the δ -rule for set member-
ship is

a:A, s:A-set
δ (a ∈ s)

In the discussion of equality in Section 3.5.1 above we remarked that user-supplied ax-
ioms should ensure that equality is defined only on denoting terms, but similar care should

17For example the law of contraposition

δP, ¬ Q, {P} ` Q
¬ P

would require us to first establish the – perfectly unreasonable – definedness hypothesis ‘δδ0’.
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be taken with axioms for (other) predicates. For example, the expression ‘{x:A ·P[x]}’
may not denote a finite set (e.g. if there are infinitely many values of A that satisfy P[x]),
so ‘a ∈ {x:A ·P[x]}’ may be undefined in LPF. The classical law of set comprehension
(cf. Section 3.4.1)

a ∈ {x:A ·P[x]} ⇔ a:A∧P[a]

is thus not valid in LPF, and must be replaced by

{x:A ·P[x]} :A-set
a ∈ {x:A ·P[x]} ⇔ a:A∧P[a]

‘Let’ clauses

VDM has two forms of ‘let’ clause:

• one for introducing named expressions

• the other for selecting an arbitrary element of a type

Although they appear very similar, they are in fact quite different kinds of operator, and
they both cause problems: the first because it is a binder whose natural ‘universe’ is an
Exp rather than a Type; the second because it is non-deterministic, and LPF does not
handle non-determinism. We’ll look at the two cases separately:

(1) An example use of named expressions is

let x = (a+b) in t = x2 + x+1

which is a shorthand for ‘t = (a+ b)2 +(a+ b)+ 1’. The ‘let’ clause is used to break
up long expressions by factoring out recurring subterms, thereby making the expression
easier to read. It was intended that the definition facility in mural would give similar
benefits but the mechanism was only implemented at the level of Theorys and not at the
level of individual expressions. Thus it becomes necessary to describe how ‘let’ clauses
might be simulated in the ‘Theory of VDM Primitives’.

A particularly bombastic solution would be to simply ‘expand out’ all uses of named
expressions when translating a VDM specification to a theory. This would be counter-
productive in the extreme – quite out of step with mural ’s stated goal of providing useful
support for reasoning about specifications.

Instead, we’ll meet the problem head-on by introducing a new (primitive) binder with
display form ‘let [[e1]] in [[e2]]’. In the above example x is the bound variable and the
‘universe’ of the binding consists of the single value ‘a+b’. Since binder universes must
be Types in mural , it’s necessary to introduce a mock type constructor for coercing an
Exp into a Type. By declaring its display form to be ‘= [[e1]]’, the above expression would
be displayed as

let x:= (a+b) in t = x2 + x+1

which is almost identical to the original.
The properties of the new binder are defined by the axiom pair:

E[t]
let x:= t in E[x]
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Note that this deals with abbreviations at the level of assertions only – that is, the body
‘E[x]’ must be an assertion (such as t = x2 + x+ 1) rather than simply a term (such as
x2+1). While this is a significant improvement in granularity from Theory level, it is still
not as fine-grained as is needed in VDM use. The problem can be overcome by adding
new (more complicated) axioms. (Left as an exercise for the reader.)

(2) The other form of the VDM ‘let’ clause is the choice operator, used for selecting
an arbitrary element from a type, similar to Hilbert’s ε-operator (cf. Section 3.2.5). The
main difficulty is that it must be interpreted deterministically if we are to reason about it
in LPF. (In fact, this restriction will apply only to uses of the operator in the data model of
a specification, and not to specifications of operations: see the discussion in Section 3.5.3
below.)

To illustrate the problems involved, let us consider the following definition of a func-
tion for converting a set into a list:

convert :X-set→ X∗

convert(s) 4 if s = {}
then [ ]
else let x ∈ s in cons(x,convert(s−{x}))

Suppose we took this to mean that convert is non-deterministic, so that e.g. ‘convert{x,y}’
might be ‘[x,y]’ at some times and ‘[y,x]’ at others. But this would mean that

convert{x,y}= convert{x,y}

is not valid (at least, not when x 6= y), violating one of the basic tenets of LPF – that
equality is reflexive on denoting terms.

To keep our formulation consistent we must insist that uses of the choice operator
be considered not to be non-deterministic, but rather under-determined. In other words,
given the same input, the operator always makes the same choice. Any choice from the
set will do – the smallest element, the largest, or whatever – just as long as it is always
the same. If the choice operator is used in a specification, part of the subsequent design
process should be concerned with replacing it by something more determined.

When it makes sense (i.e., when A is non-empty), the only thing we can say about the
term

let x:A in F[x]

is that it has property P, provided F[x] satisfies P for any possible choice of x from A. The
appropriate axiom is thus

A is-nonempty,
{x:A} `x P[F[x]]

P[ (let x:A in F[x]) ]

The second hypothesis ensures that no inadvertent bias is associated with the choice of x
from A. Using the above axiom it is possible to prove e.g.

l:N∗

(let x:N in cons(x, l)) : N∗
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Remarks:

(1) Note that the treatment of the first form of ‘let’ clause actually reduces to a special
case of the second form. In particular, its axioms can be derived from those for the choice
operator.

(2) Expressions of the form

let x:A be such that P[x] in Q[x]

should be translated to
let x:< z:A ·P[z]> in Q[x]

(3) Recursive ‘let’ clauses (‘letrec’) are more of a problem, since mural does not allow
multiple simultaneous bindings (cf. Section 4.11).

3.5.3 Translating specifications into theories
In this section we outline how to construct a theory in which to reason about a given
VDM specification module. The theory will be extracted from the ‘data model’ of the
specification (roughly, its data types and auxiliary functions). A more precise definition
of the data model will be given below; for the moment it’s enough to know that it defines
the abstract data types on which the ‘operations’ of the specification take place.

For reasons of economy of space, the operational side of VDM will not be treated in
any detail here. A full treatment would cover

• properties of chains of operations

• operation decomposition and other refinement techniques

• techniques for verifying that programs correctly implement operations

and more, and a full formalization of these topics would require a complete book in itself.
The reader is referred instead to other sections of this book where such topics are treated:
e.g.

• Chapter 9 for symbolic execution of (chains of) operations

• Chapter 7 for operation decomposition

• Section 3.6.5 for Hoare’s logic of program correctness

The only ‘operational’ reasoning covered here is the ‘implementability proof obligation’
for showing that operations can be implemented in principle. Such obligations can be
stated in terms of the pre- and post-conditions on the operations, without actually mak-
ing reference to the operations themselves. In Section 3.5.5 we also consider the proof
obligations arising when a specification is ‘reified’ by another: these include obligations
corresponding to the operations of the specifications, but once again they can be stated in
terms of pre- and post-conditions.

The theory extracted from the data model establishes the ‘context’ in which to reason
about a specification. It can be used to validate the data model, by showing that (formally
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stated) requirements are logical consequences of the model. In particular, internal consis-
tency checks (such as the claims scattered through the abstract specification in Chapter 4)
can be shown to hold. These ideas are illustrated in Section 3.5.6 by validating part of the
abstract specification of mural itself.

After defining what is meant by the data model of a VDM specification module, much
of the rest of this section is devoted to describing a ‘cookbook’ approach to building the
theory corresponding to a given VDM data model. First, so as to inherit all the basic facts
about VDM, the theory will have the ‘Theory of VDM Primitives’ as parent. Next we
translate the specification module component by component. (No attempt will be made to
capture VDM naming conventions, etc.) The translation process – and how to automate
it – is discussed further in Chapter 7. The main obstacle to making the process fully
automatic would seem to be the difficulty of producing induction axioms for recursive
domain equations (especially those defined by mutual recursion).

Some terminology

In Section 3.5.2 we saw that LPF does not handle non-deterministic operators. It should
also be clear that operators with ‘side effects’ cannot be allowed. This leads us to divide
each VDM specification module into two parts:

1. a data model, in which all functions are ‘applicative’ (side-effect free) and deter-
ministic (although possibly undetermined);

2. an operational part, containing operations on a global state and non-deterministic
operators.

The VDM syntax does not distinguish between the different kinds of function/operation
so we need to introduce some new terminology.

Definition: In this chapter, the notions auxiliary function and operation will be used with
the following meanings:

• VDM definitions which have recourse to a global state (‘external variables’) will be
called operations.

• Definitions which are intended to be non-deterministic – in that they may return
different values on the same arguments – will also be called operations.

• Explicit defined functions – in which the definition is given directly and does not
involve external variables, post-conditions, or uses of the choice operator – will be
called auxiliary functions.

• Implicitly defined functions – given in terms of post-conditions, or using the choice
operator, but not involving external variables – will be called auxiliary functions,
provided the choice operator is interpreted deterministically. Such functions are
regarded as being underspecified, and part of the subsequent design task will be to
specify them more fully.

Definition: The data model of a VDM specification module consists of:

• elementary types, including type parameters and primitive types
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– e.g. N and B, but also types such as VSymb in Section 4.2

• type definitions and record type declarations, possibly with invariants

• elementary (or ‘atomic’) values

– e.g. AXIOM in Section 4.5

• primitive (or ‘black box’) functions, representing e.g.

– user input

– system-wide functions which are more naturally specified at a different level
(e.g. ‘has-manag-priv’ and ‘is-logged-in’ on pp.71-2 of [CHJ86])

• auxiliary functions (defined explicitly or implicitly)

On the other hand, the operational part of a VDM specification module consists of:

• operations (as defined above)

• initial state declarations

Of course, we are implicitly assuming that the VDM module can be neatly separated into
these two components, so that the data model can be defined completely independently of
the operational part. (The converse is certainly not true: the operational part is defined in
terms of the data model.) This assumption underlies the use of VDM as a model-oriented
specification language.

Data types

In Section 3.5.2 we saw how the data types for VDM primitives can be axiomatized on top
of LPF. In this section we describe how user-defined data types are axiomatized. There
are basically three ways a specification writer can form new data types:

1. as primitive types

2. via type definitions

3. as record types (‘tagged definitions’)

Defined types can also have associated ‘data type invariants’; we’ll return to these be-
low. Finally, note that definitions by mutual recursion are possible. These are the main
problems we must address.

Translation proceeds as follows:

1. For each primitive type in the specification we add a corresponding primitive type
to the theory.

2. For each type definition we simply add a corresponding defined type. In most
cases this just involves a straightforward translation from VDM syntax to mural
syntax, as the examples below will show. For simple (non-recursive) definitions no
additional axioms are required.
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3. The axioms for simple (invariant-free) record types are almost exactly as presented
in Section 3.3.5 above, except that those defining selectors require typing hypothe-
ses: e.g.

mk-REC(a1,a2,a3):Rec
sel1(mk-Rec(a1,a2,a3)) = a1

(cf. the remarks on equality and denoting terms in Section 3.5.1).

To reason about recursive type definitions we’ll also need induction axioms. For example,
given the definition

Tree 4 (Tree×N×Tree) | N

the relevant induction axiom is

{n:N} `n P[n],
{t1:Tree, m:N, t2:Tree, P[t1], P[t2]} `t1,m,t2 P[(t1,m, t2)]

∀t:Tree ·P[t]

In general such axioms must be added on an ad hoc basis. For simple shapes of definition
it should be possible to generate induction axioms mechanically from the specification,
but the question won’t be treated here.

Data type invariants

When an invariant is associated with a defined data type, subtyping should be employed:
e.g.

Longlist = X∗

where

inv-Longlist(s) 4 len s≥ 2

becomes
Longlist 4 < s:X∗ · (len s≥ 2)>

In fact, to aid legibility it is often better to introduce the invariant as a separate definition.

When a record type is defined with an invariant, e.g.

Record′ :: s1 : T1,
s2 : T2

where

inv-Record′(mk-Record′(x,y)) 4 invar(x,y)

there are two possible approaches:

1. the direct approach, where the invariant is directly incorporated into the axioms:
e.g.

x:T1, y:T2, invar(x,y)
mk-Record′(x,y):Record′

r:Record′

invar(s1(r),s2(r))
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2. the indirect approach, whereby an intermediate type – say ProtoRecord′ – is intro-
duced and Record′ is defined via subtyping:

ProtoRecord′ :: s1 : T1,
s2 : T2

Record′ 4 < r:ProtoRecord′ · invar(s1(r),s2(r))>

In small examples the direct approach is usually more convenient, but in larger examples –
particularly where Record′ is recursively defined or where there are many associated aux-
iliary functions – the indirect approach is better (cf. the use of ProtoTerm in Section 4.2).

Remarks:

(1) This is a good place to point out one of the advantages of the mural approach over
strongly typed logical frames such as ELF: viz. ones in which every value has at most
one type. In the latter Longlist would be introduced as a primitive type, with coercion
functions

coercls :Longlist→ X∗

coercsl :X∗→ Longlist

say, where coercsl is a partial function. Now consider how functions over Longlist must
be defined: e.g. the function for concatenating two Longlists would be

concat(l1, l2) 4 coercsl(coercls(l1)
y coercls(l2))

Contrast this with the ‘inclusion polymorphism’ available in a type system with subtyp-
ing: the ordinary list concatenation function ‘y’ can be used directly to concatenate
Longlists without having to define a new function. Clearly inclusion polymorphism is
vastly preferable!

As a matter of fact, it would be extremely awkward to have to axiomatize VDM speci-
fications in a strongly typed system, since data type invariants are used so frequently. The
same could be said for any specification method based on set theory.

(2) Note how the typing principle – that only denoting terms can be typed – extends to
data types with invariants: a term is denoting only if it satisfies the invariant. Thus for
example ‘l:Longlist’ asserts not only that l denotes a list of X’s, but also that the list has
at least two elements. The typing relation thus captures the ‘meaning’ behind invariants,
which gives many benefits. For a start, it makes VDM proof obligations much easier to
state.

Elementary values and auxiliary functions

For each elementary value used in the specification a corresponding primitive constant
should be added to the theory. Similarly, each primitive function should have a corre-
sponding primitive constant of the appropriate arity; if available, typing information can
be added as axioms (e.g. maxnum:N). Defined constants we can treat simply as defined
functions without arguments. That leaves only defined functions, which we treat as two
subcases:

(1) For each explicitly defined function we add a corresponding function definition to the
theory: e.g. the body of



84 3 Instantiation

last :X∗→ X
last(s) 4 if tl s = []

then hd s
else last(tl s)

pre s 6= []
can be used as a function definition more-or-less as it stands. The information in the

signature can then be stated as a rule

s:X∗, s 6= []

last(s):X

and derived by induction over sequences. Note that the pre-condition is not included in
the definition, but should be included in any rule involving the function.

(2) For each implicitly defined function a new primitive constant should be introduced,
together with an axiom stating the function’s defining property. Thus for example, given
the specification

sort (s:N∗) s′:N∗
post is-increasing(s′)∧ elems s′ = elems s

we would add a new constant sort to the theory, with axiom

s:N∗

is-increasing(sort(s))∧ elems s = elems sort(s)

Since type information cannot generally be inferred from an implicit definition, it must
also be added axiomatically; in this case:

s:N∗

sort(s):N∗

Finally, recall that although an implicit definition may have several different solutions, it
is assumed that the function defined is deterministic (cf. the discussion in Section 3.5.2
above on ‘let’ clauses).

Operations’ pre- and post-conditions

We said that operations will not have direct counterparts in the theory of the data model
of a specification. It is useful however to add definitions of their pre- and post-conditions,
so that we can at least state implementability proof obligations. Thus for example, given
an operation

ADD (n:Name)
ext wr s : Name∗

pre n /∈ elems s
post elems s = elems↼−s ∪{n}

we shall add defined constants

pre-ADD(n,s) 4 n /∈ elems s
post-ADD(n,↼−s ,s) 4 elems s = elems↼−s ∪{n}
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The implementability proof obligation for this operation can simply be stated as

n:Name, s:Name∗, pre-ADD(n,s)
∃s′:Name∗ ·post-ADD(n,s,s′)

(See Section 3.5.5 for more details.)

3.5.4 Validating the specification
As already mentioned, the theory extracted from the data model can be used to validate
the model by showing that (formally stated) requirements are logical consequences of the
model. There is also an obligation to show that the data model is internally consistent in
some sense; in particular, it should be shown that:

• initial state declarations are of the appropriate types

• pre-conditions and data type invariants are well-formed formulae (denote Boolean
values)

• post-conditions are well-formed formulae, under the assumption that their corre-
sponding pre-conditions hold

• function definitions agree with their signatures

as well as the usual context conditions and ‘syntactic correctness’ criteria (such as absence
of free variables, and so on). Many of these checks can – and should – be performed fully
automatically, possibly by external tools.

Implementability

Another important way of validating a specification is to show that its operations are im-
plementable in principle. Actual implementation concerns – such as efficiency, target
language, and so on – are questions for the design phase; here we ‘merely’ want to estab-
lish whether an operation can be realized at all. Thus, given an operation specification

OP (arg:ArgType) res:ResType
ext rd r : Type1,

wr w : Type2
pre pre-OP(arg,r,w)
post post-OP(arg,r,↼−w ,w,res)

the implementability proof obligation is

arg :ArgType, r :Type1, ↼−w :Type2,
pre-OP(arg,r,↼−w )

∃w:Type2 · ∃res:ResType ·post-OP(arg,r,↼−w ,w,res)

Note that this form of the proof obligation subsumes the need to check state invariants,
since they have been incorporated into the definitions of Type1 and Type2. In other words,
in addition to showing that there exist w and res such that ‘post-OP(arg,r,↼−w ,w,res)’
holds, the demonstration must show that w and res satisfy the appropriate invariants on
Type1 and Type2, respectively.
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Note also that, having proven implementability in principle, there is absolutely no
obligation to actually implement the operation in any way related to the methods used in
the proof. The only requirement on the implementor is that the operation satisfy its post-
condition whenever it is invoked in a situation where its pre-condition is true. (When the
pre-condition is false the operation is totally unconstrained.) The importance of separating
analysis and implementation phases of the software development cycle cannot be over-
emphasized.

For implicit function definitions there is also an implementability proof obligation.
Thus for example given a function definition

ImplicitFn (arg:ArgType) res:ResType
pre pre-ImplicitFn(arg)
post post-ImplicitFn(arg,res)

the associated proof obligation is

arg :ArgType, pre-ImplicitFn(arg)
∃res:ResType ·post-ImplicitFn(arg,res)

In fact, this result must be proven in an impoverished theory, namely one in which
‘ImplicitFn’ has not been introduced, since otherwise the obligation is trivially true upon
setting res equal to ImplicitFn(arg).

Layered data models

If two or more functions are implicitly defined, the situation becomes even more com-
plicated: they should be put in some order, with the first shown to be implementable
only in terms of primitive and explicitly defined functions, and the rest shown to be im-
plementable in terms of primitive functions, explicitly defined functions and preceding
implicitly defined functions. To formalize all this we would need to define a sequence of
theories, one built on top of another, corresponding to the sequence of implicitly defined
functions. This in turn would require that a VDM specification be defined in layers, to
indicate the sequence of implicitly defined functions.

But all this is moving well beyond the realms of mural and into questions about VDM
itself. Let’s leave the problem there and move on.

3.5.5 Data type reifications
In the standard text on VDM [Jon86], a reification is defined to consist of two specifica-
tions – let’s call them an abstract and a concrete specification – plus a ‘retrieve function’,
which maps elements of the concrete state to elements of the abstract state. (Where the
state is distributed between several data types there will of course be a retrieve function
corresponding to each state.) In this section we start by defining the theory associated
with a reification, and then illustrate the ideas on a small example.

The theory given by a reification

The theory corresponding to a reification – the context in which reasoning about the reifi-
cation takes place – is formed simply by combining the theories of the individual specifi-
cations, together with a definition of the retrieve function. If name clashes occur, where
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the same name has been used to mean different things in the two specifications, one or
both the names must be changed. (This is where a renaming mechanism is sadly lacking
from the mural theory structure.) Of course, sometimes the two names are meant to rep-
resent the same thing (e.g. the primitive type X is common to both specifications in the
example given below) in which case no change is required.

To verify that the reification is correct, certain proof obligations must be discharged. To
illustrate, let’s suppose we have an abstract state State0, a concrete state State1 and a
retrieve function retr. There are four different kinds of proof obligation:

1. The first obligation is to show that the retrieve function is of the correct type: viz.

s:State1

retr(s):State0

2. Next, it must be shown that there are sufficiently many concrete states to represent
all the abstract states (the ‘adequacy obligation’):

σ0:State0

∃σ1:State1 · retr(σ1) = σ0

3. If the abstract specification defines an initial value init0 for the state, the concrete
specification should likewise define an initial state init1, and the retrieve function
should map the concrete value to the abstract value:

retr(init1) = init0

There are also obligations to show that the initial values have the required types.

4. Corresponding to each pair of operations OP0(x:X) and OP1(x:X) – where the latter
is the ‘concrete’ version of the former – there are two proof obligations:

(a) The pre-condition of the concrete operation is weaker than that of the abstract
operation (the ‘domain obligation’):

x:X, σ :State1,
pre-OP0(x,retr(σ))

pre-OP1(x,σ)

(b) The post-condition of the concrete operation is stronger than that of the ab-
stract operation, at least when the latter’s pre-condition is true (the ‘result
obligation’):

x:X, ↼−
σ :State1, σ :State1,

pre-OP0(x,retr(↼−σ )),

post-OP1(x,
↼−
σ ,σ)

post-OP0(x,retr(↼−σ ),retr(σ))

Note that auxiliary functions of the concrete specification might have nothing to do with
the auxiliary functions of the abstract specification, although in practice the retrieve func-
tion will involve a mixture of both.
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An example abstract specification

Consider the following (almost trivial) VDM specification of an operation which takes an
element and, as a side-effect, adds it to the state, where the latter is modelled as a set of
elements.

State0 = X-set

ADD0 (x:X)
ext wr s : State0
pre x /∈ s
post s =↼−s ∪{x}

The operation has as a pre-condition that the element added is not already in the state. This
is the kind of primitive operation that might arise after some more complicated operations
have been decomposed, for example.

Now let’s consider the corresponding theory. The only new constructors it needs are
a new primitive type X and defined type

State0 4 X-set

for the state. In this (very simple) case no additional axioms are required – all the relevant
axioms are inherited from the ‘Theory of VDM Primitives’.

A reification of the example

Now let’s consider a reification of the previous specification in which sets are represented
as non-repeating lists:

State1 = X∗

where

inv-State1(l) 4 is-non-repeating(l)

is-non-repeating :X∗→ B
is-non-repeating(l) 4 ∀i, j ∈ dom l · i 6= j ⇒ l(i) 6= l(j)

ADD1 (x:X)
ext wr l : State1
pre x /∈ elems l

post l = cons(x,
↼−
l )

Note that the reification is itself another specification. It is very similar to the first, but
with a couple of extra design decisions: viz.

• sets are represented as non-repeating lists

• the ADD operation puts its argument onto the front of the list

The corresponding theory has primitive type X, defined type

State1 4 < l:X∗ · is-non-repeating(l)>



3.5 The theory of VDM 89

and defined constant

is-non-repeating(l) 4 ∀i: d̂om l · ∀j: d̂om l · i 6= j ⇒ l at i 6= l at j

(The awkwardness of writing ‘d̂om l’ could be overcome by introducing a new type con-
structor which works directly on lists.) The implementability proof obligation is

x:X,
↼−
l :State1,

x /∈ elems
↼−
l

∃l:State1 · l = cons(x,
↼−
l )

It would be useful to build up a collection of derived rules about the new specification
– as validation exercises for example, or as lemmas to aid in later proofs. Promising
candidates might include the following:

[ ]:State1

x:X, l:State1,
x /∈ elems l

cons(x, l):State1

s:X∗,
card elems s = len s

s:State1

The proof obligations for our example

To show that the second specification is a valid reification of the first we must provide
a retrieve function taking elements of the concrete representation to their counterparts in
the abstract representation. In this case the choice is obvious; we simply map lists to the
set having the same elements:

retr :State1→ State0
retr(σ) 4 elems σ

To build a theory corresponding to the reification we simply take the theories correspond-
ing to the abstract and concrete specifications as parents and add a defined constant for
the retrieve function: viz.

retr(σ) 4 elems σ

No additional axioms are required. The definition should be validated by ‘deriving its
signature’: viz. showing that

σ :State1

retr(σ):State0

The ‘adequacy’ proof obligation is

σ0:State0

∃σ1:State1 · retr(σ1) = σ0

The ‘domain’ and ‘result’ obligations are

. . . ,
x /∈ elems l
x /∈ elems l
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and
. . . ,

x /∈ elems l,

l = cons(x,
↼−
l )

elems l = elems
↼−
l ∪{x}

respectively.

An example proof

Here’s a sketch proof of the adequacy proof obligation for this reification:

from σ0:State0
1 elems [ ] = {} elems axiom1 ()
2 [ ]:State1 lemma0 ()
3 ∃σ :State1 · elems σ = {} ∃-introduction (1,2)
4@x,sfrom x:X, s:X-set, x /∈ s, ∃σ :State1 · elems σ = s
4.1@l from l:State1, elems l = s
4.1.1 x /∈ elems l substitution (4.1.h2,4.h3)
4.1.2 cons(x, l):State1 lemma1 (4.h1,4.1.h1,4.1.1)
4.1.3 elems cons(x, l) = elems l∪{x} elems axiom2 ()
4.1.4 elems cons(x, l) = s∪{x} substitution (4.1.h2,4.1.3)

infer ∃σ :State1 · elems σ = s∪{x} ∃-introduction (4.1.4,4.1.2)
infer ∃σ :State1 · elems σ = s∪{x} ∃-elimination (4.h4,4.1)

5 ∀s:X-set · ∃σ :State1 · elems σ = s set induction (3,4)
infer ∃σ1:State1 · retr(σ1) = σ0 ∀-elimination (h1,5)

The other two proof obligations are left as exercises for the reader.

3.5.6 An example validation
To illustrate the ideas on a more substantial example, let’s see what would be involved
in translating part of the abstract specification of mural itself; we can even try proving
one of the assertions made about it. We’ll look at the abstract syntax (ProtoTerms, etc.)
defined in Section 4.2.3 and prove that the variables which occur among the subterms of
a ProtoTerm, z say, form a subset of allVars(z).

The specification

First let’s pull out the definition of the abstract syntax from Section 4.2.3:

ProtoTerm = ProtoExp | ProtoType

ProtoExp = VSymb | ProtoCompExp | ProtoBindExp

ProtoType = ProtoCompType | ProtoSubType | ProtoDepType

ProtoCompExp :: symb : CESymb
eArgs : ProtoExp∗

tArgs : ProtoType∗
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ProtoBindExp :: symb : DESymb
var : VSymb
univ : ProtoType
body : ProtoExp

etc. . .

Subterms :ProtoTerm→ ProtoTerm-set
Subterms(z) 4

cases z of
VSymb →{z}
mk-ProtoCompExp(c,el, tl)→{z}∪

⋃
{Subterms(x) | x ∈ elems el∪ elems tl}

mk-ProtoBindExp(q,v, t,e)→{z}∪Subterms(t)∪Subterms(e)
...
end

etc. . .
The assertion we shall try to prove is

∀z:ProtoTerm · {v:VSymb | v ∈ Subterms(z)} ⊆ allVars(z)

The corresponding theory

Rather than trying to axiomatize the whole specification in one go, let’s just give axioms
for the functions involved in the statement of the conjecture, then jump straight into a
proof attempt and see what additional axioms will be needed as we go along.

Let’s first consider the Subterms function. To define Subterms directly we would need
to formulate case statements, but as we’ve said before this is too much like hard work.
Instead, it’s much simpler to define Subterms axiomatically by cases: viz.

z:VSymb
Subterms(z) = {z}

z:ProtoCompExp
Subterms(z) = {z}∪

⋃
{Subterms(x) | x ∈ elems eArgs(z)∪ elems tArgs(z)}

z:ProtoBindExp
Subterms(z) = {z}∪Subterms(univ(z))∪Subterms(body(z))

...

Remembering the difficulties with set comprehension (cf. Section 3.4.1), however, it
would seem to be better to introduce a type abbreviation

ArgsOf (z) 4 EnumType(elems eArgs(z)∪ elems tArgs(z))

and to rewrite the second of the axioms above as

z:ProtoCompExp
Subterms(z) = {z}∪{Subterms(x) | x:ArgsOf (z)}

The axiom for ProtoCompType would be treated similarly. We claim that such axioms
can be extracted mechanically from the specification, thereby reducing the possibility of
‘transcription errors’.
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Axioms for the functions bndVars and freeVars would be given similarly, and allVars
would be defined as

allVars(z) 4 freeVars(z)∪bndVars(z)

An induction rule

The other main axiom we’ll need at this stage is an induction rule for ProtoTerms. The
axiom will have as it conclusion

∀z:ProtoTerm ·P[z]

The base case – when z is a VSymb – is given by the sequent hypothesis

{v:VSymb} `v P[v]

There will be five induction cases, corresponding to the other five kinds of ProtoTerm:

ProtoCompExp, ProtoBindExp, etc.

As a first attempt to state the ProtoCompExp case we might write

{c:CESymb, el:ProtoExp∗, tl:ProtoType∗, ∀x ∈ elems el∪ elems tl ·P[x]}
`c,el,tl P[mk-ProtoCompExp(c,el, tl)]

but upon reflection

{z:ProtoCompExp, ∀x:ArgsOf (z) ·P[x]} `z P[z]

is much better. The second induction case could be stated as

{z:ProtoBindExp, P[univ(z)], P[body(z)]} `z P[z]

The other cases are analogous to these two.
With regard to automatic extraction of axioms from specifications, although the above

example is quite straightforward, it’s harder to accept that there might be an algorithm
that finds the most useful form of an induction axiom in every case. More research is
needed here.

The proof

Recall that our aim is to show that

∀z:ProtoTerm · {v:VSymb · v ∈ Subterms(z)} ⊆ allVars(z)

To make the proof easier to understand let’s introduce the following abbreviation for the
variables occurring in z:

occVars(z) 4 {v:VSymb · v ∈ Subterms(z)}

Before going any further with the formalization it would be well worth deriving a few
typing rules, to check what’s been given so far: e.g.

z:ProtoTerm
occVars(z):VSymb-set

z:ProtoTerm
allVars(z):VSymb-set
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Details are left to the reader. (Hint: a good place to start would be to prove

z:ProtoTerm
Subterms(z):ProtoTerm-set

by induction on z. A useful lemma from Set Theory is

s:A-set
{x:B · x ∈ s}:B-set

After that, it’s pretty straightforward.)
Now we’re ready to embark on a proof by induction that

∀z:ProtoTerm ·occVars(z)⊆ allVars(z)

The base case:

For the base case we’re required to prove ‘occVars(v) ⊆ allVars(v)’ for ‘v:VSymb’. A
couple of useful lemmas immediately spring to mind:

v:VSymb
allVars(v) = {v}

v:VSymb
occVars(v) = {v}

The first of these follows easily from the definition of allVars and the relevant axioms for
freeVars and bndVars. The second follows upon unfolding the definition of occVars and
using the relevant axiom for Subterms, plus a lemma from set theory:

s:A-set
{x:A · x ∈ s}= s

(Note that the local hypothesis ‘v:VSymb’ is needed in order to establish the result that
‘{v}:VSymb-set’.) The base case follows from these lemmas and elementary properties
of sets, such as

s:A-set
s⊆ s

In the time-honoured tradition, details are left to the reader.

The induction step for ProtoCompExp:

Assuming ‘z:ProtoCompExp’ and

∀x:ArgsOf (z) ·occVars(x)⊆ allVars(x)

we’re require to prove ‘occVars(z)⊆ allVars(z)’. A useful first lemma would be

z:ProtoCompExp
allVars(z) =

⋃
{allVars(x) · x:ArgsOf (z)}

which follows by unfolding definitions and using a lemma of the form
. . .⋃

{f (x)∪g(x) · x:A}=
⋃
{f (x) · x:A}∪

⋃
{g(x) · x:A}

from Set Theory (with appropriate hypotheses to ensure the sets involved are finite).
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For the other part, upon unfolding the definition and using the defining property of
Subterms(z) we arrive at

occVars(z) = {v:VSymb · v ∈ {z}∪
⋃
{Subterms(x) · x:ArgsOf (z)}}

To eliminate the possibility that v ∈ {z} we’ll need an axiom to say that VSymb and
ProtoCompExp are disjoint types: e.g.

v:VSymb, z:ProtoCompExp
v 6= z

Some more set theoretic manipulations will then simplify the equation to

occVars(z) = {v:VSymb · v ∈
⋃
{Subterms(x) · x:ArgsOf (z)}}

At this stage it might be tempting to search through Set Theory for a rule with conclu-
sion of the form

{x:A · x ∈
⋃

ss}=
⋃
{{x:A · x ∈ s} · s ∈ ss}

but remembering the awkwardness of set comprehension (cf. Section 3.4.1) there’s un-
likely to be a rule in precisely this form. Let’s suppose instead that a search for rules with
conclusion matching

{v:VSymb · v ∈
⋃
{Subterms(x) · x:A}} ⊆ allVars(z)

yields a rule of the form
. . . ,

{s ∈ ss} `s {x:A · x ∈ s} ⊆ t
{x:A · x ∈

⋃
ss} ⊆ t

This seems promising, since it will generate a new subproof (Box) with box variable s and
local hypothesis

s ∈ {Subterms(x) · x:ArgsOf (z)}

from which we are required to show

{v:VSymb · v ∈ s} ⊆ allVars(z)

Now s must equal Subterms(x) for some x:ArgsOf (z), and

{v:VSymb · v ∈ Subterms(x)}= occVars(x)⊆ allVars(x)⊆ allVars(z)

so let’s try this rule. Later on we’ll review this decision to see if we couldn’t do better.
Following the sketch above, to start off the subproof we would use the lemma

. . . ,
b ∈ {f (x) · x:A}
∃x:A ·b = f (x)

and ‘∃-elimination’ to generate a new subproof with box variable x, local hypotheses

x:ArgsOf (z), s = Subterms(x)
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and goal ‘{v:VSymb · v ∈ s} ⊆ allVars(z)’. Now we can apply ‘∀-elimination’ to the
induction hypothesis to get

occVars(x)⊆ allVars(x)

All that’s required to finish off the subproof would be some manipulations using the
lemma on allVars(z) above plus a lemma

ss:(A-set)-set, s ∈ ss
s⊆

⋃
ss

This finishes this particular induction step.
It’s interesting to go back and review the step where we gave up the simplification of

occVars(z). If we had been able to get

occVars(z) =
⋃
{occVars(x) · x:ArgsOf (z)}

then we could have used a lemma such as

. . . ,
∀x:A · f (x)⊆ g(x)⋃

{f (x) · x:A} ⊆
⋃
{g(x) · x:A}

to finish the proof more directly.18 A little reflection shows that the appropriate simplifi-
cation lemma would have conclusion of the form

{u:A ·u ∈
⋃
{f (v) · v:B}}=

⋃
{{u:A ·u ∈ f (v)} · v:B}

The appropriate typing hypotheses are left as an exercise for the reader.

The other induction cases

. . . are similar. In fact, they are so similar that the person verifying the original assertion,
having completed the case for ProtoBindExp, can have a fair degree of faith that the
conjecture is true. If necessary, tactics could be extracted from the first two induction
cases and applied to the other three.

3.6 Some other logics
In this section we turn briefly to some logics which try to overcome some of the perceived
limitations of First Order Predicate Calculus. We start by formulating the dependently-
typed Lambda Calculus, which is then extended to full higher order logic (including quan-
tification over functions). There is a brief digression into the fascinating correspondence
between propositions in Intuitionistic logic and types, whereby proofs are thought of as
values of the propositions they establish. The section finishes with discussions of Modal
Logic and Hoare Logic.

18In fact, the typing hypotheses of such a lemma are quite horrendous. A simpler – but slightly less direct
– formulation would be

s:B-set, ∀x:A · f (x)⊆ s⋃
{f (x) · x:A} ⊆ s

with s instantiated by allVars(z).
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3.6.1 Lambda calculus
To show that higher order concepts can be formalized in mural we present an axiom-
atization of the dependently-typed lambda calculus. This is an extension of Church’s
Simply Typed Lambda Calculus [Chu40] by the notion of dependent products, which are
a richer way of expressing types of functions than the usual function space constructor ‘
→’.19

Signature

Let ‘Lambda Calculus’ be the theory with ‘Equality’ (cf. Section 3.2.1) as parent, and
signature consisting of the following primitives:

• constant ‘:’ for the typing relation (infixed)

• dependent type symbol ‘Π’ for dependent products

• constant ‘.’ for function application (infixed)20

• binder ‘λ ’ for lambda abstraction

and definition
A→ B 4 Πx:A ·B

for the function space constructor.

Informally:

• ‘f .a’ represents the result of applying function f to value a

• ‘λx:A ·F[x]’ stands for the function which maps elements x of A to F[x]

• ‘Πx:A ·B[x]’ consists of all (total) functions from A to B[x]

• ‘A→ B’ consists of all (total) functions from A to B

Dependent products are more expressive than the usual function space constructor ‘→’
since the type of the range may depend on x; thus for example

Πn:N·< m:N · (m≥ n)>

consists of functions f such that f (n)≥ n for all n:N.

19Dependent products are sometimes known as general (Cartesian) products or dependent function
spaces. Confusingly enough, in NuPRL [C+86] they are called dependent function spaces, while dependent
product means something quite different (dependent sum).

20The more usual concrete syntax declaration for function application would be ‘[[e1]]([[e2]])’: i.e., ‘f .a’
would usually be displayed as ‘f (a)’. The dot notation is used here to make it more obvious when a function
is being applied to a value; in particular it avoids any ambiguity about the arity of f . Free use will be made
of currying.
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Axioms

The axioms of the dependently-typed λ -calculus can be stated as follows:

1. abstraction formation:
{x:A} `x F[x]:B[x]

(λu:A ·F[u]) : (Πv:A ·B[v])

2. application formation:
a:A,

f :(Πx:A ·B[x])
f .a : B[a]

3. extensionality:
{x:A} `x F[x] = G[x]

(λu:A ·F[u]) = (λv:A ·G[v])

4. β -conversion:
a:A

(λx:A ·F[x]).a = F[a]

5. η-conversion:
f :(Πx:A ·B[x])
(λx:A · f .x) = f

There are usually side-conditions on the last two rules, but they are handled by the treat-
ment of variable binding in mural . Thus for example: in the rule for β -conversion, the
requirement that variables free in F do not get captured by λx is automatically ensured by
the instantiation mechanism (since the dummy variable x will get renamed appropriately).
The rule for η-conversion usually has two side-conditions: namely, that f is a function
and x does not occur free in f . The first of these is ensured by the hypothesis; the second
is similar to the case for β -conversion.

We won’t go into examples of the use of the lambda calculus as there are plenty of good
textbooks around (e.g. [Jon87c]). When this theory is extended by appropriate primitives
for arithmetic, say, we can derive typings such as

(λx:N · x2 + x+1) : N→ N

Remarks:

Great care must be taken if extending the dependently-typed lambda calculus with sub-
typing, as there are many traps for the unwary. For example, if A is a subtype of C and f :C
→ B then at first sight it might seem reasonable that f :A→ B. This would however be
inconsistent with η-conversion and the axioms of equality, since one could infer e.g.

idA = (λx:A · idA.x) = (λx:A · idC.x) = idC

yet idA cannot be applied wherever idC can and hence cannot be said to be truly equal to
it.
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3.6.2 Higher order logic
Higher order logic differs from first order logic in that it allows quantification over func-
tions, functions of functions, and so on. As a logic it is problematic however, since it is not
even recursively axiomatizable. (See the chapter by van Benthem and Doets in [GG83]
for a summary of most of what is known about higher order logic and its problems.)

We can nevertheless give a useful partial formulation by adding a primitive type Prop
(of ‘propositions’) and appropriate logical constants to the lambda calculus. Then e.g. ∧
and ∀ can be constants with types

∧:Prop→ (Prop→ Prop)

∀:(A→ Prop)→ Prop

where ‘∀(λx:A · P)’ stands for ‘∀x:A · P’. (Note that ∀ is a primitive constant, not a
primitive binder, in this formulation.)

A suitable axiomatization of these ‘constants’ would allow us to state and prove
‘higher order’ results such as

∀f :N→ N · ∃n:N · f (n+1)≥ f (n)

∀f :A→ B · (∀x,y:A · x 6= y ⇒ f (x) 6= f (y)) ⇒ ∃g:B→ A ·g◦ f = idA

This is the approach taken in HOL [Gor85]. (See §D4 of [Bar77] for a similar approach.)

3.6.3 Propositions as types
Church introduced the Lambda Calculus to describe function application (.) and function
abstraction (λ ). Types were added to avoid problems associated with self-application,
so that ‘f .a’ is well-formed (typable) only if f is an expression of type A→ B and a is
an expression of type A (for some A and B); thus e.g. ‘E.E’ is not well-formed. Finally,
dependent products were introduced when the ‘propositions-as-types’ analogy was dis-
covered (by Curry and others), as will be explained below.

Under the propositions-as-types analogy, proofs are thought of as values of the propo-
sitions they establish. (Here we are talking about proofs abstractly, not as mural Proof
objects.) When appropriately extended with pairing, type union, etc, the dependently-
typed lambda calculus provides a formalization of intuitionistic (‘constructive’) predicate
calculus. The interested reader is referred to [Mar75] or [C+86] for more details: only the
main ideas will be sketched here.

To start with an easy example, suppose that p1 is a proof of ‘P1’ and p2 is a proof of
‘P2’; then taken together p1 and p2 constitute a proof of ‘P1∧P2’, and we can write

p1:P1, p2:P2
(p1,p2):P1∧P2

But this is looks just like the law for pairing (cf. Section 3.3.4) if ‘P1∧P2’ is thought of
as ‘P1×P2’. Similarly, we can identify ‘P1 ∨ P2’ with the type union ‘P1 | P2’. From
here it takes only a small conceptual leap to identify ‘P1 ⇒ P2’ with ‘P1→ P2’. That
is, a proof of ‘P1 ⇒ P2’ is a function taking a (hypothetical) proof of ‘P1’ to a proof of
‘P2’; or in other words, it’s a way of showing that ‘P2’ holds, given the assumption that
‘P1’ holds. The Deduction Theorem

{P} ` Q
P ⇒ Q
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corresponds exactly to the rule for simple function abstraction:

{p:P} ` q:Q
(λp:P ·q) :P→ Q

To get the rest of the propositional connectives we can identify ‘false’ (contradiction) with
the empty type (since after all, ‘false’ has no proofs) and define

¬ P 4 P ⇒ false

(since under the intuitionistic interpretation of negation, ‘¬ P’ amounts to saying that ‘P’
leads to a contradiction).

The analogy gives a very natural interpretation of intuitionistic propositional calculus.
The obvious next question is whether it can be extended to the predicate calculus. What
would be the analogue of ‘∀x:A ·P’ for example? Now, proving ‘∀x:A ·P[x]’ amounts to
showing that P[x] can be proven for all x in A. To the intuitionists this means supplying a
function which, given x:A, yields a proof of P[x].

Dependent products are just the solution required! We simply identify the proposition
‘∀x:A ·P[x]’ with the type ‘Πx:A ·P[x]’. (Note that ordinary function spaces aren’t good
enough since they don’t capture the fact that the type P[x] depends on x.) Under this
analogy, the axioms for ∀

{x:A} `x P[x]
∀x:A ·P[x]

a:A, ∀x:A ·P[x]
P[a]

become exactly the laws for function abstraction and function application given above.
Dependent types and the propositions-as-types analogy were used to implement intu-

itionistic logic in the AUTOMATH system [dB80]. The analogy has been studied inten-
sively by Per Martin-Löf and his followers, and has been extended to a full Intuitionistic
Type Theory [Mar75, Mar85, NPS90]. Related type theories serve as the basis of NuPRL
and ELF.

In a programming context, a further extension of the analogy is possible, whereby pro-
gram specifications are identified with types (or propositions) and programs are identified
with values. In this way, Intuitionistic Type Theory can be regarded as a full programming
language (with β -reduction corresponding to evaluation). This allows e.g. programs to be
extracted directly from proofs that their specifications are implementable. The interested
reader is referred to [C+86] for more details.

3.6.4 Modal logic
Let’s now turn to a Natural Deduction formulation of a logic in which the modalities
‘necessarily’ and ‘possibly’ are formalized. Following the usual convention, we shall
write ‘�p’ for ‘p is necessary’ and ‘♦p’ for ‘p is possible’.

As an example of the use of such modalities, given an expression e of propositional
calculus, ‘�e’ might be interpreted as saying e is a tautology (‘e is necessarily true’). Thus
e.g. ‘p ⇒ p ∨ q’ is necessarily true, in that it holds for all values of p and q, whereas ‘p
⇒ q’ is only contingently true, since there are cases when it is true and others when it is
false.

Another example use of modalities is to interpret them in a temporal sense: viz. �p
means that p is true at all times in the future, and ♦p means that p is true at some time
in the future. Modal logics are also useful for reasoning about knowledge and actions:
cf. [Ram88].
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The axiomatization

In [Pra65] Prawitz gives two different formulations of modal logic. In this section we’ll
study the simpler of the two (S4), although the other can be treated very similarly. We
first extend Propositional Calculus by primitive constant ‘�’ and defined constant

♦p 4 ¬�¬p

A formula of the form ‘�q’ will be called a modal formula; these are in some sense the
necessary truths.

The axioms defining � are:

1. ‘� introduction’ p
�p

where the assumptions on which p depends are modal formulae21

2. ‘� elimination’
�p
p

Note the side condition on ‘� introduction’: clearly some kind of condition is required,
since otherwise from the truth of any specific p could be derived the necessity that p
always holds – which is patently not the intended interpretation of �. Roughly, if p
follows from necessary truths only, then there is nothing contingent about p, and �p can
legitimately be inferred. Of course, other interpretations of modal logic are possible and
lead to different side conditions.22

In mural , side-conditions could be written as extra pieces of code to be evaluated
by the proof checker. In terms of Section 4.7.5 this would mean adding a clause to the
Is-properly-justified predicate on the relevant RuleJustif s. Formally, the condition

∀fmla ∈ Assumptions(l,pf ) · fmla:CompExp0∧ symb(fmla) = d�e

would be added to the test Is-properly-justified(l,pf ) for each line l in proof pf which is
justified by an instance of ‘� introduction’, where dxe is the CESymb spelt x.

Example derivations

(1) Here’s an example proof:

21The assumptions on which a line depends are all those undischarged hypotheses and unjustified lines
in the transitive closure of the antecedent relation: see Section 4.7.7 for full details.

22e.g. in the other formulation (S5) of modal logic in [Pra65], the side condition is relaxed to allow also
negations of modal formulae. [AHM87] contains an alternative formalization of S4 – which translates easily
into the mural setting – in which the side-condition is formulated directly in the theory, rather than being
coded into the proof checker. The main advantage of such an approach is that is does not require extra code
to be written for the proof-checker, which lessens the risk of corruption of the latter; the main disadvantage
is that proofs are much longer and far less intuitive.
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from �p, �q
1 p � elimination (h1)
2 q � elimination (h2)
3 p∧q ∧ introduction (1,2)
infer �(p∧q) � introduction (3)

The use of ‘� introduction’ is valid since the assumptions on which the conclusion ulti-
mately depends – namely, �p and �q – are modal formulae.

As an aside, it’s interesting to note the ‘shape’ of the proof, consisting of applications
of elimination rules followed by applications of introduction rules. This basic shape arises
surprisingly often and so is a prime candidate for turning into a tactic. The interested
reader is referred to [Pra65] for an explanation of this phenomenon, plus general ‘normal
form’ results for proof shapes.

(2) A more interesting proof is that of ‘♦ elimination’:

from �(p ⇒ q), ♦p
1 p ⇒ q � elimination (h1)
2 ¬�¬p unfolding (h2)
3 from �¬q
3.1 ¬q � elimination (3.h1)
3.2 ¬p contraposition (1,3.1)
3.3 �¬p � introduction (3.2)

infer false contradiction (3.3,2)
4 ¬�¬q otherwise contradictory (3)
infer ♦q folding (4)

Note that line 3.3 is valid since the assumptions on which it depends – namely�(p ⇒ q)
and �¬q – are modal formulae. Line 3.3 does not depend on hypothesis h2.

(3) The reader might like to try to derive the following rules:

�p
��p

�(p∧�q)
�(q∧�p)

p
♦p

�(p ∨ q), �(p ⇒ q)
�q

♦p ∨ ♦q
♦(p ∨ q)

(Hint for the last one: first prove �(p ⇒ p ∨ q).)

3.6.5 Hoare logic
This section briefly outlines how a ‘Hoare logic’ of program triples could be formulated
in mural . We form a new theory by extending Predicate Calculus and appropriate data
type theories by primitive constants as follows:

• ‘{_}_{_}’ for Hoare triples

• ‘skip’ for the trivial program (do nothing)

• ‘_ ;_’ for sequential composition of programs
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• ‘if _ then _ else’ for ‘if-statements’

• ‘while _ do _’ for ‘while-statements’

• ‘_ := _’ for assignment of values to program variables

Intuitively, ‘{p} S {q}’ means that, if ‘p’ holds before program S is executed, then ‘q’
holds afterwards.

The Hoare axioms for skip, composition and weakening are:

{p} skip {p}

{p} S1 {q}, {q} S2 {r}
{p} S1;S2 {r}

p′ ⇒ p, {p} S {q}, q ⇒ q′

{p′} S {q′}

If- and while-statements

The axioms for if- and while-statements are:

{p∧g} S1 {q}, {p∧¬g} S2 {q}
{p} if g then S1 else S2 {q}

{p∧g} S {p}
{p} while g do S {p∧¬g}

Of course, only partial correctness can be guaranteed by the latter rule: i.e., the rule does
not guarantee that the program loop ‘while g do S’ terminates in a finite number of steps.
If instead the reasoning is to be about total correctness, appropriate well-founded relations
should be added to the triples: cf. [Gri81, Jon86].

Of course, guards in if- and while-statements should be ‘executable’, and so should
not involve quantifiers, for example. One way of precluding nonsensical instantiations
of g in the above rules would be to introduce a new primitive type ‘Be’ (standing for
executable boolean expressions) and to add axioms

true:Be
p:Be

(¬p):Be
p:Be, q:Be

(p ∨ q):Be
a:A, b:A
(a = b):Be

m:N, n:N
(m≤ n):Be

and so on – one for each primitive constant representing an executable predicate. Corre-
sponding rules for defined logical connectives (∧, ⇒ , etc) and defined predicates ( 6=, etc)
can be deduced from the above. The axioms for if- and while-statements then become:

g:Be, {p∧g} S1 {q}, {p∧¬g} S2 {q}
{p} if g then S1 else S2 {q}

g:Be, {p∧g} S {p}
{p} while g do S {p∧¬g}

For brevity of proof, however, the unrestricted forms of these rules will be employed in
the example below.
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Program variables and the assignment statement

But how shall program variables be represented?
It’s not appropriate to use logical variables, since for example program variables do

not α-convert. In this simple formulation we shall only consider global (program) vari-
ables, so it is generally safe to represent them as logical constants. Certainly their values
change during execution of a program, but Hoare reasoning deals with ‘snapshots’ of a
program’s execution, and in each such snapshot the value of a program variable is fixed.
The example below should convince the reader that this is a reasonably natural solution.
For reasons which will become apparent below, however, program variables should never
be used in definitions.

The axiom for assignment to program variable x is

{P[e]} x:= e {P[x]}

where x does not occur in (the instantiand of) P.
For example,

{e 7→ 0, P[y] 7→ x 6= y}
is not a valid instantiation for this rule: it would lead to the patently false conclusion

{x 6= 0} x:= 0 {x 6= x}

As usual, the proof-checker must be modified to meet this side-condition. In terms of
Section 4.7.5 the clause

dxe /∈ Subterms(eInst(instn(justif (l)))(dPe))

should be added to the definition of Is-properly-justified(l,pf ) for any line l in proof pf
which is justified by the above rule. Note that this formulation assumes that program vari-
ables are always used explicitly and never implicitly (such as in a definition) – otherwise
the restriction could be circumvented by defining say c(y) 4 x 6= y and instantiating P[y]
by c(y).23

The assignment axiom extends easily to multiple assignments: e.g.

{P[e, f ]} x,y:= e, f {P[x,y]}

where x and y do not occur in P.24 A separate axiom must be introduced for each pair
(x,y) of distinct program variables. An alternative approach would be to introduce a
predicate for recognizing program variables, and to condense all the various axioms into
a single scheme

Is-prog-var(a), Is-prog-var(b), a 6= b
{P[e, f ]} a,b:= e, f {P[a,b]}

(where a and b are metavariables) with an appropriately redefined side-condition. Of
course, it is then necessary to introduce axioms to the effect that Is-prog-var(x), x 6= y,

23An alternative approach is to formulate the side condition directly in the theory by introducing a pred-
icate which confirms that a given program variable is not used in a given term: cf. [AHM87].

24The comma ‘,’ is being used in two ways in this rule: as the (object level) pairing operation in the
assignment statement (twice); and as the (metalevel) separator for the arguments to the metavariable P.
Hopefully no confusion will result.
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etc. If only a handful of program variables will be needed it doesn’t seem worth going to
this much bother.

Finally, if program variables have declared types, the assignment axioms can be mod-
ified appropriately: e.g. if x:N then

e:N
{P[e]} x:= e {P[x]}

Some derived rules

We’ll make use of the following derived rules in the example below

p ⇒ q
{p} skip {q}

{p} S {q}, q ⇒ p′, {p′} S′ {q′}
{p} S;S′ {q′}

p ⇒ p′, {p′} S {q}
{p} S {q}

where they are called ‘lemma1’, ‘lemma2’ and ‘lemma3’ respectively.

An example program

As an example, consider the following program P:

m, j:= a(1),1;
while j 6= N do (j:= j+1; if m < a(j) then m:= a(j) else skip)

We show below that P finds the largest element in an array a of natural numbers, indexed
from 1 to N; formally:

0 < N
{true} P {m = max i: [1..N] ·a(i)}

We first form a theory of this program. Array a is represented as a primitive constant
taking a single argument. The constant N and program variables m, j are similarly rep-
resented as primitive constants (without arguments). All we need to know about these
‘constants’ is given in the following axioms:

1≤ i, i≤ N
a(i):N N:N m:N j:N

We’ll define a binder max to represent the maximum value generated by expression
f [i] as i ranges over a type A; formally:

max i:A · f [i] 4 ι x:N · (∃i:A · x = f [i]∧∀j:A · f [j]≤ x)

where ι is the ‘unique choice’ operator introduced in Section 3.2.5. As used below, A will
be a finite type and f [i] will be an expression which yields a natural number for each i in
A, so max denotes a finite value.

Finally, to make the proof go through we’ll need a loop invariant:

I(x,y) 4 1≤ y≤ N∧ x = max i: [1..y] ·a(i)
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It’s also convenient to have an abbreviation for the loop body:

S(x,y) 4 y:= y+1; if x < a(y) then x:= a(y) else skip

Note that x and y are formal parameters in these definitions.

Figure 3.3 is a (rigorous) proof that, for 0 < N, program P finds the largest element in
array a and assigns it to m.

from 0 < N
1 true ⇒ I(a(1),1) obvious (h1)
2 {I(a(1),1)}

m, j:= a(1),1
{I(m, j)} assignmentm,j ()

3 I(m, j)∧ j 6= N ⇒ I(m,(j+1)−1)∧ j≤ N obvious ()
4 {I(m,(j+1)−1)∧ j+1≤ N}

j:= j+1
{I(m, j−1)∧ j≤ N} assignmentj ()

5 {I(m, j)∧ j 6= N}
j:= j+1
{I(m, j−1)∧ j≤ N} lemma3 (3,4)

6 I(m, j−1)∧ j≤ N∧m < a(j) ⇒ I(a(j), j) obvious ()
7 {I(a(j), j)} m:= a(j) {I(m, j)} assignmentm ()
8 {I(m, j−1)∧ j≤ N∧m < a(j)}

m:= a(j)
{I(m, j)} lemma3 (6,7)

9 I(m, j−1)∧ j≤ N∧¬(m < a(j)) ⇒ I(m, j) obvious ()
10 {I(m, j−1)∧ j≤ N∧¬(m < a(j))}

skip
{I(m, j)} lemma1 (9)

11 {I(m, j−1)∧ j≤ N}
if m < a(j) then m:= a(j) else skip
{I(m, j)} if-rule (8,10)

12 {I(m, j)∧ j 6= N} S(m, j) {I(m, j)} sequential composition (4,11)
13 {I(m, j)}

while j 6= N do S(m, j)
{I(m, j)∧¬(j 6= N)} while-rule (12)

14 ¬(j 6= N) ⇔ j = N ¬ 6=-rule ()
15 {I(m, j)}

while j 6= N do S(m, j)
{I(m, j)∧ j = N} substit of equivs (14,13)

16 {I(a(1),1)} P {I(m, j)∧ j = N} sequential composition (2,15)
17 I(m, j)∧ j = N ⇒ m = max i: [1..N] ·a(i) obvious ()
infer {true} P {m = max i: [1..N] ·a(i)} weakening (1,16,17)

Figure 3.3: Verification of program P
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Remarks:

1. To be honest, throughout the proof liberal use has been made of folding of defini-
tions without stating the justification.

2. It is vital to the validity of lines 3 and 6 that j and m do not occur in the definition
of I.

3. Lines 6 and 9 would be a good ones to check in more detail.



Chapter 4

Foundation

This chapter presents the formal foundations of the mural proof assistant, in the form of
a ‘walk’ into the mural specification (Appendix C). To understand the need for a sep-
arate chapter, a little of the history of the development of mural should be explained.
As would be expected, our concept of mural evolved as the project progressed and as
we experimented with different styles of user interface and different logical frames. The
VDM specification was used as the repository for our ideas, and as the vehicle for any
major changes to the functionality of the system; at any time we had clearly stated objec-
tives for what we wanted to build. But as a result, the full specification is large, poorly
structured and virtually impossible for a newcomer to come to grips with easily. This
chapter (hereafter called the Walk) attempts to redress the problem. The chapter ‘Instanti-
ation’ (Chapter 3) was written as an accompanying paper, containing plenty of examples
illustrating various points raised during the Walk.

4.1 Preamble
The Walk is an attempt to write an informal development of the mural specification from
a very abstract level, through a number of steps introducing essentially orthogonal con-
cepts, down to the level of version 2.2 of the full specification (Appendix C). It was
done as a way of explaining the formal underpinnings of the system, by having some-
thing reasonably formal on which to hang the explanation. It’s not supposed to be a
formal development, nor is it an historical development. It does however include many
internal consistency checks – in the form of facts which should be deducible from the
information provided – to clarify the specification-writers’ intentions; some of these facts
are especially useful in later sections. And of course, it’s written in VDM. The need to
simplify and unify concepts has meant that this chapter differs from the full specification
in certain details, and in its levels of abstraction, although the spirit has been zealously
guarded. Differences between the Walk and the full specification are summarized briefly
in Section 4.10.

The reader is expected to be familiar with VDM. The Walk differs from many other
VDM specifications in that it is not a single monolithic whole with clearly distinguished
levels of abstraction. No attempt is made to refine data representations, nor to decom-
pose operations. As more concepts are introduced the further we walk into the specifi-
cation, some data types need to be extended. In particular, record types will sometimes
be extended by extra fields and invariants. Auxiliary functions on such types have been
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carefully defined in terms of destructors (field selectors), so that they carry through un-
changed. To keep track of where new concepts are introduced, types will sometimes be
given numeric subscripts. When no subscript is present, the ‘latest’ definition is the rele-
vant one – so the definition changes the further one walks into the specification. (These
rather ad hoc extensions to the language seemed to be the easiest way to modularize the
specification, in the absence of any more appropriate modularization mechanism in VDM
– or most other specification languages for that matter.)

In fact, most extensions are conservative, in the sense that nothing essentially new
can be deduced about the extended type – other than properties which explicitly involve
the new fields, of course. Such extensions do not change the ‘semantics’ of anything that
came before; in this sense we are trying to capture something far more structured than
Z schemas, for example. In its way, the result is a kind of formal development, with
‘forgetful’ retrieve functions.

Sections 4.2 to 4.4 describe the mural syntax up to and including inference rule
schemas and instantiation. Section 4.5 describes how the collection of rules is organized
into a theory hierarchy, how rules can have different status (from ‘conjecture’, through
‘rigorously established’, to ‘established from first principles’), and how rules depend on
one another. Section 4.6 introduces theory signatures and defines the well-formed terms
over a syntactic context. The next section explains the mural proof model and shows that
it correctly captures the notion of Natural Deduction proof. Section 4.8 treats an advanced
topic (theory morphisms) and can easily be skipped on first reading.

Section 4.9 specifies and develops a pattern-matching operation for the mural syntax;
an (informal) verification shows that the development is correct and that the resulting
algorithm is in some sense complete. Section 4.10 explains briefly how the Walk differs
from the full specification in Appendix C, both in terminology and content. Finally, the
last section explores the limitations of the mural approach and suggests where further
work could profitably be done.

The author would like to thank the rest of the mural team for the many useful discus-
sions and comments which helped shape this document. Special thanks are due to Richard
Moore for co-writing the full specification on which this is based. Michel Sintzoff, Lock-
wood Morris and Tim Clement also made significant contributions (by way of questions
and comments) for which the author is very grateful.

4.2 Syntax

4.2.1 Informal treatment
The mural abstract syntax was explained informally in Chapter 3, but it is summarized
here for convenience.

Atomic symbols

The atomic symbols in our syntax are taken from the following classes:

• VSymb – for variables.

• CESymb – for constants, functions, operators, predicates, relations and metavari-
ables, all at ‘expression’ level; we’ll call them expression constructors or more
simply constants.
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• DESymb – for quantifiers and other symbols (at expression level) that bind vari-
ables; we’ll call them dependent expression symbols or more simply binders.

• CTSymb – for constants, functions, operators and metavariables at ‘type’ level;
we’ll simply call them type constructors.

• DTSymb – for symbols (at type level) that bind variables; we’ll simply call them
dependent type symbols.

Abstract syntax

In Extended BNF (Backus-Naur Form), the syntax is roughly:

Term = Exp | Type
Exp = VSymb

| CESymb{Exp}{Type}
| DESymb VSymb‘:’Type‘·’Exp

Type = CTSymb{Exp}{Type}
| DTSymb VSymb‘:’Type‘·’Type
| ‘<’VSymb‘:’Type‘·’Exp‘>’

In other words, expressions are built up from variables using two kinds of combinators:

• compound expressions, whereby a constant is ‘applied’ to (possibly empty) lists of
expressions and types (called its operands, or ‘arguments’);1

• binder expressions, whereby a binder is supplied with a dummy variable (the ‘vari-
able it binds’), a type (the ‘universe’ of the bound variable) and an expression (the
‘body’ of the binder expression).

Types are built up using three kinds of combinator:

• compound types, whereby a type constructor is applied to expression and type ar-
gument lists;

• dependent types, whereby a dependent-type symbol is supplied with a dummy vari-
able and two types (the ‘universe’ of the bound variable, and the ‘body’ of the
dependent type, respectively);

• subtypes of given types, specified by giving a dummy variable, the ‘universe’ over
which it ranges (a Type), and a predicate (an Exp).

(Certain context conditions will be imposed on the syntax at later stages.) No distinction
is drawn between formulae and terms in mural .

1Compound expressions are called OExps in the mural system. Different names were used here to avoid
potential confusion with the full specification: see Section 4.10 for more details.
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Concrete syntax

In mural , the user can specify the display form of symbols by supplying a simple ‘tem-
plate’. For example, it’s easy to tell the system that an expression which would be written
as ITE P a b in our abstract syntax, should be displayed as

if P then a else b

This makes it possible to closely approximate the concrete syntax used by many for-
malisms, which in turn makes formulae much easier to read. At the same time, formulae
are structured objects for which an (abstract-) syntax-directed editor is provided. We
shall make no attempt here to specify the concrete syntax facility, although all the exam-
ples given below make use of it (for legibility). Likewise, no attempt is made to formalize
precedence, associativity, etc.

4.2.2 Substitution
The ability to substitute one term for another is an important feature of most logical cal-
culi, and is thus a facility a logical frame must provide. It is also where mural differs
from most other logical frames, so some words of explanation are necessary.

In logic textbooks, substitution is traditionally handled by having an explicit substitu-
tion operator [./.]. But substitution problems generally fall into one of two fundamentally
distinct categories, as illustrated by the following two laws of inference:

• substitutivity of equals, whereby Q is deduced from a = b and P, where Q is the
result of replacing one or more occurrences of a in P by b;

• specialization, whereby Q is deduced from a:A and ∀x:A ·P, where Q results from
P by replacing all free occurrences of x by a.

The first ‘law’ is actually too vague to be formalized directly – it hides information
(namely, exactly which occurrences are to be replaced) which the user would typically
have to supply in a ‘rule-driven’ proof editor as envisaged for mural . The second law
does not suffer the same ambiguity, however, and is often expressed simply by writing
(something like) P[a/x] for Q.

The main disadvantage with having an explicit substitution operator is that it obscures
syntactic equivalence. For example, for any expression P, ¬(P[x/y]) is exactly the same
as (¬P)[x/y] (where the parentheses are used simply to show order of ‘application’).
Similarly, P[x/y][y/x] is syntactically equivalent to P, provided x does not occur free in
P. As a result, it is very difficult to specify – let alone implement – pattern-matching and
other algorithms which work on expressions when the latter can contain uses of [./.].

The approach adopted by AUTOMATH [dB80] and several modern proof assistants
(e.g. HOL [Gor85], ELF [HHP87], Isabelle [Pau86]) is to base the syntax on (variants
of) λ -calculus and to treat substitution as function application. In such an approach, the
above rules would be expressed as

a = b, P(a)
P(b)

a:A, ∀x:A ·P(x)
P(a)

where P can be instantiated by a ‘boolean-valued’ function. For example, when instanti-
ated by

{a 7→ [7,3,4], A 7→ N∗, P 7→ λ z:N∗ · rev(rev(z)) = z}
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the second law becomes

[7,3,4]:N∗, ∀x:N∗ · rev(rev(x)) = x
rev(rev([7,3,4])) = [7,3,4]

upon β -reducing. (Syntactic equivalence is thus αβη-equivalence.) This makes for a
very elegant solution, and even allows binders to be treated as (higher order) functions:
e.g.

∀:(A→ Proposition)→ Proposition

where ∀(λx:A ·P) stands for ∀x:A ·P.
The λ -calculus approach is an excellent way of formalizing substitution, and is good

for formalizing mathematical syntax generally, hence its use for Logical Frames.2 From
mural ’s point of view, however, this approach has a major drawback: pattern-matching
and unification are difficult, if not impossible. (Higher order unification is undecidable in
general. Indeed, most general unifiers are not even guaranteed to exist, even when unifi-
cation is possible; in some cases infinitely many essentially-different unifiers result. The
decidability of h.o. matching seems to still be an open question.) Despite these problems,
Larry Paulson has implemented a theorem prover – Isabelle [Pau86] – based around a
lazy version of Huet’s h.o. unification algorithm.

The designers of mural were well aware of the λ -calculus approach from an early
stage in the project. Upon inspecting the formulation of the target logics3 in λ -calculus,
we soon recognised that only very limited use is made of the full h.o. capabilities on
offer. Upon further investigation it became apparent that an intermediate solution was
feasible – essentially one that uses the principle of substitution as function application,
but which restricts how (meta-level) functions can be formed. Complete pattern-matching
then became possible, and even a (limited form of) unification could be given.4

The mural approach to substitution uses the fact that, in our syntax, metavariables
can take arguments. Full details are deferred until the discussion of instantiation in Sec-
tion 4.4, but to illustrate briefly: the law of specialization would be written

a:A, ∀x:A ·P[x]
P[a]

and the relevant instantiation would be expressed as

{a 7→ [7,3,4], A 7→ N∗, P[z] 7→ rev(rev(z)) = z}

The instantiation mechanism is specified in such a way as to preclude capture of free
variables. It’s important to note that it is still possible to express (and reason about) higher
order logics in mural (cf. Section 3.6.1). The main difference is that β - and η-conversion
are not done automatically in mural , although it would be feasible to write a tactic to do
such things.

2See [AHM87] for a large collection of logics that have been formalized in ELF using this approach.
The report [Lin87c] compares various logical frames and notes some other limitations of the λ -calculus
approach, such as the need for strong typing and a fixed type structure.

3The class of logics targeted for mural support is described in [Lin87c]. These include first order
predicate calculi (classical, constructive and LPF), many sorted equational logic and Hoare logics.

4A complete matching algorithm is specified, developed and proven correct in Section 4.9. At the time
of writing we haven’t yet explored whether provision of a full algorithm is possible for our syntax.
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It soon becomes obvious to the user that pattern-matching is an extremely important
component of the mural modus operandi. At any stage in a proof the user can typically
ask to see a complete, finite set of rule instances from which to choose. In this author’s
opinion, this is one of the factors which makes mural very much easier to understand and
use than other existing logical frames.

4.2.3 Formal treatment
Now for a more formal definition of the syntax.

Primitive types

In this specification VSymb, CESymb, DESymb, CTSymb and DTSymb are taken to be
primitive types: viz. mutually disjoint infinite sets of structureless tokens. (In the full
specification some of these are further split up: e.g. within CESymb, metavariables are
distinguished from ordinary constants.)

The proto-syntax

As already indicated, we intend to impose certain context conditions on the abstract syn-
tax. In the meantime we can translate the ‘proto-syntax’ directly into VDM as follows:

ProtoTerm = ProtoExp | ProtoType

ProtoExp = VSymb | ProtoCompExp | ProtoBindExp

ProtoType = ProtoCompType | ProtoSubType | ProtoDepType

ProtoCompExp :: symb : CESymb
eArgs : ProtoExp∗

tArgs : ProtoType∗

ProtoBindExp :: symb : DESymb
var : VSymb
univ : ProtoType
body : ProtoExp

ProtoCompType :: symb : CESymb
eArgs : ProtoExp∗

tArgs : ProtoType∗

ProtoDepType :: symb : DTSymb
var : VSymb
univ : ProtoType
body : ProtoType

ProtoSubType :: var : VSymb
univ : ProtoType
body : ProtoExp
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Auxiliary functions

Next we define some useful auxiliary functions for accessing various components of
terms. The subterms of a given term – including the term itself – are given by:

Subterms :ProtoTerm→ ProtoTerm-set
Subterms(z) 4

cases z of
VSymb →{z}
mk-ProtoCompExp(c,el, tl) →{z}∪

⋃
{Subterms(x) | x ∈ elems el∪ elems tl}

mk-ProtoBindExp(q,v, t,e) →{z}∪Subterms(t)∪Subterms(e)
mk-ProtoCompType(ct,el, tl)→{z}∪

⋃
{Subterms(x) | x ∈ elems el∪ elems tl}

mk-ProtoDepType(dt,v,u,b)→{z}∪Subterms(u)∪Subterms(b)
mk-ProtoSubType(v, t,e) →{z}∪Subterms(t)∪Subterms(e)
end

Henceforth, we won’t bother to state definitions when the compound type (dependent
type and subtype) case is exactly analogous to the compound expression (resp. binder
expression) case.

The bound variables of a term are those which are bound by a variable binding con-
struct in some subterm:

bndVars :ProtoTerm→ VSymb-set
bndVars(z) 4

cases z of
VSymb →{}
mk-ProtoCompExp(c,el, tl)→

⋃
{bndVars(y) | y ∈ elems el∪ elems tl}

mk-ProtoBindExp(q,v, t,e)→{v}∪bndVars(t)∪bndVars(e)
...
end

The free variables of a term are those which occur in the term without getting bound:

freeVars :ProtoTerm→ VSymb-set
freeVars(z) 4

cases z of
VSymb →{z}
mk-ProtoCompExp(c,el, tl)→

⋃
{freeVars(y) | y ∈ elems el∪ elems tl}

mk-ProtoBindExp(q,v, t,e)→ freeVars(t)∪ (freeVars(e)−{v})
...
end

A term with no free variables is said to be closed.

allVars :ProtoTerm→ VSymb-set
allVars(z) 4 freeVars(z)∪bndVars(z)

Claim: For any prototerm z, allVars(z) includes all those variables which occur as sub-
terms of z:

{v:VSymb | v ∈ Subterms(z)} ⊆ allVars(z)
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The inclusion is proper when vacuous bindings are present: e.g. when z is ∀x:A · true.

4.2.4 Context conditions
As given so far, the syntax is a bit too flexible. What would it mean for a variable being
bound to occur free in the universe over which it is being bound, for example? What does
it mean if nested bindings refer to the same dummy variable? There are many different
solutions to these problems, but most are intended for parsing by humans and so can be
considered primarily to be addressing concrete syntax issues. Although often ingenious
and elegant, such solutions are usually quite long and involved when formalized (i.e., in
the present case, when written in VDM).

We decided instead to adopt a strong convention whereby

Convention:

Logically different variables will be represented by different VSymbs.

For example, expressions like

∀x:A · ∃x:B ·P, λx:A[x] ·P, (∀x:A ·P)∧ (∀x:B ·Q), ∀x:A[y] · ∃y:B ·P

will be considered to be ill-formed. Initially it was intended that this restriction would
apply only to the abstract syntax at the specification level, and that the final concrete
syntax would be more liberal. As it turns out, at least some of the spirit of the restriction
has carried over, fortunate or unfortunate as this may be.

The main reason for introducing the restriction is that it makes later functions much
easier to specify. In particular, we won’t continually be dogged by the problems of vari-
able renaming to avoid capture which arise in most attempts to specify syntaxes having
variable binding constructs and substitution.5 This in turn does away with most of the
variable occurrence side-conditions on inference rules.

We define a subclass Term0 of ProtoTerm consisting of just those terms which respect
the above principle:

Term0 = Exp0 | Type0

Exp0 = VSymb | CompExp0 | BindExp0

Type0 = CompType0 | SubType0 | DepType0

To respect our principle, the arguments of a compound expression should use different
bound variables, and variables free in one argument should not be bound in another ar-
gument. Arguments may however share free variables. The restriction can be captured
succinctly by saying that the allVars of one argument must not overlap the bndVars of any
other. Formally:

CompExp0 :: symb : CESymb
eArgs : Exp∗0
tArgs : Type∗0

5An alternative approach would have been to do away with the names of bound variables altogether and
use de Bruijn indices instead (cf. [dB80]). We felt that, while such an approach is perhaps more concise, it
would make the specification far less intuitive and too difficult to read.



4.2 Syntax 115

where

inv-CompExp0(e) 4 Is-valid-arglist(eArgs(e)y tArgs(e))

Is-valid-arglist :Term∗0→ B
Is-valid-arglist(xl) 4

∀i, j ∈ inds xl · i 6= j ⇒ allVars(xl(i))∩bndVars(xl(j)) = {}

Again, to respect our principle, the dummy variable of a variable binding construct must
not already be bound in the body of the construct, and it must not occur at all in the
universe. Also, variables bound in the universe should not occur in the body, and vice-
versa. Formally:

BindExp0 :: symb : DESymb
var : VSymb
univ : Type0
body : Exp0

where

inv-BindExp0(mk-BindExp0(q,v, t,e)) 4 Is-valid-binding(v, t,e)

Is-valid-binding :VSymb×Type0×Term0→ B
Is-valid-binding(v, t,e) 4 v /∈ allVars(t)∪bndVars(e)

∧allVars(t)∩bndVars(e) = {}= allVars(e)∩bndVars(t)

The other definitions are very similar:

CompType0 :: symb : CESymb
eArgs : Exp∗0
tArgs : Type∗0

where

inv-CompType0(t) 4 Is-valid-arglist(eArgs(e)y tArgs(e))

DepType0 :: symb : DTSymb
var : VSymb
univ : Type0
body : Type0

where

inv-DepType0(mk-DepType0(dt,v,u,b)) 4 Is-valid-binding(v,u,b)

SubType0 :: var : VSymb
univ : Type0
body : Exp0

where

inv-SubType0(mk-SubType0(v, t,e)) 4 Is-valid-binding(v, t,e)
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Henceforth, when we say term, expression, type, etc. we mean an element of Term, Exp,
Type or whatever.

Claim: No variable occurs both free and bound in the same term: i.e.

∀x:Term0 · freeVars(x)∩bndVars(x) = {}
(Of course, this is not generally true of ProtoTerms.)

Claim: If a prototerm satisfies the context conditions then so do all its subterms: viz.

Subterms :Term0→ Term0-set

4.2.5 Equivalence
The informal treatment above referred to ‘dummy’ variables. The idea is that the name
of the variable is not really important – the term would have just the same ‘meaning’ if
a different name were used throughout (provided no ambiguities arose of course). This
idea is captured by defining an equivalence relation on terms.

First we’ll need a function which renames variables according to a given mapping.
Variables not in the domain of the mapping will be left unchanged.

RenameVars :ProtoTerm× (VSymb m−→ VSymb)→ ProtoTerm
RenameVars(x,vm) 4

cases x of
VSymb → if x ∈ dom vm then vm(x) else x
mk-ProtoCompExp(c,el, tl)→ let el′ = [RenameVars(el(i),vm) | i ∈ inds el],

tl′ = [RenameVars(tl(j),vm) | j ∈ inds tl] in
mk-ProtoCompExp(c,el′, tl′)

mk-ProtoBindExp(q,v, t,e)→ let v′ = RenameVars(v,vm),
t′ = RenameVars(t,vm),
e′ = RenameVars(e,vm) in

mk-ProtoBindExp(q,v′, t′,e′)
...
end

Note that this form of renaming is extremely simplistic and certainly does not preserve
invariants such as inv-CompExp0. In particular, it is manifestly not true that

RenameVars:Term0× (VSymb m−→ VSymb)→ Term0

Definition: Two terms x and y are (α-)equivalent (written x ≡ y) if one can be obtained
from the other simply by renaming bound variables, provided the logical distinction be-
tween different variables is preserved:6

≡ :ProtoTerm×ProtoTerm→ B
x≡ y 4 ∃f :VSymb m←→ VSymb ·

dom f = allVars(x)
∧∀v ∈ freeVars(x) · f (v) = v
∧RenameVars(x, f ) = y

6In VDM, D m←→ R stands for the collection of 1-1 maps (finite functions) from D to R.
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Thus for example, the term ∀x:A ·x = y is α-equivalent to ∀z:A ·z = y but not to ∀y:A ·y =
y.

The definition of ≡ makes essential use of our principle regarding bound variables.
Together, the principle and the 1-1-ness of f ensure that logical distinctions between vari-
ables are preserved. (This is a good example of how the principle makes some functions
much easier to define.)

Here are some useful corollaries of the above definition:

freeVars(Rename(x, f )) = rng (freeVars(x)C f )
bndVars(Rename(x, f )) = rng (bndVars(x)C f )

Rename(Rename(x, f ), f−1) = x

when f is 1-1 and allVars(x)⊆ dom f . Using these facts we can prove the following:

Claim: x≡ y ⇒ freeVars(x) = freeVars(y)

Claim: ≡ is an equivalence relation on Term0.

Claim: ≡ respects syntactic classes: e.g.

x≡ y∧ x:CompExp0 ⇒ y:CompExp0

In particular, x≡ y∧ x:Term0 ⇒ y:Term0.

4.2.6 Some useful auxiliary functions
Now that the notion of equivalence has been introduced, it is possible to define functions
which will allow us to forget about the complicated invariants almost entirely. For exam-
ple, consider the following specification of a function for building compound expressions
from constant symbols and lists of expressions and types:

build-CompExp0 (c:CESymb,el:Exp∗0, tl:Type∗0) ce:CompExp0
post let mk-CompExp0(c′,el′, tl′) = ce in

c = c′

∧ len el = len el′∧∀i ∈ inds el · el(i)≡ el′(i)
∧ len tl = len tl′∧∀i ∈ inds tl · tl(i)≡ tl′(i)

At first sight this function might appear innocent enough and easy to implement, but
remember there is an an invariant associated with CompExp0 which says that logically
distinct variables must be named apart. Thus it might well be necessary to rename bound
variables in el and/or tl in order to preserve the invariant. Just exactly which variables get
renamed, and to what, is left up to the implementor’s discretion (the function is said to be
underspecified).7

A ‘build-function’ for binder expressions can be defined similarly:

build-BindExp0 (q:DESymb,v:VSymb, t:Type0,e:Exp0) be:BindExp0
post let mk-BindExp0(q′,v′, t′,e′) = be in

q′ = q∧ t′ ≡ t∧RenameFreeVars(e′,{v′ 7→ v})≡ e

7Note however that for given arguments, all possible results are equivalent. Thus (at an abstract level)
the underspecification is almost illusory. In fact, if VDM had a quotient-type construct we could consider
equivalent terms to be equal, and the specification of build-CompExp0 above would be a fully well-defined
function specification.
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Note that v indicates which variable in e to bind. If v ∈ freeVars(t) then a new symbol
must be used as be’s dummy variable (in order to satisfy the invariant), hence the use of
v′ in the above.

RenameFreeVars is a function which renames free variables in a given term x accord-
ing to a given mapping vm. Only that part of vm which acts on free variables from x will
be relevant. Free variables may get ‘collapsed’ together by vm, but they should not be
captured by binders (etc.) in x. Of course this may mean that variables bound in x must
be renamed, to respect our principle about variable names. The easiest way to define this
formally is to use an intermediate term x′ in which x’s dummy variables have been re-
named so that binders (etc.) in x′ cannot possibly capture free variables, even if they get
renamed. Formally:

RenameFreeVars (x:Term0,vm:VSymb m−→ VSymb) y:Term0
post let vm′ = freeVars(x)C vm in

∃x′:Term0 ·
x≡ x′∧bndVars(x′)∩ rng vm′ = {}∧ y = RenameVars(x′,vm′)

Note that
bndVars(x′)∩dom vm′ ⊆ bndVars(x′)∩ freeVars(x)

= bndVars(x′)∩ freeVars(x′)
= {}

thus bndVars(y) = bndVars(x′). The restriction that

bndVars(x′)∩ rng vm′ = {}

ensures that renamed free variables don’t get captured by binders in y. On the other hand,
free variables which aren’t renamed under vm also won’t get captured since, from above,

bndVars(y)∩ freeVars(x) = bndVars(x′)∩ freeVars(x) = {}

Note also that the ‘function’ is well-defined in the same sense that build-CompExp0 is
well-defined (viz. all possible results are equivalent).

4.2.7 Definitions
The mural proof assistant provides the ability to make abbreviations and definitions, in-
cluding recursive definitions. Constants and functions, binders, types and type construc-
tors can all be defined. (We anticipated little or no use for defined dependent types, so
they were omitted to keep the specification simpler.)

For constants and functions, a definition consists of two expressions: a definiens and
a definiendum, or more simply put, a left hand side (LHS) and a right hand side (RHS). A
simple example is

P ⇔ Q 4 (P ⇒ Q)∧ (Q ⇒ P)

which defines bi-implication (⇔ ) in terms of ordinary implication (⇒ ) and conjunction
(∧). The LHS is a CompExp0 whose symb is the symbol being defined; its arguments are
formal parameters (with no repetitions). The RHS is an Exp0 which is well-formed in
the ‘context’ in which the definition is being made (cf. Section 4.6.3).8 Every formal

8As described in Appendix C, the definition facility is only available at the level of theory signatures. In
such a case the well-formedness criterion is that the RHS is closed (no free variables) and uses only symbols
available in the theory’s signature. More generally it would be much better to be able to make abbreviations
at various different levels: theories, proofs, even expressions themselves (cf. VDM’s ‘let’ clause).



4.3 Natural Deduction rules 119

parameter introduced on the LHS should be used at least once on the RHS, so that no
extra information will ever be required for the folding (RHS→ LHS) or unfolding (LHS
→ RHS) operations.

Recursive definitions – in which the symbol being defined appears on the RHS – can
also be made. For example, the factorial function can be defined recursively by

fact(n) 4 if n = 0 then 1 else n∗ fact(n−1)

Definitions by mutual recursion are also possible. It is the user’s responsibility to ensure
that such definitions make sense. Because termination cannot be guaranteed in the pres-
ence of arbitrary recursive definitions, mural does not provide an operation for ‘unfolding
to ground terms’.

The definition facility for types and type constructors is exactly analogous to that
for constants and functions (with CompType0 and Type0 replacing CompExp0 and Exp0,
respectively). Binder definitions are slightly different however. In the above, formal pa-
rameters were essentially CESymbs and CTSymbs with arity (0,0), and were unrestricted
in number. We shall insist however that defined binders use at most two formal parame-
ters: a CTSymb of arity (0,0) for the universe and a CESymb of arity (1,0) for the body.9

For example, in classical logic existential quantification (∃) can be defined in terms of ∀
and ¬ by

∃x:A ·P[x] 4 ¬∀y:A ·¬ P[y]

A and P are parameters to this definition. Instances of this definition are obtained by
instantiating A and P (cf. Section 4.4).

Precise details of the definition facility and the corresponding folding and unfolding
operations can be found in the full specification (Appendix C). The details are straight-
forward but lengthy, and weren’t felt to be sufficiently interesting for a high level specifi-
cation.

4.2.8 Concluding remarks
In many ways, the syntax could have been more elegant as a single level syntax of the
form:

Term = VSymb | CSymb {Term} | DSymb VSymb ‘:’Term‘·’ Term

If nothing else, the specification would have been a lot shorter and not so many auxiliary
functions would be necessary. Some of the awkwardness (cf. Section 4.11) of the present
syntax would also have been avoided. We felt however that having two distinct levels
(values and types) reflected more closely the way the syntax would be used in the target
logics, and that as a result the support we offered the user would be that little bit higher.
Only time will tell if this was the right decision.

4.3 Natural Deduction rules
The mural proof assistant supports Natural Deduction proofs. This section explains the
reasons for this choice and describes the mural syntax for inference rules, or more pre-
cisely, for inference rule schemas. Section 4.4 describes how schemas get instantiated to

9The universe parameter should perhaps not be compulsory.
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form instances of inference rules and Section 4.7 describes how proofs are constructed
from instances of inference rules.

4.3.1 Proof systems
The literature contains many different formulations of the notion of ‘proof’. The particu-
lar proof formalism used in mural is based on Gentzen’s Natural Deduction System ND.
Alternative formalisms include Hilbert Style, Sequent Calculus and Semantic Tableaux.10

The different approaches offer different advantages, but this is not the place to go into
a lengthy comparison. Basically:

• Hilbert Style is the simplest possible, and is the best suited to metareasoning: i.e.,
for proving results about particular theories (such as consistency). Because it is
such a simple system, however, it is not very well suited to deriving new rules of
inference within a theory.

• The Sequent Calculus is good for exploring patterns of reasoning and for proving
results about patterns of reasoning (e.g. the existence of ‘normal forms’ for proofs).
It is more general than the other systems, in that the other systems can be expressed
very naturally in Sequent Calculus.

• Semantic Tableaux are based around the notion of proof by contradiction, which
can be a good way for novices to explore proofs and is good for constructing coun-
terexamples. On the other hand, proof by contradiction is considered ‘poor style’
by many practitioners and it can be confusing to work with the negation of the re-
sult you are trying to prove. For such reasons semantic tableaux have not caught on
very well in software engineering.

• ND has a great advantage over other deduction systems in that it bears a very close
resemblance to intuitive, informal proofs of the kind found in mathematics and (for-
mal) software engineering textbooks (cf. [Gri81, Jon86]). In particular, the main
structure of informal arguments can often be preserved when the reasoning is for-
malized within ND. There is also evidence [Dyb82] that ND proofs closely reflect
spoken proofs.

It is widely recognised that the cost of fully formal proof outweighs many of the benefits
of mathematical reasoning; so it seemed to us wisest to aim to support rigorous reasoning,
with the potential to go fully formal by simply supplying enough details: hence the choice
of ND.11

10The best exposition of Natural Deduction is in [Pra65], but sadly this is long out of print. See also
Sundholm’s chapter on Systems Of Deduction in [GG83]. Ramsay gives a good, though brief, introduction
to the three alternative systems in §2 of [Ram88]. (Sundholm ib.cit. also treats Hilbert Style and Sequent
Calculus.) Note that Gentzen invented both ND and the Sequent Calculus, and that in much of the literature
the distinction between the two is blurred or glossed over; confusingly, the latter is often called natural
deduction – even in [Ram88]. Although the two systems are very similar, they are different representations,
and such differences are vital when it comes to designing a proof assistant. Another point to note is that
there is a school of thought which says that an ND logic is one for which every propositional function has an
‘introduction’ and an ‘elimination’ rule, and that the two should be related in a particular way (cf. [Pra65]).
Perhaps there is some deeper truth in such a belief, but we certainly do not intend to impose such restrictions
here.

11One of the main negative consequences of the decision to support ND is that non-monotonic logics
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4.3.2 Rule statements
The laws of reasoning are captured in inference rules; here are three typical examples:

P
(if P then a else b) = a

x ∈ s, s∩ t = {}
x /∈ t

a:A, l:A∗

cons(a, l):A∗

The formulae above the line are called hypotheses and the one below the line the conclu-
sion. The conclusion is said to follow from the hypotheses according to the given rule of
inference.

Perhaps the most distinguishing feature of ND is that hypotheses can have ‘local as-
sumptions’ which can be used – in addition to any other assumptions in force – when
establishing the hypothesis. For example, the classical law for introducing the symbol
⇒ is

{P} ` Q
P ⇒ Q

which means that in order to infer P ⇒ Q it is sufficient to show that Q follows from
assumption P. (The ‘turnstile’ ` is a special symbol of ND.)

Hypotheses with such local assumptions are called sequents. We’ll look more closely
at sequents below; for the moment we can say that the statement of a rule (as opposed to
its proof, etc.) consists of ordinary hypotheses, sequent hypotheses and a conclusion:

RuleStmt :: ordHyps : Exp0-set
seqHyps : Sequent-set
concl : Exp0

Remarks:

In many textbooks (e.g. [End72] p.73) there is a clear separation between the class of
‘(ordinary) terms’ (called Exp here) and the class of ‘well-formed formulae’ (wffs), and
only the latter can appear as the hypotheses or conclusions of rules. But such a separa-
tion seems to us to sacrifice more than it gains. For example, it makes it hard to identify
Boolean-valued terms with propositions; yet this is a quite common practice (cf. Sec-
tion 3.5.2). It also limits the freedom to use the system as a transformation system: e.g. for
rewriting numerical expressions

m+ succ(n)
succ(m+n)

{a} ` b, P[a]
P[b]

Thus it was felt to make the system more flexible if any term (or Exp0, rather) could
appear in a rule. There are of course certain disadvantages to such an approach: cf. the
discussion in Section 3.2.2.

4.3.3 Sequents
A sequent consists of a set of premises and an upshot. Sequents can also bind variables,
which we’ll call sequent variables and show as subscripts on the turnstile. For example,

cannot be directly supported: cf. the discussion in the section on the limitations of the mural approach in
Section 4.11. All of the target logics (cf. the glossary in the appendix) can however be expressed in ND.
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the law of induction over natural numbers can be expressed as

P[0],
{n:N, P[n]} `n P[n+1]

∀m:N ·P[m]

This has two hypotheses: an ordinary hypothesis P[0] (for the base case), and a sequent
hypothesis {n:N, P[n]} `n P[n+1] (for the induction step). In the induction step, a new
parameter, n say, is introduced and it is assumed (for the purposes of the subproof only)
that n:N and P[n] hold; one is then obliged to show that P[n+ 1] holds. Once both the
base case and the induction step are established, we can infer ∀m:N ·P[m].

Note that because it lacks a subscript facility, sequent variables are displayed at the
start of a sequent in mural instead of being subscripts on the turnstile.

By paying special attention to the way sequents bind variables (and here we are in-
debted to the ELF work [HHP87] on expressing logics), some of the nasty ‘side condi-
tions’ on inference rules can be avoided. For example, the usual ∀-introduction rule says
that ∀x:A ·P follows from P provided x does not occur free in any assumption on which
P depends, other than x:A. This rule would be expressed as

{x:A} `x P[x]
∀x:A ·P[x]

in mural . (The fact that x may appear in P is implicit in the informal statement of the rule,
but must be stated explicitly in mural .)

This leads to the following definition:

Sequent :: seqVars : VSymb-set
premises : Exp0-set
upshot : Exp0

where

inv-Sequent(s) 4 ∀e ∈ Constituents(s) ·bndVars(e)∩ seqVars(s) = {}

where

Constituents :Sequent→ Exp0-set
Constituents(s) 4 premises(s)∪{upshot(s)}

The invariant ensures there is no ambiguity between sequent variables and variables bound
within the constituents of the sequent. In practice, sequent variables will usually occur
free in at least one constituent of the sequent, but not all variables free in constituents
need be sequent variables.

Note that we haven’t carried our principle about variable naming through to sequents.
To do so would mean tightening the invariant inv-Sequent so that different constituents
use different bound variables (cf. Is-valid-arglist). At this stage the usefulness of our
principle has just about run its course, and it’s becoming a liability instead.

To return to the specification, variables which appear unbound in a sequent will be
said to be free in that sequent:

freeVars :Sequent→ VSymb-set
freeVars(s) 4 ⋃

{freeVars(e) | e ∈ Constituents(s)}− seqVars(s)
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A sequent is (syntactically) equivalent to another if its sequent variables can be renamed
– in a 1-1 fashion – to give an equivalent set of premises and an equivalent upshot. More
formally,

≡ :Sequent×Sequent→ B
s≡ s′ 4 ∃vm:VSymb m←→ VSymb ·

dom vm = seqVars(s)∧ rng vm = seqVars(s′)
∧RenameFreeVars(upshot(s),vm)≡ upshot(s′)
∧∃em:Exp0

m←→ Exp0 ·
dom em = premises(s)∧ rng em = premises(s′)
∧∀e ∈ dom em ·RenameFreeVars(e,vm)≡ em(e)

As its name suggests, ≡ is an equivalence relation on Sequents.

Remarks:

A couple of remarks of a technical nature can be made concerning the above definition:

1. Although the variables in dom vm are not bound in upshot(s),

RenameVars(upshot(s),vm)

might result in the capture of variables from rng vm; thus RenameFreeVars cannot
be replaced by RenameVars in the third subconjunct of the definition.

2. The restriction that em be 1-1 was made for the convenience of the definition, but
could be replaced by a weaker condition to the effect that the two sets of premises
are equivalent under the renaming: e.g. {∀x:A · true,∀y:A · true} is equivalent to
{∀z:A · true}.

4.3.4 Establishing sequents
But what is a sequent? Intuitively,

prems `x1,...,xn up

means that – for arbitrary variables x1, . . . ,xn – from prems one can infer up.

A sequent is trivially true if its upshot is equivalent to one of its premises:

Is-trivially-true :Sequent→ B
Is-trivially-true(s) 4 ∃e ∈ premises(s) · e≡ upshot(s)

In fact, we can get even more mileage (kilometrage?) out of our interpretation of
sequents, independent of any particular logic. For example, if u can be inferred from H1
– with no ‘arbitrary variables’ – then clearly u can be inferred from any set extending H1,
or more generally from any set containing expressions syntactically equivalent to those in
H1. Thus, if H1 ` u and

∀e ∈ H1 · ∃e′ ∈ H2 · e≡ e′

then H2 ` u. We say H1 ` u establishes H2 ` u.
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The presence of sequent variables complicates the situation a little. For example,
{} ` x = nil does not establish {x:A∗} `x x = nil because x in the first sequent has a
fixed interpretation (determined by context) and is by no means arbitrary. The difference
between the two sequents becomes even clearer when the second sequent is replaced by
its syntactic equivalent {y:A∗} `y y = nil.

Leaving such ambiguities aside for the moment – as they’re easily dealt with by ju-
dicious renaming of variables – it’s clear that a sequent which ‘resolves more variables’
than another, but otherwise looks much the same, is somehow stronger: e.g.

{x:N,y:N} `x,y x+ y = y+ x

is stronger than
{z:N} `z z+ z = z+ z

Putting all this together we arrive at the following definition:

Establishes :Sequent×Sequent→ B
Establishes(s,s′) 4 ∃s′′ ≡ s′ ·

seqVars(s′′)∩ freeVars(s) = {}∧
∃vm:VSymb m−→ VSymb ·

dom vm = seqVars(s)∧ rng vm⊆ seqVars(s′′)∧
RenameFreeVars(upshot(s),vm)≡ upshot(s′′)∧
∀e ∈ premises(s) ·∃e′ ∈ premises(s′′) ·RenameFreeVars(e,vm)≡ e′

(It might be necessary to rename sequent variables in s′ to avoid confusing them with
variables actually free in s – hence the introduction of an equivalent sequent s′′.)

Claim: Establishes is transitive and reflexive on sequents, and refines syntactic equiva-
lence.

Remarks:

(1) In many logics the interpretation of sequents can be further liberalized to allow re-
placement of sequent variables by terms rather than simply variables. Thus for example
it might be considered valid to deduce

{0+1:N,2:N} ` (0+1)+2 = 2+(0+1)

from the sequent
{x:N,y:N} `x,y x+ y = y+ x

In mural we resisted this interpretation for two reasons:

1. It was felt to be moving too far away from the ‘pure’ Natural Deduction interpre-
tation: viz. that the xi’s are arbitrary variables in `x1,...,xn . We take the approach
that it is the instantiator’s responsibility to induce the extended interpretation, for
example by adding axioms like

a:A, {x:A} `x P[x]
P[a]
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2. Pattern matching and other operations on sequents are much harder to specify and
implement under the broader interpretation.

Perhaps this will be shown to be an overly cautious approach (cf. ELF [HHP87] where
the extended interpretation is used).

(2) An even richer proof system than ND can be obtained by allowing ‘nested sequents’ –
sequents with sequents as premises, and so on. This is explored further in [Sch84]. Again,
we stuck with the simpler formulation, which is quite adequate for the target logics.

4.3.5 Side conditions and oracles
A reader with any familiarity with formal proof systems will know that many rules are
stated with side conditions – conditions which must be met for an instance of a rule to
be valid. By far the most common kind are those which refer to substitution instances
(e.g. from a = b and P deduce Q, where Q is the result of replacing one or more occur-
rences of a by b in P); we saw how such rules are expressed in mural in Section 4.2.1
above. The next most common are those which place restrictions on what free variables
can occur in assumptions on which an assertion depends, and we saw in Section 4.3.3
how sequents handle these.

In [AHM87] it is shown how many other kinds of side condition can be handled by ex-
pressing restrictions as additional hypotheses on rules. Most of the techniques used there
easily translate to the mural setting. There may however be side conditions which cannot
be handled within the logical frame, or for which a fully formal treatment is inappropriate
or ‘expensive’ in terms of user effort. (For example, the formulations of Modal Logic and
Hoare Logic in [AHM87] make for much longer, less intelligible proofs than those given
in Sections 3.6.4 and 3.6.5.) The mural solution is to allow appeal to ‘oracles’ – tests
written in the implementation language of the proof assistant (in our case, Smalltalk-80)
which are run when justifications are checked for correctness.

Oracles are in fact a general mechanism for allowing appeal to external agents, be
they side-conditions, decision procedures, or even other theorem provers. This can be a
particularly effective way of combining tools for specific problem domains in a generic
environment. Thus for example, the user might wish to use the Boyer-Moore theorem
prover to do inductive proofs about Lisp-like data structures, but still be free to guide the
proof assistant in the cases where Boyer-Moore fails.

Because they are potentially so powerful (and because they call for some intimate
knowledge of mural ’s implementation), the general user will not be allowed to write his
or her own oracles.

4.4 Rule schemas and instantiation
In this section we explain how rule instances are formed from rule schemas.

4.4.1 Metavariables
A rule statement such as

P
(if P then a else b) = a
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actually represents a whole schema of rule instances: P, a and b are metavariables which
get instantiated when the rule is used. For example,

x = 0
(if x = 0 then ⊥ else 1/x) =⊥

and
{a,b} ⊆ s

(if {a,b} ⊆ s then s−{a} else s∪{b}) = s−{a}
are both instances of the above rule.

In mural , metavariables are represented by CESymbs and CTSymbs. In particular,
they can take arguments: e.g. the law of substitutivity of equals can be expressed as

a = b, P[a]
P[b]

In what follows, a compound expression (CompExp0) whose CESymb is a metavariable
will be written as P[. . .] instead of P(. . .) to make it easier to recognize metavariables.
(Similarly for CTSymbs.)

Instantiations are then expressed using the appropriate number of formal parameters:
e.g. the instantiation

{a 7→ n2,b 7→ 16,P[x] 7→ x∗ (n+1)≤ f (x)}

if applied to the above rule would yield the following rule instance:

n2 = 16, n2 ∗ (n+1)≤ f (n2)

16∗ (n+1)≤ f (16)

The operation of instantiation renames bound variables (if necessary) to avoid capture:
e.g. if applied to ∀n:N ·P[n+b] the above instantiation would yield (something equivalent
to)

∀m:N · (m+16)∗ (n+1)≤ f (m+16)

These issues are discussed further below.
Because the syntax is essentially untyped, the Exp/Type distinction is the only restric-

tion on what can instantiate metavariables. Thus for example,

1+{}
(if 1+{} then cons(3,2) else [ ]) = cons(3,2)

is a legal instance of the above rule. Of course, in any reasonable logic it won’t be possible
to establish 1+{}, so this rule instance will never be used. The lesson to be learnt here
is that it is necessary to take care when postulating rules and axioms: this is discussed in
Section 3.2.2 above.

4.4.2 Extending the syntax by formal parameters
Before we can formalize the notion of an instantiation we’ll need some kind of notation for
formal parameters. In fact, formal parameters are used in several other places below and in
the full specification – namely for expressing various kinds of definitions and morphisms.
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Placeholders

The simplest way to bring formal parameters into the syntax is to introduce two new
classes consisting of placeholders – one for expressions and one for types. Placeholders
will be numbered by an ‘index’; the nth placeholder stands for the nth formal parameter
(of the appropriate kind).

OPH :: index : N1

TPH :: index : N1

We’ll write [[e1]] for mk-OPH(1) and [[t1]] for mk-TPH(1), etc. Intuitively, an instantiation
which would be written informally as

P[x] 7→ x∗ (n+1)≤ f (x)

will be written as
P 7→ [[e1]]∗ (n+1)≤ f ([[e1]])

in our abstract syntax. The former is to be preferred for legibility, but the latter is much
easier to manipulate in the formal specification.

The extended syntax

The extended syntax is defined by

Term1 = Exp1 | Type1

Exp1 = VSymb | CompExp1 | BindExp1 | OPH

Type1 = CompType1 | SubType1 | DepType1 | TPH

CompExp1 :: symb : CESymb
eArgs : Exp∗1
tArgs : Type∗1

where

inv-CompExp1(e) 4 Is-valid-arglist(eArgs(e)y tArgs(e))

and so on, as before mutatis mutandis throughout Section 4.2. Auxiliary functions are
defined in the obvious way: e.g.

Subterms([[e1]]) = {[[e1]]}

freeVars([[e1]]) = bndVars([[e1]]) = {}

The results from Section 4.2 carry through.

Note: Section 4.3 does not change: in particular, placeholders are not allowed in rule
statements.
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The arity of a term

It will be useful to have a function which counts the number of parameters (of each kind)
in a Term1:

Arity :Term1→ N×N
Arity(x) 4

let m = max {i | i = 0 ∨ mk-OPH(i) ∈ Subterms(x)},
n = max {i | i = 0 ∨ mk-TPH(i) ∈ Subterms(x)} in

(m,n)

In particular, a term with no placeholders has arity (0,0). Henceforth we shall identify
Term0 with the subtype

< x:Term1 | Arity(x) = (0,0)>

since the two are clearly isomorphic.

4.4.3 Instantiation
An instantiation is a mapping from metavariables to our extended syntax. Formally:

Instantiation :: eInst : CESymb m−→ Exp1

tInst : CTSymb m−→ Type1

Elements of rng eInst and rng tInst are called instantiands.
To instantiate a term by an instantiation, we replace the term’s metavariables by their

instantiands, with placeholders ‘filled in’ appropriately. (As noted above, bound variables
may need to be renamed to avoid capture, but all other symbols are left unaffected.) For
example, the result of instantiating P[cons(h, t)] by the instantiation

{h 7→ 3, t 7→ [7,5],P 7→ rev(rev([[e1]])) = [[e1]]}

is rev(rev(cons(3, [7,5]))) = cons(3, [7,5]).
We can now sketch the definition of the operation for applying an instantiation to a

term. There is a precondition: namely that each occurrence of a metavariable in the term
has enough arguments to fill the placeholders in its instantiand. As usual, we only give
the definition in a few cases since the other cases are exactly analogous (and the reader is
referred to the full specification for details).
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Instantiate :Term1× Instantiation→ Term1
Instantiate(x, inst) 4

let mk-Instantiation(om, tm) = inst in
cases x of
VSymb → x
mk-CompExp1(c,el, tl)→ let el′ = [Instantiate(el(n), inst) | n ∈ inds el],

tl′ = [Instantiate(tl(n), inst) | n ∈ inds tl] in
if c ∈ dom om
then FillPHs(om(c),el′, tl′)
else build-CompExp1(c,el′, tl′)

mk-BindExp1(q,v, t,e)→ let t′ = Instantiate(t, inst),
e′ = Instantiate(e, inst) in

build-BindExp1(q,v, t′,e′)
OPH → x
...
end

pre . . . (see above)
where

FillPHs :Term1×Exp∗1×Type∗1→ Term1
FillPHs(x,el, tl) 4

cases x of
VSymb → x
mk-CompExp1(c,el′, tl′)→ let el′ = [FillPHs(el′(n),el, tl) | n ∈ inds el′],

tl′ = [FillPHs(tl′(n),el, tl) | n ∈ inds tl′] in
build-CompExp1(c,el′, tl′)

...
mk-OPH(n) → el(n)
...
mk-TPH(n) → tl(n)
end

pre Arity(x)≤ (len el, len tl)
and

(i, j)≤ (k, l) 4 i≤ k∧ j≤ l

In other words, FillPHs(x,el, tl) simply fills placeholders in x by the appropriate element
of el or tl, renaming bound variables – if necessary – to preserve invariants and to avoid
capture. FillPHs may need to rename dummy variables in variable binding constructs so
that variables free in instantiands do not get captured.

We’ll need similar functions for instantiating sequents and rule statements:

Instantiate :Sequent× Instantiation→ Sequent
Instantiate(s, inst) 4 . . .

pre ∀e ∈ Constituents(s) ·pre-Instantiate(e, inst)

Instantiate :RuleStmt× Instantiation→ RuleStmt
Instantiate(rs, inst) 4 . . .

pre . . .
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These functions may need to rename sequent variables so that variables free in instan-
tiands do not get captured. Again, the reader is referred to the full specification (Ap-
pendix C) for details.

In Section 4.9 an algorithm for pattern-matching (‘anti-instantiation’) is specified and
developed.

4.5 The mural store
At a very abstract level, the ‘state’ of a proof assistant consists of a set of inference rules,
together with their proofs, if any. Proofs in turn are built from rules, which gives rise to
the notion that rules may depend on other rules. We want to exclude circular arguments.
We also want to distinguish between ‘rigorous’ and ‘fully formal’ proofs, which gives rise
to a notion of the status of a rule. Finally, we want to group rules into theories. These are
the considerations explored in this section.

4.5.1 Rules, axioms and dependencies
For simplicity, in this specification we won’t distinguish between inference rules, theo-
rems, propositions, lemmas, corollaries, conjectures and so on. The only distinction we
draw is between rules which are axiomatic (self-evident) and those which require proof.
Thus, at least to a first approximation, a rule consists of its statement and a proof (if
appropriate). Formally:

Rule0 :: stmt : RuleStmt
proof : Proof | {AXIOM}

where Proof is defined in Section 4.7. Let us assume Proof comes with a function (again,
to be specified later) which says which rules were used to establish the proof:

Rules-used:Proof → Rule-set

This is enough to define a dependency relation on rules as follows:

≺ :Rule×Rule→ B
r1≺ r2 4 let p = proof (r2),S = Rules-used(p) in

p:Proof ∧ (r1 ∈ S ∨ ∃r′ ∈ S · r1 ≺ r′)

Clearly ≺ is transitive. We define

a� b 4 a = b ∨ a≺ b

Later we’ll overload the symbol ≺ but we mean this definition to carry through.

At this level of abstraction, the mural store is simply a non-circular set of rules downwards
closed under the dependency relation:

Store0 = Rule0-set

where

inv-Store0(S) 4 ∀r ∈ S · r 6≺ r∧∀r′:Rule · r′ ≺ r ⇒ r′ ∈ S
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Hence � is a partial ordering on the store.

4.5.2 The status of a rule
In many applications it is hard to justify the effort of providing fully formal proofs: e.g. a
proof from first principles that 2+ 2 = 4 might take many lines. One of the goals of
mural is to support forms of rigorous reasoning – as opposed to fully formal reasoning –
in the belief that many users will want to use the proof assistant to help with difficult or
convoluted arguments, but will be content to leave gaps in the reasoning when assertions
are ‘obviously true’. Thus mural provides ways of simply asserting that rules are valid,
without further justification.

For the purposes of this specification, let’s assume there is a primitive function

Is-assumed:Rule→ B

which determines whether a rule is assumed. The function is actually defined (interac-
tively) by the user of the system, so no more detail need be given in this specification.
Note that assumed rules are qualitatively different from axioms: axioms are self-evident
truths upon which a whole theory is based, whereas assumed rules are believed to be
derivable from axioms, given ‘sufficient effort’. Note also that assumed rules may have
partial (or sketch) proofs and may depend on other rules.

In Section 4.7.6 we define a function

Is-complete:Proof → B

which determines whether a proof is complete. Putting the various concepts together we
can distinguish different levels of rules:

• axiomatic – in which the rule is an axiom

• fully derived – in which the rule has been demonstrated to follow from axioms

• rigorously derived – in which the rule has been demonstrated to follow from axioms
and assumed rules

• proven – in which the rule has a complete proof, but some of the rules on which it
depends may be as yet unproven

• unproven – in which the rule’s proof is not yet complete

More formally, we introduce a enumerated type

RuleStatus= {AXIOMATIC,FULLYDERIVED,RIGDERIVED,PROVEN,UNPROVEN}

together with a linear ordering

UNPROVEN < PROVEN < RIGDERIVED < FULLYDERIVED < AXIOMATIC

The status of a rule is then defined by:
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Status :Rule→ RuleStatus
Status(r) 4 let p = proof (r),rs = Rules-used(p) in

if p = AXIOM

then AXIOMATIC

else if Is-complete(p)
then if ∀r′ ∈ rs ·Status(r′)≥ FULLYDERIVED

then FULLYDERIVED

else if Is-assumed(r) ∨ ∀r′ ∈ rs ·Status(r′)≥ RIGDERIVED

then RIGDERIVED

else PROVEN

else UNPROVEN

Given a rule, the next function tells the user what rules must be established in order for
the given rule to be (rigorously) derived:

Rules-yet-to-be-proven :Rule→ Rule-set
Rules-yet-to-be-proven(r) 4 let p = proof (r) in

if Is-assumed(r) ∨ p = AXIOM

then {}
else if Is-complete(p)

then
⋃
{Rules-yet-to-be-proven(r′) | r′ ∈ Rules-used(p)}

else {r}

Claim: Status(r)≥ RIGDERIVED ⇔ Rules-yet-to-be-proven(r) = {}

The other extreme is to disregard all assumed rules. The following function gathers to-
gether the rules which must be established in order for a rule to be derived from first
principles:

Rules-ytbp-ffp :Rule→ Rule-set
Rules-ytbp-ffp(r) 4 let p = proof (r) in

if p = AXIOM

then {}
else if Is-complete(p)

then
⋃
{Rules-ytbp-ffp(r′) | r′ ∈ Rules-used(p)}

else {r}

Claim: Rules-yet-to-be-proven(r)⊆ Rules-ytbp-ffp(r)

Claim: Status(r)≥ FULLYDERIVED ⇔ Rules-ytbp-ffp(r) = {}

4.5.3 Theories
Rules are arranged into theories in mural . For example, the rules about the logical con-
nectives ∧, ∨, ⇒ , etc. might be collected together in a single theory, called Propositional
Calculus. Other candidates for theories would be Arithmetic, Set Theory, List Theory, the
theory of VDM primitives, the theory of a design method, and so on. The length function
on lists – for example – involves numbers and lists, so results about it could usefully be
stored in a theory which combines Arithmetic and List Theory. Many more examples are
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given in Chapter 3.
Experience shows that it is very useful to structure the theory collection as a hierarchy

with ‘inheritance’. For example, all the above theories build on Propositional Calculus,
and the Theory of VDM Primitives builds on Arithmetic, Set Theory and so on. This
notion is captured in the following definitions:

Rule1 :: theory : Theory0
stmt : RuleStmt
proof : Proof | {AXIOM}

where

Theory0 :: parents : Theory0-set

As it stands, the definition of Theory0 is virtually trivial. For example, the least fixed point
of this definition is

Theory0 = {{},{{}},{{},{{}}}, . . .}

In the next section another field will be added, making for a less trivial definition; in the
meantime the above is enough to explore the concept of a hierarchy of theories.

The transitive closure of the parents relation is defined by

≺ :Theory×Theory→ B
T1 ≺ T2 4 T1 ∈ parents(T2) ∨ ∃T ∈ parents(T2) ·T1 ≺ T

The ancestors of a theory are itself, its parents, its parents’ parents, and so on:

Ancestors :Theory→ Theory-set
Ancestors(T) 4 {T ′:Theory | T ′ � T}

Another useful auxiliary function collects the ancestor theories of a set of rules:

TheoriesOf :Rule-set→ Theory-set
TheoriesOf (S) 4 ⋃

{Ancestors(theory(r)) | r ∈ S}

We shall add a clause to the invariant on the store to ensure that the theory hierarchy
admits no circularities:12

12Some remarks about VDM are in order here:
According to some schools of VDM thought, the non-circularity condition on the theory hierarchy is not

strictly necessary, since it is enforced by a least fixed point semantics of recursively defined data types.
We’ve chosen to include the condition here anyway, in the belief that it is only fair to point out to the reader
that such a condition applies, and that it makes it easier to reason about the specification.

Of course, nothing should be inferred about the order in which theories can be defined in mural : e.g. the
user should be free to add a ‘higher’ theory before introducing its parents; to think otherwise would be to
read too much into the specification. In some sense, the data model being described here is a ‘perfect world’
model in that it describes the state of a complete collection of theories and rules. In practice, mural will
almost always be in an incomplete state.

In the full specification, theories (and rules, and many other objects) are given names – or references,
if you prefer – which goes some way towards modelling the mural state the user sees. The overhead
with using references is that mappings from names to objects must be passed to functions, which makes
the specification (even more) tedious to write and read. Some of these problems would be alleviated if
VDM had ‘pointers’. (Note that the non-circularity condition must be stated explicitly when references are
employed.)
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Store1 = Rule1-set

where

inv-Store1(S) 4 inv-Store0(S)∧∀T ∈ TheoriesOf (S) ·T 6≺ T

Thus � is a partial ordering on the theories of the store.

Finally, a theory inherits all the rules of its ancestor theories:

RulesOf (T:Theory) rs:Rule-set
ext rd S : Store1
post rs = {r ∈ S | theory(r) ∈ Ancestors(T)}

4.6 Syntactic contexts and well-formedness

4.6.1 Theories and their signatures
So how is the syntax introduced in Section 4.2 related to the theories introduced in Sec-
tion 4.5? To take some examples: the theory of arithmetic talks about symbols like

0,1,=,+,×,N, . . .

and list theory talks about things like

[ ],cons,hd,y,seq of, . . .

Note that 0 and [ ] expect no arguments, whereas ‘=’ expects exactly two Exp arguments
and seq of expects exactly one Type argument. It’s useful to capture such information;
in fact, we’ve found it so useful that we’re going to go a little overboard and insist that
theories not only record what symbols they talk about but also how many arguments those
symbols expect.

Such information is stored in a signature:

Signature :: constrs : ArityMap
binders : (DESymb | DTSymb)-set

ArityMap = (CESymb | CTSymb) m−→ (N×N)

The numbers of arguments a symbol expects is called its arity and is recorded as a pair of
natural numbers (the first for the number of Exps and the second for the number of Types).
For later convenience, elements of dom constrs (i.e., the CESymbs and CTSymbs) will be
called constructors.

A theory inherits the constructors and binders from all its parent theories, and may intro-
duce new ones of its own (via a local signature):

Theory1 :: parents : Theory1-set
localSig : Signature

where

inv-Theory1(T) 4

∀T1,T2 ∈ Ancestors(T) ·Are-nonclashing(localSig(T1), localSig(T2))
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where

Are-nonclashing :Signature×Signature→ B
Are-nonclashing(Σ,Σ′) 4 let cm = constrs(Σ),cm′ = constrs(Σ′) in

∀x ∈ dom cm∩dom cm′ · cm(x) = cm′(x)

The invariant says that there should be no clashing declarations: i.e., any shared construc-
tors should have the same arities.

The rest of this section defines some auxiliary functions which will be needed later on.
The first one merges two signatures together, provided they have no clashing declarations:

Merge-sigs :Signature×Signature→ Signature
Merge-sigs(Σ,Σ′) 4

mk-Signature(constrs(Σ)† constrs(Σ′),binders(Σ)∪binders(Σ′))
pre Are-nonclashing(Σ,Σ′)

Note that (when it is defined) Merge-sigs is an associative-commutative (AC) function.
The next function merges a set of non-clashing signatures:

Merge-sig-set :Signature-set→ Signature
Merge-sig-set(SS) 4 if SS = {}

then mk-Signature({},{})
else let Σ ∈ SS in

Merge-sigs(Σ,Merge-sig-set(SS−{Σ}))
pre ∀Σ,Σ′ ∈ SS ·Are-nonclashing(Σ,Σ′)

The order in which the signatures are merged is irrelevant since Merge-sigs is AC. Finally,
the last of the current batch of auxiliary functions collects the ‘full signature’ of a theory
by merging the local signatures of all its ancestors (including itself):

FullSigOf :Theory→ Signature
FullSigOf (T) 4 Merge-sig-set({localSig(T ′) | T ′ ∈ Ancestors(T)})

Note that symbols which occur in more than one ancestor theory get ‘coalesced’ – i.e.,
they enjoy all the properties they have in the various separate defining theories. This
calls for some care on the user’s part since it can easily result in inconsistent theories. In
Section 4.8.4 we describe a mechanism for renaming symbols before combining theories,
so that such coalescing is circumvented.

4.6.2 Rules and their metavariables
In essence, metavariables are constructors ‘local’ to a rule, and not exported to a theory.
To make it clear exactly which things in a rule are metavariables, and how many arguments
they expect, we’ll add a new field to Rules recording its metavariables (and their arities):

Rule2 :: theory : Theory1
stmt : RuleStmt
metavars : ArityMap
proof : Proof | {AXIOM}

where
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inv-Rule2(r) 4 let Σ = FullSigOf (theory(r)) in
dom metavars(r)∩dom constrs(Σ) = {}

The invariant says that metavariables must be symbols not already declared in the theory
of the rule, which will prevent any ambiguity about whether a constructor is a constant or
a metavariable. Finally, it will be useful to have a function which extracts the signature
of a rule, which consists of all the symbols available in the rule’s theory plus any new
metavariables introduced by the rule:

SigOf :Rule→ Signature
SigOf (r) 4 let Σ = FullSigOf (theory(r)) in

µ(Σ,constrs 7→ constrs † metavars(r))

4.6.3 Well-formedness
Just as when using a programming language, all symbols in a proof must make some kind
of sense, even if they’re only temporary (local) variables. The next definition captures the
notion of a syntactic context:

Context :: vars : VSymb-set
sig : Signature

A term is well-formed in a syntactic context if – apart from its own bound variables – it
only uses symbols from that context, and it uses them in a manner consistent with their
arities:

Is-wfd :Term1×Context→ B
Is-wfd(x,Γ) 4 let mk-Context(vs,mk-Signature(cm,bs)) = Γ in

cases x of
VSymb → x ∈ vs
mk-CompExp(c,el, tl)→ c ∈ dom cm

∧ (len el, len tl) = cm(c)
∧∀y ∈ elems el∪ elems tl · Is-wfd(y,Γ)

mk-BindExp(q,v, t,e)→ q ∈ bs∧ v /∈ vs
∧ Is-wfd(t,Γ)
∧ Is-wfd(e,µ(Γ,vars 7→ vs∪{v}))

mk-OPH(n) → true
...
end

Claim: The only variables which occur free in a well-formed term are those given by the
context: i.e.

Is-wfd(x,Γ) ⇒ freeVars(x)⊆ vars(Γ)

Claim: Well-formedness is monotonic: e.g.

Is-wfd(x,mk-Context(vs,Σ))
∧ vs⊆ vs′∧Are-nonclashing(Σ,Σ′)
⇒ Is-wfd(x,mk-Context(vs′,Merge-sigs(Σ,Σ′)))
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Claim: The subterms of a well-formed term are well-formed in the appropriately ex-
tended context: e.g.

Is-wfd(x,Γ) ⇒ ∀y ∈ Subterms(x) · Is-wfd(y,µ(Γ,vars 7→ freeVars(y)))

Here are some other useful definitions. The first says that a sequent is well-formed pro-
vided its (sequent) variables are new and its constituents are well-formed in the appropri-
ately extended context:

Is-wfd :Sequent×Context→ B
Is-wfd(s,Γ) 4 let mk-Sequent(vs,prems,up) = s in

vs∩ vars(Γ) = {}
∧∀e ∈ prems∪{up} · Is-wfd(e,µ(Γ,vars 7→ vars∪ vs))

In particular, for a sequent to be well-formed in a context without free variables, its con-
stituents must have only sequent variables as their free variables: viz.

∀e ∈ Constituents(s) · freeVars(e)⊆ vars(s)

The notion extends to rule statements in the obvious way:

Is-wfd :RuleStmt×Context→ B
Is-wfd(mk-RuleStmt(hyps,seqs,c),Γ) 4 ∀x ∈ hyps∪ seqs∪{c} · Is-wfd(x,Γ)

Well-formed instantiations are defined similarly.
Finally, rules should not have variables floating around freely: this reflects the desire

to ‘wrap up’ rules so that they can be freely moved between contexts. In technical terms,
the invariant on rules must be extended to say that the rule statement contains no free
variables:

Rule3 :: theory : Theory1
stmt : RuleStmt
metavars : ArityMap
proof : Proof | {AXIOM}

where

inv-Rule3(r) 4 inv-Rule2(r)∧
let Γ = mk-Context({},SigOf (r)) in
Is-wfd(stmt(r),Γ)

4.7 Proofs
The following sections formalize the notion of proof which was introduced informally
in Chapter 3. For the most part, the formal model is very close to the informal model
illustrated above, although of course it contains information that is not explicitly displayed
above, such as instantiations. (Line- and box-numbers will however not be used, since
they complicate the specification of editing operations and are not really needed in an
abstract specification – although circularities must of course be precluded somehow.)

In Section 4.7.7 we show that our model correctly captures the notion of ND proof.
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4.7.1 Scoping of assumptions
The first notion to be formalized will be that of the subordinate proof, or box. Boxes can
introduce new (local) hypotheses and new (local) parameters. Because the new parame-
ters correspond to sequent variables, we represent them using VSymbs and will call them
box variables. Neither the new parameters nor the new hypotheses are available for use
outside the box, but they can be used within subboxes of their defining box. This leads to
the following definition:

Box0 :: boxVars : VSymb-set
subBoxes : Box0-set

Here we are only concerned about the use of boxes as a scoping mechanism: at this level
of abstraction we are not concerned about the ordering of subboxes and variables in a box,
nor with the lines in a box. The transitive closure of the subbox relationship is given by:

≺ :Box×Box→ B
b1 ≺ b2 4 b1 ∈ subBoxes(b2) ∨ ∃b ∈ subBoxes(b2) ·b1 ≺ b

To relate this to the usual (linear) textual display of ND proofs, b1 ≺ b2 if and only if b1
is contained in b2.

Our first attempt to specify Proof simply considers the box structure of a proof. The
whole proof will be contained in a box called the root. Since we have insisted that rules
have no free variables, the root box should have empty boxVars field. Also, since boxes
represent scopes of assumptions and box variables, the nesting of boxes in a proof should
be block-structured, in the sense that boxes may be nested but may not otherwise overlap.
In keeping with the principle that logically different variables should be spelt differently,
we’ll also insist that different VSymbs must be used for the box variables of different
boxes. This leads to the following definition:

Proof0 :: root : Box0

where

inv-Proof0(p) 4 let bs = BoxesOf (p) in
boxVars(root(p)) = {}
∧∀b ∈ bs ·b 6≺ b
∧∀b1,b2 ∈ bs ·

b1 6= b2
⇒ subBoxes(b1)∩ subBoxes(b2) = boxVars(b1)∩boxVars(b2) = {}

where

BoxesOf :Proof → Box-set
BoxesOf (p) 4 {b:Box | b� root(p)}

Part of the invariant says that box nesting is non-circular and another part that boxes do
not share immediate subboxes; together these conditions imply that the box structure is
tree-like (or ‘block-structured’).
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4.7.2 Lines in a proof
This section describes how lines are assigned to boxes. There are many ways this could
be specified but the following seems to work out easiest. But first of all, lines are labelled
by assertions and come in two varieties: hypothesis lines and ordinary (or justified) lines.

Line = Hypline | Ordline

Hypline :: assertion : Exp0

Ordline :: assertion : Exp0
justif : Justification

Each proof will have a mapping which assigns lines to boxes, but for each box one of
its (ordinary) lines must be distinguished as its conclusion. This leads to the following
definitions:

Box1 :: boxVars : VSymb-set
subBoxes : Box1-set
boxConcl : Ordline

Proof1 :: root : Box1

lbMap : Line m−→ Box1

where

inv-Proof1(p) 4 inv-Proof0(p)∧
let lm = lbMap(p) in
rng lm⊆ BoxesOf (p)∧∀b ∈ rng lm · lm(boxConcl(b)) = b

The last part of the invariant simply says that a box’s conclusion is assigned to the box
itself.

Note that (at this stage) we’re not concerned about the order in which lines appear in
a box. In fact, there are good reasons – such as ease of specification and orthogonality
of concerns – for delaying such a design decision as long as possible. Instead, we’ll
introduce (later) a notion of how a line depends on other lines, and use this to exclude
circularities in proofs. In the meantime, here are a couple of useful auxiliary functions for
collecting the lines of a proof:

LinesOf :Proof → Line-set
LinesOf (p) 4 dom lbMap(p)

OrdlinesOf :Proof → Ordline-set
OrdlinesOf (p) 4 {l:Ordline | l ∈ LinesOf (p)}

A line will be said to belong to a box if it is assigned to the box, or to one of its subboxes,
or to one of its sub-subboxes (and so on):

is-in :Line×Box×Proof → B
is-in(l,b,p) 4 lbMap(p)(l)� b
pre l ∈ LinesOf (p)∧b ∈ BoxesOf (p)
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We’ll write is-in(l,b,p) as l ∈p b, or simply as l ∈ b when p is clear from context.

Claim: � acts like the subset relation on lines in boxes – viz.

∀b1,b2 ∈ BoxesOf (p) · l ∈ b1∧b1 � b2 ⇒ l ∈ b2

Claim: The only box to which a proof’s conclusion may belong is the root: i.e.,

∀b ∈ BoxesOf (p)−{root(p)} ·boxConcl(root(p)) /∈ b

(This follows from the non-circularity of ≺.)

It will be useful to have functions which extract the (assertions labelling the) conclusion
and hypotheses of a box:

Conclusion :Box→ Exp0
Conclusion(b) 4 assertion(boxConcl(b))

Hyps-of :Box×Proof → Exp0-set
Hyps-of (b,p) 4 {assertion(h) | h:Hypline∧ lbMap(p)(h) = b}

As remarked above, a sequent is like a ‘squashed’ box: sequent variables correspond to
box variables, premises correspond to hypotheses, and the upshot corresponds to the box’s
conclusion. Thus we can extract a sequent from a box as follows:

Extract-sequent :Box×Proof → Sequent
Extract-sequent(b,p) 4

mk-Sequent(boxVars(b),Hyps-of (b,p),Conclusion(b))

4.7.3 Well-formedness of assertions on lines
The syntactic ‘context’ of a line in a proof consists of the signature of the rule being
proven (namely, its metavariables and the full signature of its theory) and the box variables
of the boxes which enclose the line. The latter will be called the line’s ‘available variables’
and are given by:

availVars :Line×Proof → VSymb-set
availVars(l,p) 4 {boxVars(b) | b ∈ BoxesOf (p)∧ l ∈ b}

The next function defines what it means for the assertion on a line to be well-formed:

Has-wfd-assertion :Line×Rule→ B
Has-wfd-assertion(l,r) 4

let p = proof (r),
Γ = mk-Context(availVars(l,p),SigOf (r)) in

Is-wfd(assertion(l),Γ)
pre p:Proof ∧ l ∈ LinesOf (p)
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We’ll now strengthen the invariant on rules so that their proofs and statements are related,
and proof lines are well-formed. In particular, the only variables that may occur free in
assertions in a proof are box variables from enclosing boxes:

∀l ∈ LinesOf (p) · freeVars(assertion(l))⊆ availVars(l,p)

In fact, mural is rather more liberal than the above specification suggests. For example,
sometimes it is particularly useful to be able to leave ‘uninstantiated metavariables’ in
proofs when not enough information is at hand at the time an inference rule is invoked.
This lets the user continue with construction of a proof without committing to certain de-
cisions: e.g. a proof by induction can be set up without deciding on a particular induction
hypothesis. Another example would be to deliberately leave P uninstantiated in

∀x:N ·P[x] ⇒ (x−1)2 ≤ factorial(x)

until the proof is explored further and requirements on P become more apparent. The full
specification allows for many other kinds of ‘ill-formedness’ and syntactic inconsistency.

Rule4 :: theory : Theory1
stmt : RuleStmt
metavars : ArityMap
proof : Proof1 | {AXIOM}

where

inv-Rule4(r) 4 inv-Rule3(r)∧
let p = proof (r) in
(p 6= AXIOM

⇒ (ordHyps(rs) = Hyps-of (root(p),p)
∧ concl(rs)≡ Conclusion(root(p))
∧∀l ∈ LinesOf (p) ·Has-wfd-assertion(l,r)))

Note that, apart from the sequent hypotheses, a rule’s statement can be extracted from its
proof (if it has one).

4.7.4 Dependencies within proofs
This section considers (in abstract) how lines can depend on other lines and boxes, and
strengthens the invariant on proofs to respect scoping and to exclude circular arguments.
With each ordinary line we’ll associate a set of lines, boxes and sequents called its an-
tecedents. Typically, antecedent lines are the lines on which the justification of the line
depends, and similarly for boxes and sequents.

There are of course restrictions on which lines and boxes can be antecedents of any
given line. As remarked above it is not valid, for example, to appeal to a line (or box)
inside a box from a line outside that box, as illustrated in Figure 4.1. This leads to the
following first definition of the lines ‘accessible’ from a given line:

Accessible-lines0 :Line×Proof → Line-set
Accessible-lines0(l,p) 4 {l′ ∈ LinesOf (p) | @b ∈ BoxesOf (p) · l 6∈ b∧ l′ ∈ b}
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· line l

· line l′
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Figure 4.1: Invalid dependencies from line l.

It may help to note that the defining predicate can be written equivalently as

∀b ∈ BoxesOf (p) · l′ ∈ b ⇒ l ∈ b

The boxes accessible from a given line are defined analogously:

Accessible-boxes0 :Box×Proof → Box-set
Accessible-boxes0(l,p) 4

{b′ ∈ BoxesOf (p) | @b ∈ BoxesOf (p) · l 6∈ b∧b′ ≺ b}

These definitions are over-generous in that they allow for example a line to appeal to itself
or to an enclosing box, which would not be valid logical reasoning. Later we’ll tighten
these definitions somewhat; in the meantime, it’s interesting to see how far we can get
with such weak restrictions.

Claim: The lines accessible from l are those which are assigned to boxes containing l:
i.e.

l′ ∈ Accessible-lines0(l,p) ⇔ l ∈ lbMap(p)(l′)

It follows that the variables available at accessible lines are a subset of those available at
the line: i.e.,

∀l′ ∈ Accessible-lines0(l,p) ·availVars(l′,p)⊆ availVars(l,p)

Claim: The boxes accessible from l are the immediate subboxes of boxes which enclose
l: i.e.,

Accessible-boxes0(l,p) =
⋃
{subBoxes(b) | l ∈p b}

(The proof uses the tree-like nature of boxing.)

For the purposes of this specification, the antecedent relations will be stored as extra fields
of a proof. To prevent circular arguments it is necessary to place additional restrictions
on the antecedent relations: e.g. we do not allow a situation whereby line a is justified by
appeal to line b, line b by appeal to line c and line c by appeal to line a. We do this by
defining

Proof2 :: root : Box
lbMap : Line m−→ Box1

antLines : Ordline m−→ Line-set
antBoxes : Ordline m−→ Box-set
antSeqs : Ordline m−→ Sequent-set
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where

inv-Proof2(p) 4 inv-Proof1(p)∧
let lm = antLines(p),bm = antBoxes(p),sm = antSeqs(p) in
dom lm = dom bm = dom sm = OrdlinesOf (p)
∧∀l ∈ Ordlines(p) ·

l 6≺p l
∧ lm(l)⊆ Accessible-lines0(l,p)
∧bm(l)⊆ Accessible-boxes0(l,p)

where l1 ≺p l2 stands for Depends-on(l1, l2,p) and

Depends-on :Line×Ordline×Proof → B
Depends-on(l1, l2,p) 4

let cons = {boxConcl(b) | b ∈ antBoxes(p)(l2)},
ls = antLines(p)(l2)∪ cons in

l1 ∈ ls ∨ ∃l ∈ ls ·Depends-on(l1, l,p)

The dependency relation is roughly the transitive closure of the antecedent relation(s),
where boxes ‘export’ their conclusions only. We’ll simply write l1 ≺ l2 when p is clear
from context.

In Section 4.7.7 it is shown that this invariant correctly captures the notion of ND
proof. In the meantime we explore the consequences of our definitions, which leads to a
useful strengthening of the invariant on Proof .

The next function extracts the set of lines on which the conclusion of a proof depends:

Lines-used :Proof → Line-set
Lines-used(p) 4 {l ∈ LinesOf (p) | l� boxConcl(root(p))}

If all the individual justifications of ‘used lines’ are correct, then any other line in the
proof is redundant (in the sense that it’s not actually needed to establish the result). Boxes
which don’t contain ‘used lines’ are also extraneous to the proof. A ‘garbage collector’
– to be invoked by the user – is provided in mural which cleans up a proof by removing
redundant lines and boxes, but such an operation is awkward to specify at this level.13

It’s convenient to make the following abbreviation:

Ordlines-used :Proof → Ordline-set
Ordlines-used(p) 4 {l:Ordline | l ∈ Lines-used(p)}

Claim: Ordinary lines used to establish the conclusion of a proof cannot appeal to boxes
to which they belong: i.e.

∀l ∈ Ordlines-used(p) · ∀b ∈ antBoxes(p)(l) · l 6∈ b
13For example,

GarbageCollect
ext wr p:Proof
post LinesOf (p) = Lines-used(↼−p )

∧Extract-sequent(root(p),p) = Extract-sequent(root(↼−p ),↼−p )

is too loose a specification for what we have in mind because it says too little about the box structure. This
is not the place to go into a lengthy discussion; suffice it to say that it is much easier to specify the operation
at a level in which lines and boxes are given names (or ‘references’, if you prefer).
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(Hint: the proof uses the following lemma

l1 ≺ l2 ⇒ ∀b ∈ BoxesOf (p) · (l1 ∈ b∧ l2 6∈ b ⇒ l1 � boxConcl(b)≺ l2)

which can be proven by a straightforward induction. Let’s suppose

b ∈ antBoxes(p)(l)

and l ∈ b and derive a contradiction. First note that

boxConcl(b)≺ l

by definition. We can thus rule out the case b = root(p) since

l� boxConcl(root(p))

and ≺ is non-circular. It follows from an earlier result that

boxConcl(root(p)) 6∈ b

and hence from the lemma that l � boxConcl(b). But this contradicts the observation
above that boxConcl(b)≺ l.)

It’s also clear that it would contradict the non-circularity of≺ for a line to make appeal
to itself. Thus we can strengthen the definitions above:

Accessible-lines1 :Line×Proof → Line-set
Accessible-lines1(l,p) 4

let bs = BoxesOf (p) in
{l′ ∈ LinesOf (p) | l 6≺ l′∧@b ∈ bs · (l 6∈ b∧ l′ ∈ b) ∨ l = boxConcl(b)}

Accessible-boxes1 :Box×Proof → Box-set
Accessible-boxes1(l,p) 4

{b′ ∈ BoxesOf (p) | l 6∈ b′∧@b ∈ BoxesOf (p) · l 6∈ b∧b′ ≺ b}

Proof3 is defined exactly as Proof2 above but with the new definitions Accessible-lines1
and Accessible-boxes1.

We’ve said nothing about antecedent sequents yet. They will be taken from among the
sequent hypotheses of the rule being proven:

Rule5 :: theory : Theory1
stmt : RuleStmt
metavars : ArityMap
proof : Proof3 | {AXIOM}

where

inv-Rule5(r) 4 inv-Rule4(r)∧
let p = proof (r) in
(p 6= AXIOM ⇒ rng antSeqs(p)⊆ seqHyps(stmt(r)))
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4.7.5 Justifications
In formal proofs, new ‘facts’ are deduced from existing facts and hypotheses by rules of
inference. In our terminology, ordinary lines in a proof are justified by (instances of) rules,
making reference to other lines, boxes and sequents; this notion is captured in RuleJustif
below.

For various reasons, however, we find it convenient to introduce other kinds of justi-
fication – justifications which could be considered ‘shorthand’ for certain kinds of justifi-
cation by rules, such as

• folding and unfolding definitions

• appealing to sequent hypotheses

• nested justifications

• appeal to an ‘oracle’ (for example, an external decision procedure)

and more. After introducing RuleJustif , we’ll look briefly at one of these ‘shorthands’
– namely justification by appeal to a sequent hypothesis. In Section 4.8.5 we look at
justifications by rules which are translated over theory morphisms. The other kinds of
justification are dealt with in the full specification.

Putting all this together gives us:

Justification = RuleJustif | SeqHypJustif | . . .

For each kind of justification we shall define a predicate

Is-properly-justified:Ordline×Proof → B

which checks the correctness of a line’s justification.

Justification by rules

The most common way of justifying a line is by appeal to an instance of an inference
rule:14

RuleJustif :: rule : Rule5
instn : Instantiation

where

inv-RuleJustif (rj) 4 let m = metavars(rule(rj)),
mk-Instantiation(om, tm) = instn(rj) in

dom m = dom om∪dom tm
∧∀c ∈ dom om ·Arity(om(c))≤ m(c)
∧∀c ∈ dom tm ·Arity(tm(c))≤ m(c)

14Once again (cf. the footnote in Section 4.5.3), it would be better to make the RULE-field a pointer to a
rule, rather than the actual rule itself. Strictly, the noncircularity condition on rules in Section 4.5 follows
as a consequence of (VDM semantics and) the definition of RuleJustif given here, but that was not the
specification writer’s intention, nor will the fact be exploited here.
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where (i, j)≤ (k, l) 4 i≤ k∧ j≤ l.
Part of the invariant says that the instantiation instantiates the metavariables of the rule

and no more. The rest of the invariant gives a sufficient condition for the instantiation to
be possible – namely, that each occurrence of a metavariable c in (the statement of) r has
enough arguments to fill the placeholders in the instantiand of c. This, together with the
well-formedness invariant on rules, ensures the precondition on instantiation is satisfied:
i.e.

∀rj:RuleJustif ·pre-Instantiate(stmt(rule(rj)), instn(rj))

The following predicate says what it means for a RuleJustif to be correct: 15

Is-properly-justified :Ordline×Proof → B
Is-properly-justified(l,p) 4

let mk-RuleJustif (r, inst) = justif (l),
rs = Instantiate(stmt(r), inst),p = proof (r),
ls = antLines(p)(l),bs = antBoxes(p)(l),ss = antSeqs(p)(l) in

assertion(l)≡ concl(rs)
∧∀oh ∈ ordHyps(rs) · ∃l′ ∈ ls ·assertion(l′)≡ oh
∧∀sh ∈ seqHyps(rs) ·

Is-trivially-true(sh)
∨ ∃l′ ∈ ls ·Establishes(Extract-sequent(l′),sh)
∨ ∃b ∈ bs ·Establishes(Extract-sequent(b,p),sh)
∨ ∃s ∈ ss ·Establishes(s,sh)

pre justif (l):RuleJustif
where

Extract-sequent :Line→ Sequent
Extract-sequent(l) 4 mk-Sequent({},{},assertion(l))

Extract-sequent :Box×Proof → Sequent
Extract-sequent(b,p) 4

mk-Sequent(boxVars(b),Hyps-of (b,p),Conclusion(b))

In other words, the assertion on the line in question should be equivalent to the conclusion
of the rule instance, and all hypotheses of the rule instance should be established by
antecedents of the line. Only a line can establish an ordinary hypothesis, but lines, boxes
and sequents can establish sequent hypotheses. Sometimes a sequent hypothesis even
becomes trivially true upon instantiation. (In practice however, sequent hypotheses are
usually established by boxes.) There are a number of examples in Chapter 3 above (e.g. in
Section 3.2.2).

We note in passing that the above definition leaves room for plenty of redundancy.
For example, there may be antecedent lines and/or boxes which are not actually needed
as far as establishing hypotheses of the rule instance. Such redundancy needn’t bother us
at this stage, but it would be useful (in a subsequent development of the specification) to

15Rules which have side conditions (cf. Section 4.3.5), should be checked as part of the
Is-properly-justified relation.
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introduce an ‘garbage collector’ for removing it from a proof.

Of course, only rules which are in, or inherited by, the theory of the rule being proven
can be used in a RuleJustif . This restriction is enforced by strengthening the invariant on
Rule:16

Rule6 :: theory : Theory1
stmt : RuleStmt
metavars : ArityMap
proof : Proof3 | {AXIOM}

where

inv-Rule6(r) 4 inv-Rule5(r)∧
let p = proof (r) in
(p 6= AXIOM ⇒ ∀l ∈ Ordlines-used(p) ·

let rj = justif (l) in
rj:RuleJustif ⇒ rule(rj) ∈ RulesOf (theory(r)))

Justification by sequent hypotheses

There are a whole class of rules to do with sequents which can legitimately be considered
to be general rules of Natural Deduction: e.g.

P, {P} ` Q
Q

P, Q, {P,Q} ` R
R

When sequent variables are present the situation is slightly more complicated: e.g.

P[a], {P[x]} `x Q[x]
Q[a]

provided a is instantiated by a VSymb.17 Because such rules are common to all ND logics
(i.e. logics whose inference rules are expressible in ND form), it was decided to ‘hard-
wire’ them into the system, by providing a special kind of justification: namely, justifica-
tion by sequent hypothesis. The relevant notions are captured in the following definitions:

SeqHypJustif :: sequent : Sequent
varMap : VSymb m−→ VSymb

16A note about the definition of inv-Rule6: as defined, the function RulesOf depends on the store (or
‘state’) and so strictly should not be used here. The problem can be overcome by writing instead

theory(rule(rj))� theory(r)

but although this is formally better it was felt to be less evocative for the reader.
17cf. the discussion of our interpretation of ‘arbitrary variable’ in a footnote in Section 4.3.3. To take

account of the more general interpretation, the varMap-field of SeqHypJustif should be replaced by

varMap:VSymb m−→ Exp0

in what follows. In the definition of Is-properly-justified, RenameFreeVars would also have to be suitably
generalized to allow free variables to be replaced by expressions.
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where

inv-SeqHypJustif (mk-SeqHypJustif (seq,vm)) 4 dom vm = seqVars(seq)

For a line to be properly justified by a sequent hypothesis, its assertion should be equiv-
alent to the sequent’s upshot, and each of the sequent’s premises should be established at
antecendent lines. Of course, this is subject to sequent variables being renamed according
to varMap:

Is-properly-justified :Ordline×Proof → B
Is-properly-justified(l,p) 4 let mk-SeqHypJustif (seq,vm) = justif (l) in

assertion(l)≡ RenameFreeVars(upshot(seq),vm)
∧∀e ∈ premises(seq) · ∃l′ ∈ antLines(p)(l) ·

assertion(l′)≡ RenameFreeVars(e,vm)

pre justif (l):SeqHypJustif
In practice, to meet well-formedness criteria it will almost always be the case that

rng vm⊆ availVars(l,p)

if the line is to be properly justified (because sequent variables usually occur free in at
least one of the constituents of a sequent hypothesis).

Once again, some of the antecedent lines may be redundant and could be ‘garbage
collected away’ (along with all of the antecedent boxes, if any).

4.7.6 The status of a proof
A line in a proof is known if every line on which it depends is properly justified:

Is-known :Ordline×Proof → B
Is-known(l,p) 4 ∀l′ � l · l′:Ordline ⇒ Is-properly-justified(l′,p)

A proof is complete if every ordinary line used to establish its conclusion is properly
justified (or equivalently, if its conclusion is known):

Is-complete :Proof → B
Is-complete(p) 4 ∀l ∈ Ordlines-used(p) · Is-properly-justified(l,p)

The rules which are used in a proof are just those used in the RuleJustif s of relevant lines:

Rules-used :Proof → Rule-set
Rules-used(p) 4 {rule(justif (l)) | l ∈Ordlines-used(p)∧ justif (l):RuleJustif}

This completes the definitions missing from Section 4.5 above.

4.7.7 ND proof trees
The second half of inv-Proof3 defines what it means for the dependency graph underlying
a proof to be well-formed. It seems like a reasonable definition, but how do we know that
it faithfully captures the notion of ND proof? After all, it has probably never even been
written down in a textbook in quite this form (the closest description seems to be that of
Jáskowski discussed in [Pra65]) – obviously some validation is called for. Fortunately this
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can be done by showing how our proof graphs are related to the widely-accepted notion
of a Natural Deduction proof tree (cf. [Pra65]).

Without loss of generality, let’s assume all justifications in a proof are RuleJustif s
(cf. the discussion at the start of Section 4.7.5). Informally, a Natural Deduction proof
tree can be obtained by ‘unfolding’ the proof graph from the proof’s conclusion, fol-
lowing antecedents and copying nodes. More precisely, nodes of the tree correspond to
(copies of) lines in the proof, labelled by their assertions. When an antecedent is a box,
its conclusion is used as the new node and the unfolding continues from there. Clearly
the unfolding process terminates since the dependency relation is noncircular (and VDM
values are finite).

Hypothesis lines and lines which are not properly justified will be called assumptions.
The next function extracts the assumptions upon which a line depends:

Assumptions :Line×Proof → Exp0-set
Assumptions(l,p) 4

if l:Hypline ∨ ¬ Is-properly-justified(l,p)
then {assertion(l)}
else let S1 =

⋃
{Assumptions(l′,p) | l′ ∈ antLines(p)(l)},

S2 =
⋃
{Assumptions(boxConcl(b′),p)−Hyps-of (b′,p) | b′ ∈ bs},

bs = antBoxes(p)(l) in
S1∪S2

pre l ∈ LinesOf (p)
Notice how the hypotheses of a box are ‘discharged’ from the assumption set when a line
appeals to a box. That’s because they were temporary assumptions, relevant only to lines
inside the box.

Claim: Clearly the assumptions on which a line depends are a subset of the assertions on
lines on which the line depends: i.e.,

Assumptions(l,p)⊆ {assertion(l′) | l′ � l}

Claim: The Assumptions function is monotonic with respect to the antecedents relation:
i.e.

l′ ∈ antLines(p)(l) ⇒ Assumptions(l′,p)⊆ Assumptions(l,p)

A similar result holds for antecedent boxes:

b′ ∈ antBoxes(p)(l) ⇒
Assumptions(boxConcl(b′),p)−Hyps-of (b′,p)⊆ Assumptions(l,p)

Claim: If a line is ‘known’, its only assumptions are hypotheses of enclosing boxes: i.e.

Is-known(l,p) ⇒ Assumptions(l,p)⊆
⋃
{Hyps-of (b,p) | b ∈ BoxesOf (p)∧ l ∈ b}

(The proof uses two of the lemmas in Section 4.7.4.)

Claim: If the conclusion c of a box b is ‘known’, then the box variables of b do not occur
free in any assumption on which c depends, other than the hypotheses of b: i.e.

∀b ∈ BoxesOf (p) ·
let c = boxConcl(b),ass = Assumptions(c,p)−Hyps-of (b,p) in
Is-known(c,p) ⇒ ∀e ∈ ass · freeVars(e)∩boxVars(b) = {}
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This fact embodies a common ‘variable occurrence’ side-condition (cf. Section 4.3.3
above and the discussion in the section on Predicate Calculus in Section 3.2.4). The
proof relies on the scoping and well-formedness invariants, and follows easily from ear-
lier lemmas.

Claim: Given a rule R and a line l in the proof pf of R, assertion(l) follows from
Assumptions(l,pf ) and the sequent hypotheses of stmt(R) according to the laws of Natural
Deduction.

Sketch proof: The proof is by induction on the number of lines on which l depends in pf .
Let n = card {l′:LinesOf (pf ) | l′ ≺ l}. Without loss of generality we can assume

Is-properly-justified(l,pf )

Base case: If n = 0 then antLines(pf )(l) = {} = antBoxes(pf )(l), and assertion(l) is
simply established by justif (l) and the sequent hypotheses of R (if any).
Induction step: For convenience, let’s abbreviate Assumptions(l,pf ) by A.

Consider the justification justif (l). To each ordinary hypothesis ohyp of the rele-
vant rule instance there corresponds a line l′ ∈ antLines(pf )(l). By the induction hy-
pothesis, ohyp follows from Assumptions(l′,pf ), and thus from the superset A. Simi-
lar considerations apply to sequent hypotheses (of the rule instance) which are estab-
lished by lines or sequent hypotheses. That just leaves the case when a sequent hy-
pothesis shyp is established by a box b′. Now, after appropriate renaming of sequent
variables, the upshot of shyp is equivalent to Conclusion(b′). The latter follows from
Assumptions(boxConcl(b′),pf ), and thus from A∪Hyps-of (b′,pf ), by the induction hy-
pothesis. Of course, according to the (meta-)laws of Natural Deduction, the premises of
shyp – in our case Hyps-of (b′,pf ) – are ‘discharged’ by the rule in justif (l). Thus, since
justif (l) is a proper justification, we get assertion(l) follows from A, as required. �

Since any tree-like ND proof can clearly be put into linear form, we have:

Corollary The mural proof model faithfully captures the notion of ND proof.

In particular, unless the axioms of a theory are inconsistent, only valid consequences of
the theory can be proven in mural .

4.8 Morphisms
This section treats an advanced topic. Due to time constraints, the facilities described in
this section were not included in early releases of the mural system. The reader can thus
safely skip this section on first reading.

4.8.1 Motivation
In Sections 4.5.3 and 4.6.1 a simple theory structure was described, amounting to an
acyclic directed graph of theories with simple inheritance. Although this is good enough
for many purposes, there are times when it is too simple: e.g.

• When the same symbol is used for different purposes in different parent theories, it
inherits both sets of properties. In some cases this is precisely what is intended. In
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other cases the symbol can safely be considered to be ‘overloaded’ with different
meanings. But there are also cases when such coalescing makes for inconsistencies.

• Sometimes it is desirable to be able to simply rename some of the symbols in the
theory. For example, the theory might be being used in an application domain with
different notation to that in which it was originally developed (e.g. list concatenation
might be written as ‘@’ instead of ‘y’). Renaming can also be used to avoid
symbol clashes when combining theories.

• Descending the theory hierarchy from the root often means moving from abstract,
general theories to more specific theories. For example, a simple way to form a
theory of AC operators would be to develop theories of associative and commutative
operators separately and then to make them parents of the new theory. Once a theory
hierarchy is constructed however it’s difficult to insert further abstractions without
redoing a whole part of the hierarchy.

• Sometimes it is desirable to construct two different but equivalent versions of a
theory: e.g. propositional calculus formulated in terms of ‘∧’ and ‘¬ ’ versus a
formulation in terms of ‘∨’ and ‘¬ ’. Wherever one theory is used the other should
be equally available: but this is clearly not possible in an acyclic directed graph.

Our proposed solution to these problems is to augment the simple structure by extra links,
called morphisms.18 Essentially, morphisms define ‘faithful interpretations’ of one theory
in another – simple translations which preserve meaning (in the sense of ‘provability’).

A simple example of a morphism, taken from Abstract Algebra, would be to interpret
the integers as a group under + (with identity 0). Let’s suppose the Theory of Groups is
formulated in terms of primitive constants ⊗, id and inv of arities (2,0), (0,0) and (1,0)
respectively (with ⊗ displayed infixed). We’ll also assume the integers are formulated in
an appropriate Theory of Arithmetic, and that both theories inherit the appropriate Theory
of Equality. The axioms of Group Theory are

a⊗ (b⊗ c) = (a⊗b)⊗ c
a⊗ id = a = id⊗a

a⊗ inv(a) = id = inv(a)⊗a

(universally quantified over a, b and c).
The translation from group theory to arithmetic is induced by

a⊗b 7→ a′+b′

id 7→ 0
inv(a) 7→ 0−a′

where a and b are formal parameters and a′ and b′ are their translations. Symbols from
the shared parent Equality Theory are translated unchanged, as are variables and metavari-
ables. Thus for example, the term inv(id⊗ inv(x)) = x translates to 0− (0+(0− x)) = x.

18This solution was initially inspired by Burstall and Goguen’s modular approach to building mathemat-
ical models in Institutions [GB84].



152 4 Foundation

Clearly, all the axioms of group theory remain true under this interpretation. And since
proofs can be translated in a similar way, it follows that the translation of any derived rule
of Group Theory will hold in the Theory of Arithmetic.

In the remainder of this section we lay down the basic foundations for morphisms in
mural . Unfortunately, time may not permit a full implementation of the supporting oper-
ations.

4.8.2 Signature morphisms
A morphism is defined by its action on the primitive symbols of a theory:

Morph :: CEMap : CESymb m−→ Exp1

CTMap : CTSymb m−→ Type1

DEMap : DESymb m−→ DESymb
DTMap : DTSymb m−→ DTSymb

In this definition, constructors can be replaced by more complicated expressions (of the
correct kind). The expressions may contain placeholders, which get filled in by (transla-
tions of) the constructor’s arguments upon translation (cf. Section 4.8.3.) Variable binding
symbols can only be replaced by other variable binding symbols (of the correct kind).

The definition uses the ‘placeholders’ mechanism – introduced in Section 4.4.2 – to
deal with the formal parameters in instantiations. Thus instead of writing

a⊗b 7→ a′+b′

formally we would write
⊗ 7→ [[e1]]+ [[e2]]

where [[ei]] stands for mk-OPH(i). In fact, the definition of translation will be almost
exactly the same as for instantiation of metavariables (cf. Section 4.4) except that now
variable binding symbols may also be affected.

A signature morphism is a morphism together with a pair of signatures such that
symbols from one signature get translated to expressions/symbols in the other signature
in a consistent way. In particular, constructors should be translated to well-formed, closed
expressions with at most as many formal parameters as the symbol expects arguments.

SigMorph :: from : Signature
to : Signature
via : Morph

where

inv-SigMorph(σ) 4 let mk-Signature(m,bs) = from(σ),
mk-Morph(cm,ctm,bm,dtm) = via(σ),
Γ = mk-Context({}, to(σ)) in

dom cm∪dom ctm⊆ dom m
∧dom bm∪dom dtm = bs
∧∀c ∈ dom cm · Is-wfd(cm(c),Γ)∧Arity(cm(c))≤ m(c)
∧∀ct ∈ dom ctm · Is-wfd(ctm(ct),Γ)∧Arity(ctm(ct))≤ m(ct)
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(This definition leaves room in dom m− (dom cm∪dom ctm) for metavariables, which
would normally simply be translated identically under a morphism.)

Note in particular that terms in the ‘range’ of a signature morphism are closed: i.e.

∀x ∈ rng cm∪ rng ctm · freeVars(x) = {}

4.8.3 Translation under morphisms
The translation induced by a signature morphism is defined by applying the morphism to
the leaves of the syntax tree and propagating the result back up the tree, renaming bound
variables (if necessary) to avoid capture and to preserve invariants.

Translate :Term1×SigMorph→ Term1
Translate(x,σ) 4 let mk-Morph(cm,ctm,bm,dtm) = via(σ) in

cases x of
VSymb → x
mk-CompExp1(c,el, tl)→ let el′ = [Translate(el(i),σ) | i ∈ dom el],

tl′ = [Translate(tl(i),σ) | i ∈ dom tl] in
if c ∈ dom cm
then FillPHs(cm(c),el′, tl′)
else build-CompExp1(c,el′, tl′)

mk-BindExp1(b,v, t,e)→ let b′ = bm(b),
t′ = Translate(t,σ),
e′ = Translate(e,σ) in

build-BindExp1(b′,v, t′,e′)
OHP → x
...
end

pre Is-wfd(x,mk-Context(freeVars(x), from(σ)))
The precondition pre-Translate ensures that, if a constructor in x is to be morphed, then it
has enough arguments to fill all the placeholders of its image.

Claim: Signature morphisms do not introduce new free variables: i.e.

freeVars(Translate(x,σ))⊆ freeVars(x)

Claim: Signature morphisms take well-formed terms to well-formed terms; more pre-
cisely

let Γf = mk-Context(vs, from(σ)),
Γt = mk-Context(vs, to(σ)) in

Is-wfd(x,Γf ) ⇒ Is-wfd(Translate(x,σ),Γt)

4.8.4 Theory morphisms
A theory morphism is a morphism which translates axioms of one theory into (not neces-
sarily proven) rules of another:
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ThMorph :: from : Theory1
to : Theory1
via : SigMorph
justif : Rule3

m−→ Rule3

where

inv-ThMorph(mk-ThMorph(Tf ,Tt,σ ,J)) 4

FullSigOf (Tf ) = from(σ)∧FullSigOf (Tt) = to(σ)
∧dom J = {r ∈ RulesOf (Tf ) | proof (r) = AXIOM}
∧ rng J ⊆ RulesOf (Tt)
∧∀r ∈ dom J ·Translate(stmt(r),σ)≡ stmt(J(r))

where Translate and ≡ are extended to RuleStmt appropriately.19

A theory morphism is valid (or a faithful interpretation) if it translates axioms into
established rules:

Is-valid :ThMorph→ B
Is-valid(τ) 4 ∀r ∈ rng justif (τ) ·Status(r)≥ RIGDERIVED

Claim: Given a valid theory morphism from theory T to theory T ′, the appropriate trans-
lation of any derived rule in T must be derivable in T ′.
(This follows from the obvious fact that complete proofs translate to complete proofs.)

The reader is referred to Sections 3.4.3 and 3.4.4 for examples of valid theory mor-
phisms.

4.8.5 Theory morphisms in rule justifications
It’s possible to take advantage of the last fact in the previous section to save the user a lot
of work repeating proofs which are simple translations of existing proofs. This will be
done by extending the notion of RuleJustif to allow appeal to (translations of) rules across
theory morphisms.

The new kind of justification is defined by

MorphedRuleJustif :: rule : Rule3
via : ThMorph
instn : Instantiation

where

inv-MorphedRuleJustif (rj) 4

let mk-MorphedRuleJustif (r,τ, inst) = rj in
r ∈ RulesOf (from(τ))∧pre-Instantiate(Translate(stmt(r),via(τ)), inst)

The test for whether a MorphedRuleJustif is valid is exactly analogous to that for ordinary
Rulejustif s upon translating the rule across the morphism:

19For rule statements, ≡ should also take simple renaming of metavariables into account.
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Is-properly-justified :Ordline×Proof → B
Is-properly-justified(l,p) 4

let mk-MorphedRuleJustif (r,τ, inst) = justif (l),
rs = Instantiate(Translate(stmt(r),via(τ)), inst),
etc in

. . . as for RuleJustif
pre justif (l):MorphedRuleJustif

Finally, the invariant on Rule6 should be strengthened to say that any theory morphisms
used are morphisms to ancestor theories of the rule being proven: viz.

rj:MorphedRuleJustif ⇒ to(via(rj)) ∈ Ancestors(theory(r))

Rules-used should be redefined to include not just rule(rj) but also all the rules to validate
the theory morphism (i.e. all rules in rng justif (via(rj))).

4.9 Pattern matching
The mural proof assistant provides a pattern-matching (or ‘anti-instantiation’) algorithm
for its syntax. This is particularly useful for matching conclusions of rules against proof
lines, in order to determine exactly which rules are candidates for justifications. If in ad-
dition the user can identify a line or lines on which the justification depends, hypotheses
of rules can simultaneously be matched against them, which further narrows the choice
of applicable rules. As well as determining whether a match is possible, the algorithm re-
turns a set of (partial) instantiations, which is particularly useful when filling in the justifi-
cation of a line. (The instantiations are partial for example when the rule has metavariables
which do not appear in the conclusion, and hence which play no part in the matching.)
This has all been incorporated into the mural search tool.

In this section we specify, develop and informally verify an algorithm for match-
ing Term0s against Term0s. In the worst case, matching is of exponential complexity:
e.g. when P and a are metavariables and P[a] is matched against c(d,d, . . . ,d), the result
is the set of all instantiations of the form

{a 7→ d, P[x] 7→ c(d′)}

where d′ is (d,d, . . . ,d) with some d’s replaced by the formal parameter x. The com-
plexity of matching is the price we pay for allowing metavariables to take arguments
(cf. Section 4.2.2). With due care to the form of inference rules, however, matching is
often linear in practice (cf. the discussion in Section 3.3.1 above).

In fact, very significant improvements can be made to the algorithm given here, for
example by passing sets of (partial) candidate instantiations around the syntax tree in a
depth-first manner. Such improvements are left as exercises for the reader.

4.9.1 The specification of pattern matching
Before we give the formal specification, it will be convenient to define a type to hold the
set of metavariables to be matched:

MVS = (CESymb | CTSymb)-set
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An instantiation will be said to be ok with respect to a set mvs of metavariables and a set
vs of variables if it only instantiates metavariables from mvs and it only introduces free
variables from vs; more formally:

Is-ok-inst : Instantiation×MVS×VSymb-set→ B
Is-ok-inst(mk-Instantiation(cm,ctm),mvs,vs) 4

dom cm∪dom ctm⊆ mvs
∧∀x ∈ rng cm∪ rng ctm · freeVars(x)⊆ vs

The set mvs will usually consist of the metavariables of the rule being matched. (It’s
necessary to make it explicit just exactly which metavariables can be instantiated since
there may be metavariables which definitely can not be instantiated: e.g. the metavariables
in the statement of the rule being proven.) The set vs will usually consist of the free
variables available in the ‘context’ in which the matching is being done (e.g. the box
variables of boxes enclosing the line to be matched against).

We say x can be matched against y over (mvs,vs) if there is an instantiation inst which
is ok with respect to (mvs,vs) such that

Instantiate(x, inst)≡ y

Here’s a first specification of pattern-matching:20

Match-against (x,y:Term0,mvs:MVS,vs:VSymb-set) insts: Instantiation-set
post ∀inst ∈ insts ·

Is-ok-inst(inst,mvs,vs)∧ Instantiate(x, inst)≡ y

It’s not a terribly satisfactory specification, however, since it has a trivial implementa-
tion (viz. insts = {}). You might think that a more appropriate specification would re-
quire that insts contain all relevant instantiations. Unfortunately, this would be asking too
much since there might be infinitely many possibilities: e.g. one can α-convert to one’s
heart’s content; and any extension of a possibility is another possibility. One way around
this would be to define an appropriate partial ordering on Instantiation and insist that
Match-against return a ‘maximal set’ satisfying the above condition; on the other hand, it
doesn’t seem worth the overhead of specifying this formally. Instead, in Section 4.9.5 we
give an informal argument that the algorithm presented gives a complete solution, in the
sense that, for any inst: Instantiation satisfying

Is-ok-inst(inst,mvs,vs)∧ Instantiate(x, inst)≡ y

there is an instantiation in Match-against(x,y,mvs,vs) which is somehow equivalent to
inst on x.

4.9.2 Some pre-processing
In this section we sketch a first step which takes care of the trivial cases, thereby allowing
us to assume a stronger precondition. For example, the only thing that a VSymb matches is
itself (in which case any instantiation works). The empty set of instantiations is returned
if no match is possible.

20Strictly, the postcondition of Match-against should be a total predicate. This could be achieved by
adding the conjunct pre-Instantiate(x, inst) to the body of the formula.
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Match-against :Term0×Term0×MVS×VSymb-set→ Instantiation-set
Match-against(x,y,mvs,vs) 4

cases x of
VSymb → if x = y then {Trivial-inst} else {}
CompExp0 → let mk-CompExp0(c,el, tl) = x in

if c ∈ mvs
then if y:Exp0

then AUXE(x,y,mvs,vs)
else {}

else if y:CompExp0∧ symb(y) = c∧
len el = len eArgs(y)∧ len tl = len tArgs(y)

then let eis = AUXL(el,eArgs(y),mvs,vs),
tis = AUXL(tl, tArgs(y),mvs,vs) in

Combine-inst-sets(eis, tis)
else {}

BindExp0 → let mk-BindExp0(b,v, t,e) = x in
if y:BindExp0∧ symb(y) = b
then let newvar:VSymb be s.t.

newvar 6∈ vs∪ freeVars(x)∪ freeVars(y) in
let xe = RenameFreeVars(e,{v 7→ newvar}),

ye = RenameFreeVars(body(y),{var(y) 7→ newvar}),
univ = Match-against(t,univ(y),mvs,vs),
body = Match-against(xe,ye,mvs,vs) in

Combine-inst-sets(univ,body)
else {}

CompType0→ let mk-CompType0(ct,el, tl) = x in
if ct ∈ mvs
then if y:Type0

then AUXT(x,y,mvs,vs)
else {}

else if y:CompType0∧ symb(y) = ct∧
len el = len eArgs(y)∧ len tl = len tArgs(y)

then . . .
else {}

...
end

where

Trivial-inst : Instantiation
Trivial-inst 4 mk-Instantiation({},{})

Merge-insts : Instantiation× Instantiation→ Instantiation
Merge-insts(mk-Instantiation(cm,ctm),mk-Instantiation(cm′,ctm′)) 4

mk-Instantiation(cm † cm′,ctm † ctm′)
pre ∀c ∈ dom cm∩dom cm′ · cm(c)≡ cm′(c)
∧∀ct ∈ dom ctm∩dom ctm′ · ctm(ct)≡ ctm′(ct)
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Combine-inst-sets : Instantiation-set× Instantiation-set→ Instantiation-set
Combine-inst-sets(is, is′) 4

{Merge-insts(i, i′) | i ∈ is∧ i′ ∈ is′∧pre-Merge-insts(i, i′)}

This function is well-defined since Merge-insts is associative-commutative (up to ‘≡’)
when defined.

AUXL :Term∗0×Term∗0×MVS×VSymb-set→ Instantiation-set
AUXL(xl,yl,mvs,vs) 4 if xl = []

then {Trivial-inst}
else let head = Match-against(hd xl,hd yl,mvs,vs),

rest = AUXL(tl x, tl y,mvs,vs) in
Combine-inst-sets(head,rest)

pre len xl = len yl
The auxiliary operations are specified as follows:

AUXE (x:CompExp0,y:Exp0,mvs:MVS,vs:VSymb-set) insts: Instantiation-set
pre symb(x) ∈ mvs
post post-Match-against(x,y,mvs,vs, insts)

AUXT (x:CompType0,y:Type0,mvs:MVS,vs:VSymb-set) insts: Instantiation-set
pre symb(x) ∈ mvs
post post-Match-against(x,y,mvs,vs, insts)

where the postconditions are as given in the previous section. The operation AUXE is
refined further in the following section; AUXT is very similar.

4.9.3 The main algorithm
This section presents an ‘implementation’ of AUXE. One of the subsidiary functions
involved is given by an implicit specification, with its implementation deferred to the next
section.

We first sketch how the algorithm proceeds. Let’s suppose

x = mk-CompExp0(c,el, tl)

and suppose inst is a candidate element of AUXE(x,y,mvs,vs) with c ∈ mvs, where

inst = mk-Instantiation(om, tm)

Now
Instantiate(x, inst) = FillPHs(om(c),el′, tl′)

where el′ 4 [Instantiate(el(n), inst) | n ∈ dom el], etc. In other words, y should result
from filling placeholders in om(c). (Let’s ignore renaming of bound variables for the
moment.) Thus om(c) must correspond to a ‘pruned’ version of the syntax tree for y,
where certain subterms have been replaced by placeholders. If a subterm z of y is re-
placed by mk-OPH(n), say, then from the definition of FillPHs we would require that
Instantiate(el(n), inst)≡ z.

Now, there might be many different ways of pruning the tree while satisfying this last
condition, so let’s introduce a subsidiary function AUXM for collecting the possibilities:
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AUXM (y:Term0,el:Exp∗0, tl:Type∗0,mvs:MVS,vs:VSymb-set) m: IndexMap
post dom m⊆ Indices-of (y)∧{} 6∈ rng m

∧∀i ∈ dom m · ∀(ph, inst) ∈ m(i) ·
Is-ok-inst(inst,mvs,vs)
∧ let n = index(ph) in
(ph:OPH ⇒ Instantiate(el(n), inst)≡ Term-at-index(y, i))∧
(ph:TPH ⇒ Instantiate(tl(n), inst)≡ Term-at-index(y, i))

where21

IndexMap = Index m−→ ((OPH | TPH)× Instantiation)-set

We won’t go into details of the definition of Index and its auxiliary functions22, except to
say that they are used to ‘get hold of’ particular subterms, even if there are other subterms
with the same structure. As usual, the reader is referred to the full specification for details.

Again, as specified, AUXM has a trivial implementation, but in the next section we
present an algorithm which gives a complete solution (in the same sense as discussed
above).

To return to our candidate for om(c), let’s prune y at some set of subterms given by
AUXM; of course, it’s enough to consider ‘fringe-like’ sets of subterms, since it would
be wasteful to prune the same branch twice. If the candidate has all its free variables
among vs then we can try merging all the relevant instantiations returned by AUXM to get
inst. (The individual instantiations might not be broad enough on their own, or might be
mutually incompatible – hence the need to merge them if possible.) And that’s all there is
to the algorithm.

So here it is in more formal notation. The programming constructs

for each < var >∈< set-expr > do < stmt > odef

if < bool-expr > do < stmt > odif

are self-explanatory.

21It’s implicit in Instantiate(el(n), inst)≡ . . . that n≤ len el and pre-Instantiate(el(n), inst), etc.
22Signatures and preconditions of the auxiliary functions are as follows:

Indices-of :ProtoTerm→ Index-set

Term-at-index :ProtoTerm× Index→ ProtoTerm
Term-at-index(z, i) 4 . . .

pre i ∈ Indices-of (z)

Replace-subterms :ProtoTerm× Index m−→ ProtoTerm→ ProtoTerm
Replace-subterms(z,m) 4 . . .

pre ∀i ∈ dom m∩ Indices-of (z) ·m(i):ProtoExp ⇔ Term-at-index(z, i):ProtoExp
Finally, i≺ j iff Term-at-index(z, j) is a proper subterm of Term-at-index(z, i) in z.
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AUXE :CompExp0×Exp0×MVS×VSymb-set→ Instantiation-set
AUXE(mk-CompExp0(c,el, tl),y,mvs,vs) 4

local program variables: insts: Instantiation-set
m: IndexMap
s:(Index-set)-set
inst: Instantiation | {nil}

1.% Initialize insts %
insts:= {};

2.m:= AUXM(y,el, tl,mvs,vs);
3. s:= {is⊆ dom m | @ i, j ∈ is · i≺ j};

% s consists of fringe-like subsets of dom m %
4. for each is ∈ s

do for each m′ ∈ Distribute-setmap(isCm)

% m′: Index m−→ ((OPH | TPH)× Instantiation) %
do candidate:= Replace-subterms(y,Project1(m′));

if freeVars(candidate)⊆ vs
do let inst0 = mk-Instantiation({c 7→ candidate},{}) in

inst:= Merge-inst-set({inst0}∪ rng Project2(m′));
if inst 6= nil
do insts:= insts∪{inst}
odfi

odfi
odef

odef;
5. return insts

pre c ∈ mvs
(The value nil is used when the instantiations cannot be merged.) Before defining the
auxiliary functions used above, note that if y contains only free variables from vs, then
c 7→ y is a candidate instantiation: i.e.

freeVars(y)⊆ vs ⇒ mk-Instantiation({c 7→ y},{}) ∈ AUXE(x,y,mvs,vs)

Three of the auxiliary functions are defined polymorphically, in terms of arbitrary
types X, Y and Z:

Project1 :X m−→ (Y×Z)→ X m−→ Y
Project1(m) 4 {x 7→ fst(m(x)) | x ∈ dom m}

Project2 :X m−→ (Y×Z)→ X m−→ Z
Project2(m) 4 {x 7→ snd(m(x)) | x ∈ dom m}

Distribute-setmap :X m−→ (Y-set)→ (X m−→ Y)-set
Distribute-setmap(m0) 4

{m:X m−→ Y | dom m = dom m0∧∀x ∈ dom m ·m(x) ∈ m0(x)}

(Of course, the set returned by this function is likely to be very large in practice. Some
data reification might be desirable at this point.)

Finally,
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Merge-inst-set : Instantiation-set→ Instantiation | {nil}
Merge-inst-set(is) 4 if is = {}

then {Trivial-inst}
else let i ∈ is,

i′ = Merge-inst-set(is−{i}) in
if i′ 6= nil∧pre-Merge-insts(i, i′)
then Merge-insts(i, i′)
else nil

4.9.4 The subsidiary algorithm
The algorithm for AUXM simply runs through all subterms z of y trying to match elements
of elems el∪ elems tl against z. (Thus it calls Match-against recursively.)

AUXM :Term0×Exp∗0×Type∗0×MVS×VSymb-set→ IndexMap
AUXM(y,el, tl,mvs,vs) 4

local program variables: m: IndexMap
z:Term0

1.m:= {};
2. for each i ∈ Indices-of (y)

do z:= Term-at-index(y, i);
if z:Exp0
do for each n ∈ dom el

do for each inst ∈Match-against(el(n),z,mvs,vs)
do m:= Aux-add-el(m, i,(mk-OPH(n), inst))
odef

odef
odif;
if z:Type0
do for each n ∈ dom tl

do for each inst ∈Match-against(tl(n),z,mvs,vs)
do m:= Aux-add-el(m, i,(mk-TPH(n), inst))
odef

odef
odif

odef;
3. return m

where

Aux-add-el :(X m−→ Y-set)×X×Y→ X m−→ Y-set
Aux-add-el(m,x,y) 4 if x ∈ dom m

then m †{x 7→ m(x)∪{y}}
else m †{x 7→ {y}}

4.9.5 Verification of the algorithm
The algorithm clearly terminates, because it is called recursively on proper subterms of its
first argument. The verification of correctness will be done in pieces, with each algorithm
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verified individually against its specification. (AUXM is clearly correct by construction.)

Verification of Match-against

We are required to show that, for each inst ∈Match-against(x,y,mvs,vs)

Is-ok-inst(inst,mvs,vs)∧ Instantiate(x, inst)≡ y

The first part follows easily from the following facts

1. Is-ok-inst(Trivial-inst,mvs,vs)

2. Merge-insts preserves Is-ok-inst( ,mvs,vs)

3. Combine-inst-sets preserves ∀inst ∈ · Is-ok-inst(inst,mvs,vs)

and the post-conditions on AUXE and AUXT . (Of course, the definition of AUXL must also
be unfolded.)

The second part follows almost directly from the definition of Instantiate(x, inst) by
case analysis on x. We won’t go into the details as they are straightforward but messy;
instead we just note the following useful facts:

• Instantiate(x,Trivial-inst)≡ x

• Instantiate(x, ) is monotonic: viz.
pre-Merge-insts(i, i′) ⇒ Instantiate(x, i)≡ Instantiate(x,Merge-insts(i, i′))

The rest of the details are left to the dedicated reader. �

Verification of AUXE

Let inst be one of the instantiations returned by AUXE(x,y,mvs,vs) – if any – and let
is ∈ s and m′ ∈Distribute-setmap(isCm) be the corresponding choices. We use the same
notation as in the algorithm itself, so for example x = mk-CompExp0(c,el, tl), etc. In
particular,

inst = Merge-inst-set({inst0}∪ rng Project2(m′))

where inst0 = mk-Instantiation({c 7→ candidate},{}).
We must show that

Is-ok-inst(inst,mvs,vs)∧ Instantiate(x, inst)≡ y

The first part is easy. Since c ∈ mvs and freeVars(candidate)⊆ vs, we have:

Is-ok-inst(inst0,mvs,vs)

When non-nil, Merge-inst-sets preserves Is-ok-inst, so Is-ok-inst(inst,mvs,vs) will follow
once it is shown that

Is-ok-inst(inst′,mvs,vs) for each inst′ ∈ rng Project2(m′).

But this is clear from post-AUXM(y,el, tl,mvs,vs).
For the second part, note that

z:Term0∧ i ∈ Indices-of (z)∧ el0(n)≡ Term-at-index(z, i)
∧ z′ = Replace-subterms(z,{i 7→ mk-OPH(n)})
⇒ FillPHs(z′,el0, tl0)≡ z
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Using the monotonicity of Instantiate with respect to Merge-insts, and the fact that is is
fringe-like, it is straightforward (but messy) to extend this result to show that

FillPHs(Replace-subterms(y,Project1(m′)),el′, tl′)≡ y

(where el′(n)4 Instantiate(el(n), inst), etc.), since by post-AUXM

el′(n) = Instantiate(el(n), inst′)≡ Term-at-index(y, i)

when {i 7→ (mk-OPH(n), inst′)} ∈ m′. Hence

Instantiate(x, inst) = Instantiate(mk-CompExp0(c,el, tl))
= FillPHs(candidate,el′, tl′)
= FillPHs(Replace-subterms(y,Project1(m′)),el′, tl′)
≡ y

as required. �

The algorithm is complete

Let’s call an instantiation a sub-instantiation of another if each metavariable of the first
maps to something equivalent under both instantiations. (Of course, the second may
instantiate more metavariables than the first.) In this section we argue that, if inst satisfies

Is-ok-inst(inst,mvs,vs)∧ Instantiate(x, inst)≡ y

then the algorithm for Match-against(x,y,mvs,vs) returns some sub-instantiation of inst.
In this sense the algorithm yields a complete solution; moreover the solution is the ‘clean-
est’ possible, in that it does not instantiate more metavariables than it needs to. The proof
is by induction on the size of x as a syntax tree (or equivalently, by structural induction on
x).

The base case is trivial. For the induction step, note first that it is clear from the
definition of Instantiate that the syntax trees for x and y must agree at least down as far
as compound terms with symbols from mvs. So without loss of generality, let’s assume
x = mk-CompExp0(c,el, tl) with c ∈mvs, the case x:CompType0 being exactly analogous.
As discussed earlier, eInst(inst)(c) must be a pruned version of y, with the pruning cor-
responding to some choice of fringe-like subset of the domain of the map returned by
AUXM(y,el, tl,mvs,vs); the induction hypothesis is used to justify the fact that AUXM re-
turns a complete solution. It also follows from the induction hypothesis that each relevant
instantiation returned by AUXM is a sub-instantiation of inst, in the above sense. The
result of merging the relevant instantiations is again a sub-instantiation of inst, and the
proof is complete. �

4.10 Reading the full specification
As remarked in the introduction, the Walk is an abstraction of the full mural specification
given in Appendix C (simply called the FullSpec hereafter). Because it is a simplification,
the Walk naturally differs from the FullSpec in several fundamental aspects. For a start,
the latter covers more topics, including:
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• other kinds of justification

• multiple proof attempts

• folding and unfolding of definitions

• incomplete and null terms

• editing operations and subterm access functions

• other user interface (UI) operations

It also gives some flavour of the intended UI by distinguishing whether for example func-
tions are

• exported (available to the user)

• auxiliary (introduced simply for purposes of definition)

• background (constraints maintained by the system)

In order to specify many of the UI operations, the FullSpec deals with references (names)
for individual theories, rules, proof lines, and so on. The mapping from names to the
objects they represent is stored as part of the ‘state’ of the mural proof assistant in the
FullSpec (the Store). To have a UI which was unmoded as far as possible, it was necessary
for the FullSpec to allow for ‘temporary inconsistencies’ in the state, such as the statement
of a rule getting out of step with its proof, or the use of a symbol before its declaration.
As a result, invariants in the FullSpec are much looser, with more use being made of
‘consistency checks’ instead. (For example, the invariant on rule statements does not insist
that hypotheses have no free variables; instead, a predicate is-OK-RuleStmt is introduced.)
These are the main stylistic differences between the two specifications.

There are also important terminological differences, explained below. Unless other-
wise stated below, classes and functions with the same name – give or take case distinc-
tions – can be assumed to correspond more or less exactly in the two specifications.

Syntax

Table 4.1 summarizes the correspondence between classes of symbols in the two speci-
fications. Selector names also differ, but the correspondence should be obvious enough.
There is also a slightly different factoring of the abstract syntax, but on the whole the
correspondence is quite close. The exception is the class Term in the FullSpec, which
is much more general than Term1, in that the former includes subcomponents – such as
individual symbols and lists of arguments – which are not considered to be terms in their
own right in the Walk. This difference is reflected in the Subterms function; but for the
most part, all the other basic functions (e.g. freeVars and RenameFreeVars) have the same
meanings in the two specifications. Of course, ≡ corresponds to isEquivalentTo in the
FullSpec.

The correspondence extends to sequents and rule statements in a fairly straightforward
manner. For example, the definition of RuleStmt in the Walk is

RuleStmt :: ordHyps : Exp0-set
seqHyps : Sequent-set
concl : Exp0
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Walk FullSpec Walk FullSpec
CESymb OESymb CTSymb OTSymb

CompExp1 OExp CompType1 OType
DESymb QESymb DTSymb QTSymb
BindExp1 QExp BindType1 QType

OPH EPHole TPH TPHole
Exp1 Exp Type1 Type

Table 4.1: Syntax classes.

Walk Section FullSpec Appendix
AXIOM 4.5.1 nil C.3.2
≺ dependsOnRule C.9.1

inv-Store0 isNoncircular C.9.1
� 4.5.3 inheritsFrom C.6.2

Ancestors ancestors C.6.2
RulesOf rules C.6.1
localSig 4.6.1 EXSIG C.6.2

Are-nonclashing areNonclashingSigs C.5.4
Merge-sig-set mergeSigs C.5.4

Is-wfd 4.6.3 isReasonableWRTSig C.5.2
inv-Rule3 isReasonableWRTTheory C.6.2

Table 4.2: Functions and predicates.

while in the FullSpec it is

RuleStmt :: SEQHYPS : Sequent-set
ORDHYPS : Exp-set
CONCL : Exp

For sequents (Section 4.3.3), seqVars corresponds to NFV and Constituents to exps (Ap-
pendix C.3.1). The reader should note that the freeVars function on sequents is defined
differently in the two specifications: in the Walk sequent variables are considered to be
‘bound’ by the turnstile.

Rules, theories, signatures and well-formedness

Table 4.2 shows the rough correspondence between definitions of the main functions from
Sections 4.5 to 4.6 and their counterparts in the FullSpec. The status of a rule (Sec-
tion 4.5.2) is not discussed in the FullSpec, and neither specification treats the classifica-
tion of rules as theorems or lemmas. Similarly, there is no exact equivalent to contexts
(Section 4.6.3) in the FullSpec, nor are metavariables explicitly listed in Rules (cf. Rule2
in Section 4.6.2).

Proofs

The two specifications take different approaches to the definitions of lines and boxes in
proofs, quite apart from the fact that the FullSpec manipulates references (pointers). In
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Walk Section FullSpec Appendix
boxVars 4.7.1 newFreeVarsOfBox C.8.2
≺ isSubbox C.8.1

inv-Proof0 inv-Boxmap C.8.1
inv-Proof1 4.7.2 hasClosedJustifs C.8.2

l ∈p b l ∈ linesOfBox(p,b) C.8.2
Hyps-of hypsOfBox C.8.2

Has-wfd-assertion 4.7.3 isReasonableAtLine C.8.7
inv-Rule4 is-OK-Rule∧ isComplete (part) C.3.2,C.8.9
inv-Proof2 4.7.4 isWfdProof C.8.5
≺ dependsOnLine C.8.5

inv-RuleJustif 4.7.5 hasInstantiableRule C.8.3
Is-properly-justified isJustifiedLine C.8.9

inv-Rule6 ∀ol · isOK(justif (ol)) C.8.3
Is-known(l) 4.7.6 assumptionsOfLine(l) = {} C.8.6
Is-complete isComplete C.8.9
Rules-used antecedents C.9.1

Assumptions 4.7.7 assumptionsOfLine C.8.6

Table 4.3: Functions and predicates on proofs.

the Walk, lines are assigned to boxes by a mapping

lbMap:Proof → (VSymb m−→ Box1)

whereas in the FullSpec, lines are a direct attribute of boxes – viz.

LINES:Box→ (Ordline-ref m−→ Ordline)

A second difference is that box variables are an attribute of boxes in the Walk

boxVars:Box1→ VSymb-set

but are instead assigned to boxes by a mapping

NFV:Proof → (VSymb m−→ Box-ref )

in the FullSpec.
With these differences in mind, Table 4.3 gives the rough correspondence between

definitions in the Walk and their counterparts in the FullSpec. Note that there is no exact
equivalent to inv-Proof3 in the FullSpec, and the definition of rule justifications (Sec-
tion 4.7.5) is considerably simplified by ignoring theory morphisms (cf. Appendix C.8.3).

4.11 Limitations of the mural approach
In this section we summarize the main theoretical limitations of the mural approach and
look at what might be done to overcome them in future incarnations.



4.11 Limitations of the mural approach 167

4.11.1 Syntax
Aside from constraints on the concrete syntax, the following seem to us to be the main
areas where the mural syntax is more restrictive than common ‘pencil and paper’ practice:

1. Certain syntactic conventions can’t be supported, especially those which elide in-
formation and rely on the reader’s implicit understanding: e.g. throughout Sec-
tion 4.7.4 it was much more convenient to write l1 ≺ l2 instead of l1 ≺p l2, since p
could always be inferred from context.

2. Essentially only one form of variable binding is supplied. This means that ‘letrec-
expressions’ which involve mutually recursive bindings cannot generally be sup-
ported. It is also not really expressive enough to accurately capture the binding of
program variables in Hoare triples.

3. Simultaneous multiple bindings such as ∀x,y,z:N · . . . are not supported. The re-
striction to single bindings was considered acceptable for our target applications,
since multiple bindings could be achieved as nested single bindings (cf. Section 3.2.4).
The resulting notation

∀x:N · ∀y:N · ∀z:N · . . .

is somewhat cumbersome however; a more flexible display mechanism might help
here, but would involve rethinking a number of our design decisions.23

4. The constraint that the ‘universe’ of a binding be a Type can also be awkward at
times: cf. set comprehension (Section 3.4.1), ‘let’ clauses (Section 3.5.2).

5. In mural , defined binders take formal parameters for both universe and body: i.e. the
left-hand side of a binder definition is always essentially of the form

fx:A ·G[x] 4 . . .

(although of course different concrete syntax declarations are possible). The ‘two
parameter’ principle was adopted since it covers the most common defined binders
while respecting the ‘conservation of information’ principle for folding/unfolding
operations (i.e. the same formal parameters are used on both sides of a definition).

Unfortunately, there are times when it would be better to use a fixed universe. Con-
sider e.g. the operator

µn:N · P[n] 4 ι x:N · (P[x]∧∀y:N · y < x ⇒ ¬ P[y])

which finds the least number n (if any) satisfying P[n]. Under the existing mecha-
nism the definition must be given in terms of an arbitrary type A, which carries the
danger that A might be instantiated by a type for which ‘<’ is not defined.

23Note that simultaneous bindings are not the whole answer anyway: e.g. branching bindings such as(
∀x∃y
∀u∃v

)
·P[x,y,u,v]

cannot be expressed in terms of simultaneous bindings; Skolem functions are even more general.



168 4 Foundation

6. Defined dependent types are not supported at all. This was an ‘economy of de-
sign’ decision (read: laziness on our part) rather than because of any theoretical
problems: defined binders gave us enough headaches, and we couldn’t think of any
defined dependent types that weren’t rather contrived.

7. It’s sometimes rather restrictive to insist on fixed arities for function symbols and
type constructors. The first example that springs to mind is the use of function
names on their own (without arguments) in higher order logics: e.g.

OneOneFunctions 4 < f :N→ N | ∀x:N · ∀y:N · x 6= y ⇒ f (x) 6= f (y)>

But, as shown in Section 3.6.1, the problem is illusory, at least in this case: the so-
lution is to introduce an explicit ‘function application’ operator; the concrete syntax
facility can even be used to display apply(f ,x) as f (x).

8. A more serious problem arises with (for example) associative-commutative (AC)
operators, where it would be convenient to allow arbitrary numbers (≥ 2) of argu-
ments. An example would be a summation operator sum, with sum(x1,x2, . . . ,xn)
displayed as

x1 + x2 + . . .+ xn

say. Other candidates for operators with non-fixed arity would be associative oper-
ators, case statements and guarded conditionals. Note that what is being proposed
here is a significant extension to the abstract syntax – not simply a new way of dis-
playing sum(cons(x1, . . .)). In particular, new unification and matching algorithms
would have to be written, and many of the mural design decisions would have to
be rethought. It is an extension which is thought to merit serious research effort.

9. It would also be very useful to extend the syntax to cover indexing, such as

let rki = mk-RKey(nmi, fsi, tsi) in . . .rk1 . . .rk2 . . .

4.11.2 Rules
A frequent comment we receive is that it would be useful to allow rules to have multiple
conclusions. Unfortunately, the proponents of this view cannot agree on an interpretation:
should conclusion set {P,Q,R} be regarded as meaning that all of P, Q and R hold, or as
meaning that (at least) one of P, Q and R holds? There are good reasons for both inter-
pretations. We resisted joining the argument since an extension to multiple conclusions
would undoubtedly have made the mural User Interface (even) more complicated.

A less frequently received comment was that it would be useful to allow ‘arbitrary
nesting’ of sequents – so that e.g. a sequent could have another sequent as its premise.
Such an approach is explored for example in [Sch84]. No great practical benefit seems to
accrue beyond one level of nesting, however; in fact, for the mural target logics there is
demonstrably no increase in expressive power, since a sequent

{p1, . . . ,pn} `x1,...,xm upshot

is essentially equivalent to the formula

∀x1, . . . ,xm · (p1∧ . . .∧pn ⇒ upshot)
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This is not to say that sequents should be done away with altogether, of course, since they
are essential to the efficacy of Natural Deduction as a proof system, leading to ‘block-
structured’ proofs: cf. the discussion in Section 4.3.1.

A broader interpretation of ‘sequent’ – whereby ‘sequent variables’ stand for (or are
‘instantiable’ by) arbitrary terms (from Exp) rather than simply arbitrary variables (from
VSymb) – was discussed in Section 4.3.4. Again, in the case of the mural target logics,
the narrower interpretation does not sacrifice any expressive power; on the other hand,
it quite considerably simplifies certain algorithms (such as checking whether a subproof
establishes a sequent hypothesis) and certain aspects of the User Interface (such as rule
instantiations).

4.11.3 Logics
In essence, mural provides support for those many-sorted predicate calculi which can be
expressed in Natural Deduction format. As we have seen, this is a large class covering
by far the most commonly used logics in software engineering. There are certain log-
ics which can not however be expressed in Natural Deduction format, particularly the
so-called non-monotonic logics – logics in which the addition of new assumptions can
invalidate existing deductions (as for example in a logic of evidence in jurisprudence). To
date, the contribution of such logics to software engineering has been negligible.

A more serious limitation of mural is that it only supports direct derivations of rules:
that is, new rules are built essentially by fitting together (instantiations of) other rules;
see the discussion in Section 3.2.2. This excludes a large class of rules that could be
deduced by more sophisticated ‘meta-reasoning’. Apart from the obvious methodological
advantages of direct derivation – it’s hard to imagine a User Interface for general meta-
reasoning for a start – it was felt to be important to make mural an ‘open’ system whereby
the user could build new theories by extending existing theories, simply inheriting results
from the latter. No extension will ever invalidate a direct derivation of a rule, whereas
most indirect (meta-) results assume a fixed (‘closed’) theory.

Paraphrasing, we could say that mural is a generic proof assistant rather than a ‘full
worldview’ system. Without attempting to define these terms, the latter would support
reasoning about itself, so that for example its meta-theory could be formalized within
itself and used to derive meta-theorems, which could subsequently be applied to its object
logics. This is true to a certain extent of logical frames with formalized meta-theories,
such as ELF.24 By contrast, the mural tactic mechanism – like that of its predecessor
LCF [GMW79] – supports meta-reasoning by allowing the user to form ‘proof templates’
which can be rerun in different situations.

24In an interesting departure from the usual meta-theory/object theory dichotomy, Weyhrauch [Wey80]
explores the use of ‘reflection principles’ to allow a theory to reason about itself.
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Chapter 5

The tactic language

5.1 Mechanising proof in mural

It is perfectly possible to conduct all proofs in the mural proof assistant using only the
single-step-at-a-time strategy provided by the justification tool; this can, however, become
tedious. It was therefore felt advantageous to provide an additional layer of functionality
whereby the user can interact with the system using ‘large scale’ operations.

The method by which mural (and indeed most other comparable systems) achieves
this higher level interaction is to provide a tactic language. The tactic language is es-
sentially a kind of programming language which has access to the same functions (or a
superset thereof) which are visible at the user interface level, and some control constructs
or tacticals for composing sequences of these functions into tactics. Tactics and the tactic
language, therefore, present the user with a language flexible enough to express the equiv-
alent of arbitrary sequences of (UI level) interactions and, more importantly, to ‘code up’
algorithms or strategies which can search for things (e.g. rules to apply, definitions to un-
fold), possibly using backtracking to try alternative approaches, thus providing the user
with facilities for a limited (but customisable) mechanical theorem proving capability.

The approaches to tactics taken in other interactive theorem proving systems have
been quite diverse, with LCF and its derivatives being among the best known. In the LCF
(see [Sok83]) and Isabelle [Nip89] systems, tactics are effectively written in the functional
language ML; tactics are ML functions and are written using the provided tacticals and
built in tactics, which implement operations like resolution, sequencing, repetition, depth-
and breadth-first searching and so on. All this provides the LCF and Isabelle systems
with a fairly rich and powerful tactic language. In the ωp Logic Environment (developed
at Imperial College, London) [Daw88] the only means of interacting with proofs is by
writing strategies – a very simple form of tactics somewhat akin to regular expressions1.
Strategies can repeatedly apply a set (or sequence) of rules to a proof, try applying a set of
rules until one succeeds, or try applying a rule once. The only ‘tactical-like’ feature is that
strategies can be sequentially composed and repeatedly applied. Additional constraints
can be applied like ‘first try using inference rules with only one hypothesis’ (to reduce
branching in the proof tree). The strategy mechanism, impoverished as it is, seems to
be quite successful in the context of ωp; in mural , however, tactics of this kind would
not really be powerful enough since the structure of proofs (and the possible modes of

1A similar approach is taken in the B-tool – the sole purpose of the ‘theory structure’ in B is to partition
conjectures so that the same set of tactics is likely to be applicable to each proof in the theory.
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interaction with them) is rather more complicated.
This chapter describes the mural tactic system, both from the point of view of the

syntax and semantics of the tactic language itself and of how this language is used to
write tactics. Some user-interface issues, such as how to operate the tools provided for
editing and invoking tactics are covered.

Tactics provide the mural user with a method of encoding commonly used strate-
gies for doing proofs as procedures in a procedural programming language – the tactic
language. These strategies can either be very domain specific (such as setting up a par-
ticular kind of induction step) or more general (such as ‘given a set of inference rules, try
applying them backwards to all unproved lines in the proof’).

A mural user will see the tactics as being closely integrated with the rest of the system
even though the formal model of the ‘core’ (see Chapter 4) makes no reference to tactics.
Tactics seem to be valid only in certain theories (e.g. equational reasoning tactics will
only be useful in theories where equality has been defined), so a possible implementation
(the implementation!) would attach tactics to the theory hierarchy in a similar way to
rules; a tactic is therefore inherited by descendents of the theory to which it is attached2.
This is, of course, not the only way tactics could be attached to the theory hierarchy3, but
it seems a flexible enough approach to cope with most situations which actually arise.

5.2 The language
A tactic is rather like a procedure in a (imperative) programming language; it has a name
(a string), some parameters, a body and it may return a result4. The formal parameters of
a tactic are pairs consisting of a variable and a type. The type is a symbol from the set
{ SEQOFPROOFOBJECT, SEQOFRULE, ARBITRARY }, and is simply there so that the
user interface can correctly enforce the types of arguments when a tactic is invoked. Some
run-time type checking is performed for some language constructs (e.g. the primitive
operations and operators), but not for whole tactics. The body of a tactic is a sequence
of statements (the various kinds of which are described below). The variables used in
tactic language constructs are not typed, nor are they declared, and the scope of a variable
is the entire tactic in which it is used (with holes in the scope whenever other tactics
are called). The parameter variables to a tactic and the loop variable of the iterative
constructs (for-some, for-each statements and binder expressions) are considered bound
(for the duration of the tactic and construct respectively), which means any attempt to re-
assign the variable’s value (by explicit assignment or by another iterative construct) will
result in a run-time error. The set of values which can be passed as arguments to tactics,
or assigned to variables, or returned as a result of evaluating tactics or tactic language
expressions includes mural objects (rules, expressions, etc.) the Boolean values (true and
false), nil, integers, sets and lists of these, maps containing these objects in their domain

2Although tactics are inherited via the theory hierarchy, the notion of translating tactics over theory
morphisms was not considered useful, and has not been developed.

3For instance the mural store could contain a collection of tactics alongside the theories it already
contains, and each tactic could have stored with it the arbitrary collection of theories in which it can be
used.

4In fact all tactics return a result – the value of result variable of that tactic at the time the tactic finishes
execution. If no result need be returned, then the result variable is left unassigned
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and range, and indices for accessing and manipulating mural subterms5.

5.2.1 Abstract syntax
In this section we define the abstract syntax of the tactic language, from the level of
tactics and tacticals (called statements in the terminology of mural tactics) right down to
the level of expressions. In several places the language requires conditionals (Boolean
valued expressions), but here everything on this level is lumped together into one class of
TacticExpressions, and it will be left to the semantic functions to check things have the
correct value or type at ‘run time’.

Hopefully the meanings of most of the language constructs introduced should be fairly
intuitively clear. Further description and a specification of an interpreter for the language
are presented in Section 5.2.2.

Tactics

Tactic :: ARGS : Variable∗

RESULT : Variable
BODY : TacticBody

A tactic has a list of argument variables (where Variable is just some class of structureless
tokens or spellings or something), a result variable – rather like the heading of an operation
in VDM – and a TacticBody, which is simply a sequence of statements forming the ‘code’
of the tactic. Additionally, each tactic will be associated with a name, so that tactics
can refer to (and call) each other. The name is not considered to be a property of the
tactic itself, but of the environment in which it is executed, and is thus reflected in the
specification of the interpreter in Section 5.2.2 rather than at the level of tactics.

TacticBody = Statement∗

Statements

Statement forms the (fixed) class of tacticals supported by the system. It is hoped that this
set of tacticals is sufficiently rich that the user will not feel the need to define new ones.
This partially removes the need to make tactics ‘higher order’.

Statement = Assignment | IfStatement |WhileStatement | ForEachStatement |
ForSomeStatement | TryStatement | Call |

RepeatUntilNothingChanges

A SKIP statement is not really needed (for instance, in a situation where the Else part of
an If statement is absent), since an empty TacticBody will do the same thing (i.e. nothing).

Assignment :: VAR : Variable
VALUE : TacticExpression

5Note that tactics are not themselves included in this class of values – this means that the tactic language
is not higher order in the way that ML tactics (cf. LCF, Isabelle, etc.) are. The examples which have been
tried suggest that this is not a serious restriction.
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IfStatement :: IF : TacticExpression
THEN : TacticBody
ELSE : TacticBody

WhileStatement :: WHILE : TacticExpression
DO : TacticBody

The meaning of If , While and Assignment statements should be intuitively fairly clear,
since such things exist in many programming languages. The other kinds of statements,
however, may be less familiar. The ForEach and ForSome statements are iterative con-
structs corresponding more-or-less to the existential and universal quantifiers of predicate
logic.

ForEachStatement :: BOUND : Variable
UNIVERSE : TacticExpression
DO : TacticBody

ForSomeStatement :: BOUND : Variable
UNIVERSE : TacticExpression
DO : TacticBody
OTHERWISE : TacticBody

TryStatement :: TRY : TacticBody
COND : TacticExpression

The Try statement is a backtracking construct which allows mural tactics to try alternative
strategies for constructing proofs. Once a strategy has been tried, the proof reverts to its
previous state if the given condition is not satisfied.

Call = TacticCall |MuralCall

TacticCall :: FUNC : TacticName
ARGS : TacticExpression∗

MuralCall :: FUNC : MuralOperationName
ARGS : TacticExpression∗

These Call statements correspond roughly to procedure calls, and come in two varieties:
TacticCalls, which are calls to other (user-defined) tactics, and MuralCalls, which cause
the execution of functions which are built into the tactic language. MuralOperationName
refers here to the set of operations and functions which are available for use by tactics –
see Section 5.2.3.

RepeatUntilNothingChanges :: BODY : TacticBody

Expressions

TacticExpression = Variable | Constant | Unary | Binary | Pair | Call |
MuralObject | Comprehension |Make | Universal | Existential

The meaning of variables, constants, unaries, binaries and pairs is fairly straightforward;
Calls are calls to mural functions or to other tactics (which when executed as expressions
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return a value); Comprehension, Universal and Existential represent set comprehension,
universal and existential quantification respectively and Make is intended to be similar to
the VDM mk- function (useful mainly for building justifications). MuralObject allows
the user to reference mural objects directly from within the tactic language (particularly
expressions and types).

Constant = {{}, [ ], true, false,nil}

The class of constants includes the empty set and the empty list, the Boolean values true
and false, and the literal nil.

Unary :: OPERATOR : UnarySymbol
ARG : TacticExpression

UnarySymbol = {¬ ,hd , tl , last,{}, [ ], fst,snd, IsEmpty,NotEmpty,OneOf}

The unary symbols are negation, head, tail, last (operators on lists), unit sets and lists6,
first and second projection functions for pairs, tests for whether a collection is empty, and
a OneOf operator which non-deterministically returns an element of a collection.

Binary :: OPERATOR : BinarySymbol
ARG1 : TacticExpression
ARG2 : TacticExpression

BinarySymbol = {∪,∩,∈, /∈,⊂,⊆,=, 6=,∧,∨,+,−,∗,/}

The binary symbols include a variety of operators on sets, lists and numbers. The ele-
ments of Constant, UnarySymbol and BinarySymbol are just tokens or spellings, rather
than operators of the VDM language. The intention is that unary and binary expressions
are those which operate on the basic tactic language types (sets, lists etc,.) whereas the
MuralCalls operate on mural objects, or, more generally, on the mural proof state.

Pair :: FST : TacticExpression
SND : TacticExpression

MuralObject = Rule | RuleStmt | Exp | Type | Justification | Symb . . .

The type MuralObject is provided so that tactics can directly refer to and manipulate
the expressions, types, symbols, rules and so on, of the mural language as defined in
Appendix C.

Comprehension :: VAR : Variable
UNIVERSE : TacticExpression
PRED : TacticExpression

Make :: CLASS : MuralType
FIELDS : TacticExpression∗

MuralType = RuleJustif ,SeqHypJustif ,FoldDefJustif . . .

6The unary symbols {} and [ ] are used to mean the symbols occurring in expressions like {X} and [X]
– kind of ‘out-fix’ unary operators.
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Universal :: VAR : Variable
UNIVERSE : TacticExpression
PRED : TacticExpression

Existential :: VAR : Variable
UNIVERSE : TacticExpression
PRED : TacticExpression

5.2.2 The tactic interpreter
The semantics of the language are defined by a set of evaluation operations which effec-
tively execute language terms, inducing a change in the state (e.g. the proof and the tactic
language variable bindings), and in some cases returning a result. These operations could
form the basis for a specification of a tactic language interpreter.

A couple of extra data types will be needed to keep track of variable bindings and the
proof state. First, the Environment keeps both a mapping from variables to their (assigned)
values and a set of ‘bound’ variables (i.e. those variables which cannot be assigned to,
including variables bound by ForSome/ForEach constructs and the parameter variables to
tactics).

Environment :: VALUES : Variable m−→ Value
BOUND : Variable-set

where Value is the set of values returned by evaluating TacticExpressions – see below.
Secondly, the State holds (references to7) the proof, theory and mural store8 on which the
tactic execution is invoked, together with a map containing all tactics which are ‘acces-
sible’ from that theory. From the point of view of this specification, TacticName needs
only to be an infinite set of tokens, much the same as the Symb thingies in the mural
specification. In an implementation they could be the actual names a user sees.

State :: PROOF : Proof
THEORY : Theory
MURALSTORE : Store
TACTICSTORE : TacticName m−→ Tactic

Two new types must be introduced to represent the objects returned when expressions
are evaluated by the interpreter. The type Value includes the evaluations of all tactic
expressions, and ValuePair contains the evaluations of Pair expressions.

Value = MuralObject | B | Value-set | Value∗ | ValuePair | {nil} | Index

ValuePair :: FST : Value
SND : Value

Many of the evaluation operations have preconditions which either do some form of type
checking or test whether certain variables are bound; they need not, however, be precon-
ditions in the usual VDM sense, but simply specify the ‘run time error checker’ (described

7If it was necessary for this specification to resemble the mural specification more closely, the State
would have a Proof -ref etc.

8The store is probably only needed to fit in with the way many mural operations and functions are
specified.
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in Section 5.3.1). This is an important point since it means that the evaluation function
will not in general be satisfiable in the formal sense of [Jon90c]. The reason for this kind
of presentation is partly that it is a shorthand, and partly that it neatly encapsulates the
execution and error checking functions for each term of the language.

Tactics

TacEvaluate (t:Tactic) r:Value
ext rd E : Environment

wr S : State
pre rng ARGS(t)⊆ dom VALUES(E)
post let env =

mk-Environment(((rng ARGS(t)CVALUES(
↼−
E ))†{RESULT(t) 7→nil}),

(rng ARGS(t))) in
∃newenv:Environment ·

post-BlockEvaluate(BODY(t),env,
↼−
S ,newenv,S)∧

r = VALUES(newenv)(RESULT(t))

Note that the assumption here is that there can be no non-local accessing of variables
– variables are local to one tactic (hence the domain restriction of the environment), and
values can only be shared by passing parameters. If it were considered necessary, a change
to this postcondition could allow global or other non-local variables.

BlockEvaluate (b:TacticBody)
ext wr E : Environment

wr S : State
post if b = []

then E =
↼−
E ∧S =

↼−
S

else ∃E′:Environment,S′:State ·
post-StatEvaluate(hd b,

↼−
E ,

↼−
S ,E′,S′)∧

post-BlockEvaluate(tl b,E′,S′,E,S)

Statements

StatEvaluate (s:Statement)
ext wr E : Environment

wr S : State
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post cases s of
IfStatement → post-IfEvaluate(s,

↼−
E ,

↼−
S ,E,S)

WhileStatement → post-WhileEvaluate(s,
↼−
E ,

↼−
S ,E,S)

ForSomeStatement → post-ForSomeEvaluate(s,
↼−
E ,

↼−
S ,E,S)

TryStatement → post-TryEvaluate(s,
↼−
E ,

↼−
S ,E,S)

Assignment → post-AssignmentEvaluate(s,
↼−
E ,

↼−
S ,E,S)

Call → post-CallEvaluate(s,
↼−
E ,

↼−
S ,E,S)

ForEachStatement → post-ForEachEvaluate((s,
↼−
E ,

↼−
S ,E,S)

RepeatUntilNothingChanges→ post-RepeatEvaluate((s,
↼−
E ,

↼−
S ,E,S)

end

AssignmentEvaluate (a:Assignment)
ext wr E : Environment

wr S : State
pre VAR(a) /∈ BOUND(E)
post ∃v:Value ·

post-ExpEvaluate(VALUE(a),
↼−
E ,

↼−
S ,S,v)∧

E = mk-Environment((VALUES(
↼−
E )†{VAR(a) 7→ v}),BOUND(

↼−
E ))

IfEvaluate (i: IfStatement)
ext wr E : Environment

wr S : State
pre ∃S′:State,v:B ·post-ExpEvaluate(IF(i),E,S,S′,v)
post ∃S′:State,v:B ·

post-ExpEvaluate(IF(i),
↼−
E ,

↼−
S ,S′,v)∧

if v

then post-BlockEvaluate(THEN(i),
↼−
E ,S′,E,S)

else post-BlockEvaluate(ELSE(i),
↼−
E ,S′,E,S)

WhileEvaluate (w:WhileStatement)
ext wr E : Environment

wr S : State
pre ∃S′:State,v:B ·post-ExpEvaluate(WHILE(w),E,S,S′,v)

post ∃S′:State,v:B ·post-ExpEvaluate(WHILE(w),
↼−
E ,

↼−
S ,S′,v)∧

if v
then ∃E′′:Environment,S′′:State ·

post-BlockEvaluate(DO(w),
↼−
E ,S′,E′′,S′′)∧

post-WhileEvaluate(w,E′′,S′′,E,S)

else (E =
↼−
E ∧S = S′)

ForEachEvaluate (f :ForEachStatement)
ext wr E : Environment

wr S : State
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pre ∃S′:State,v:Value-set | Value∗ ·post-ExpEvaluate(UNIVERSE(f ),E,S,S′,v)∧
BOUND(f ) /∈ BOUND(E)

post ∃S′:State,v:Value-set | Value∗ ·
post-ExpEvaluate(UNIVERSE(f ),

↼−
E ,

↼−
S ,S′,v)∧

let v′ = if v:Value∗ then v else asList(v)
in

if v′ = {}
then E =

↼−
E ∧S = S′

else post-SequenceEvaluate(v′,BOUND(f ),DO(f ),
↼−
E ,S′,E,S)

The following two functions convert a set into a list, and repeatedly evaluate a block of
statements with a different assignment of values to a variable respectively.

asList (s:Value-set) l:seqof Value
post rng l = s∧ card s = len l

SequenceEvaluate (seq:Value∗,var:Variable,block:TacticBody)
ext wr E : Environment

wr S : State

post let env = mk-Environment(VALUES(
↼−
E )†{var 7→ hd seq},

BOUND(
↼−
E )∪{var}) in

if seq = []

then E =
↼−
E ∧S =

↼−
S

else ∃E′:Environment,S′:State ·
post-BlockEvaluate(block,env,

↼−
S ,E′,S′)∧

post-SequenceEvaluate(tl seq,var,block,E′,S′,E,S)

ForSomeEvaluate (f :ForSomeStatement)
ext wr E : Environment

wr S : State
pre ∃S′:State,v:Value-set | Value∗ ·post-ExpEvaluate(UNIVERSE(f ),E,S,S′,v)∧

BOUND(f ) /∈ BOUND(E)
post ∃S′:State,v:Value-set | Value∗ ·

post-ExpEvaluate(UNIVERSE(f ),
↼−
E ,

↼−
S ,S′,v)∧

let v′ = if v:Value-set then v else rng v
in

if v′ = {}
then post-BlockEvaluate(OTHERWISE(f ),

↼−
E ,S′,E,S)

else ∃e ∈ v′,E′′:Environment ·
let newE =mk-Environment((VALUES(

↼−
E )†{BOUND(f ) 7→ e}),

(BOUND(
↼−
E )∪{BOUND(f )})) in

post-BlockEvaluate(DO(f ),newE,S′,E′′,S)∧
E =mk-Environment((BOUND(f )−CVALUES(E′′)),BOUND(

↼−
E ))

TryEvaluate (t:TryStatement)
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ext wr E : Environment
wr S : State

post ∃E′:Environment,S′:State ·post-BlockEvaluate(TRY(t),
↼−
E ,

↼−
S ,E′,S′)∧

∃S′′:State,v:Value ·
post-ExpEvaluate(COND(t),E′,S′,S′′,v)
if v = true
then E = E′∧S = S′′

else E =
↼−
E ∧S =

↼−
S

In the evaluation of a TryStatement the type of the condition is not checked in the pre-
condition – unlike most of the other cases where tests, sets and other expression sub-
components must evaluate to the correct type. This is for simplicity since the condition
must be evaluated after the block of statements. Thus if the condition part evaluates to
true then execution continues normally; otherwise (if the condition evaluates to anything
other than true) backtracking occurs, in which case the proof reverts to the state it was in
before execution of the statement began.

CallEvaluate (c:Call) r:Value
ext wr E : Environment

wr S : State
post cases c of

MuralCall→MuralCallEvaluate(c,
↼−
E ,

↼−
S ,E,S,r)

TacticCall→ post-TacticCallEvaluate(c,
↼−
E ,

↼−
S ,E,S,r)

Make → post-MakeEvaluate(c,
↼−
E ,

↼−
S ,E,S,r)

end

Plenty of checks could be put in the precondition for call evaluation (arity checks, making
sure the name in a TacticCall is actually in the TACTICSTORE, etc.). Note that the oper-
ation CallEvaluate is the only one in this section which returns a result. What happens to
this result in an actual execution will depend on the context in which the call occurs – if
the call is ‘acting as an expression’ (e.g. if it occurs as the VALUE part of an assignment
statement) then its result will be used by the surrounding statement or expression; if it is
acting as a statement then the result is ignored. MuralCallEvaluate does exactly what the
name suggests – executes (or asserts the postcondition of) a function/operation in mural
(see Section 5.2.3). MakeEvaluate is not specified, but it simply constructs a new element
of a particular mural type. TacticCallEvaluate allows a named tactic to be called from
within another tactic.

TacticCallEvaluate (c:TacticCall) r:Value
ext rd E : Environment

wr S : State
pre ∃tac:Tactic ·

TACTICSTORE(
↼−
S )(FUNC(c)) = tac∧ len ARGS(c) = len ARGS(tac)
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post let tac = TACTICSTORE(
↼−
S )(FUNC(c)) in

∃S′:State ·
post-ExpListEvaluate(ARGS(c),E,

↼−
S ,S,argList)∧

∃env:Environment ·
rng ARGS(tac)⊆ dom VALUES(env)∧
∀i ∈ dom argList ·VALUES(env)(ARGS(tac)[i]) = argList[i]∧
∃newenv:Environment ·

post-TacEvaluate(tac,env,S′,newenv,S,r)

ExpListEvaluate (seq:TacticExpression∗) r:Value∗

ext rd E : Environment
wr S : State

post if seq = []
then r = []
else ∃S′:State,h:Value, t:Value∗ ·

post-ExpEvaluate(hd seq,E,
↼−
S ,S′,h)∧

post-ExpListEvaluate(tl seq,E,S′,S, t)∧
r = cons(h, t)

RepeatEvaluate (r:RepeatUntilNothingChanges)
ext wr E : Environment

wr S : State
post ∃S′:State,E′:Environment ·

post-BlockEvaluate(BODY(r),
↼−
E ,

↼−
S ,E′,S′)∧

if AreEquivalentStates(
↼−
S ,S′)

then E = E′∧S = S′

else post-RepeatEvaluate(r,E′,S′,E,S)

AreEquivalentStates is not specified, but is essentially a function with signature State×
State→ B which decides if the proofs of the two states are ‘the same’.

Expressions

Most of the evaluation operations for expressions are fairly simple, so here’s a couple
of examples (mostly with the the preconditions missing). Note that all the evaluation
functions for expressions have read-only access to the environment (since they cannot
assign to variables) but require both read and write access to the state (since they can
change the proof by means of mural calls).

ExpEvaluate (e:TacticExpression) r:Value
ext rd E : Environment

wr S : State
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post cases e of
...
Pair → post-PairEvaluate(e,E,

↼−
S ,S,r)

Binary → post-BinaryEvaluate(e,E,
↼−
S ,S,r)

MuralObject→ post-MuralObjectEvaluate(e,E,
↼−
S ,S,r)

...
end

PairEvaluate (p:Pair) r:Value
ext rd E : Environment

wr S : State
pre true
post ∃S′:State, f ,s:Value ·

post-ExpEvaluate(FST(p),E,
↼−
S ,S′, f )∧

post-ExpEvaluate(SND(p),E,
↼−
S ,S′,s)∧

r = mk-ValuePair(f ,s)

BinaryEvaluate (b:Binary) r:Value
ext rd E : Environment

wr S : State
post cases OPERATOR(b) of

...
∪→ post-UnionEvaluate(ARG1(b),ARG2(b),E,

↼−
S ,S,r)

...
end

UnionEvaluate (a,b:TacticExpression) r:Value-set
ext rd E : Environment

wr S : State
pre ∃S′:State, f ,s:Value-set ·

post-ExpEvaluate(a,
↼−
E ,

↼−
S ,E′,S′, f )∧

post-ExpEvaluate(b,E′,S′,E,S,s)
post ∃S′:State, f ,s:Value-set ·

post-ExpEvaluate(a,
↼−
E ,

↼−
S ,E′,S′, f )∧

post-ExpEvaluate(b,E′,S′,E,S,s)∧
r = f ∪ s

Notice that the precondition enforces the run-time typechecking constraint that the union
operator can only be applied to sets of objects.

MuralObjectEvaluate (f :MuralObject) r:MuralObject
ext rd E : Environment

rd S : State
post r = f
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5.2.3 Built-in mural operations
The mural procedures to which tactics have access are divided into two categories: oper-
ations and functions. The only difference is that executing an operation may change the
state of the proof (possibly returning a result) whereas a function may only interrogate the
state and return a value.

The calls which are provided perform a wide range of functions, varying from reason-
ably high-level manipulation of proofs (such as adding new lines or finding the set of goal
lines) down to functions concerned with low-level manipulation of expressions. Decisions
as to which operations were to be provided were driven by requests from users of the sys-
tem working in several application areas, so the hope is that the facility is comprehensive
enough to cover most needs.

In addition to the descriptive text for each function, a signature is also given specifying
the types of the arguments and the result. At run time, a check is done to ensure that the
correct number of arguments has been supplied, that they are of the correct types, and that
performing the operation will not corrupt the proof or return a nonsensical result9. If one
of these conditions fails, then a run-time error is signalled.

Syntactically a MuralCall is a name followed be a sequence of arguments separated
by commas and enclosed in parentheses (e.g. Unifier(a,b)) just like an ordinary procedure
or function call.

Operations

InsertNewBoxAfter (Line | Box)×Exp-set×Exp→ Box
builds a new box whose hypotheses and conclusion are the expressions
supplied in the second and third arguments respectively. Adds this box
to the proof after the first argument (a line or box occurring in the proof).
The value returned is the new box.

InsertNewBoxBefore (Line | Box)×Exp-set×Exp→ Box
as above except that the new box is added to the proof before the first
argument.

InsertNewLineAfter (Line | Box)×Exp→ OrdLine
builds a new ordinary line with the second argument as its body and with
a null justification. Adds this line to the proof after the first argument (a
line or box occurring in the proof). The value returned is the new line.

InsertNewLineBefore (Line | Box)×Exp→ OrdLine
as above except that the new line is added to the proof before the first
argument.

InstantiateProof Instantiation→{nil}
instantiates the current proof by the argument (an instantiation). The
argument must be permissible. Not only are the expressions on all lines
instantiated, but also the instantiations in rule justifications.

SetJustif OrdLine× Justification→{nil}
the justification field of the first argument (an OrdLine) is set to be the
second argument (a Justification).

9For example, SetJustif must not create dependency circularities in the lines of the proof and Instanti-
ateProof must only try to instantiate the proof with a permissible instantiation.
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CollapseLines Line×Line→{nil}
this operation expects as arguments two lines from the proof which have
identical (or equivalent) expressions as their bodies. These two lines are
to be ‘collapsed’ – the second is to be deleted from the proof and all
references to it should be replaced by references to the first line. A
special case occurs if the second line is the conclusion of a box (i.e. it
cannot be deleted). In this case the justification of the first line is copied
onto the second line.

Functions

ArgsList Term→ Term∗

returns a list containing all the expression and type parameters of the
argument.

ArgsMap
(CESymb | CTSymb | QESymb | QTSymb)→ Index m−→ Index-set
see Section 5.3.3 for more on indices.

BoxCon Box→ OrdLine
takes a box as argument and returns its conclusion.

Boxes → Box-set
returns the set of all boxes in the proof.

BoxesAccessibleFrom OrdLine→ Box-set
the argument is a line. Returns all boxes accessible from that line.

BoxesKnownAt OrdLine→ Box-set
the argument is a line. Returns all boxes which are accessible from that
line and which are known (i.e. whose conclusion line is known).

BoxHyps Box→ HypLine-set
takes a box as the argument and returns its hypothesis lines.

EstablishesSeq (Box | Justification | Line)×Sequent→ B
returns true if and only if the first argument (a Box, a Justification or a
Line) Establishes the second (a Sequent) .

FillOutInstantiation Rule× Instantiation→ Instantiation
the arguments are a rule statement and an instantiation. Returns a new
instantiation which is the second argument plus a map element for each
(exp or type) metavariable in the rule statement not in the argument
mapping to a brand new metavariable.

FreeVars (Term | Sequent)→ VSymb-set
returns all the free variables of the argument.

GOALS → OrdLines-set
returns the goals (those lines with a null justification) of the current
proof.

IndexOfTerm Term×Term→ Index | {nil}
see Section 5.3.3.

IndicesOfEquivalents Term×Term→ Index-set
see Section 5.3.3.
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Instantiate Term× Instantiation→ Term
takes a term and an instantiation and returns the result of instantiating
the first argument by the second.

InstAtPut Instantiation× (MESymb |MTSymb)×Term→ Instantiation
a function for building instantiations. Adds to the relevant mapping
(exp or type) of the first argument (an instantiation) an element mapping
the second argument (an exp or type metavariable symbol) to the third
argument (an exp or type).

IsDefined Symb→ B
true if and only if the argument (a symbol) is a defined (rather than a
primitive) constant, type, binder, etc.

IsEquivalentTo Term×Term→ B
takes a pair of terms and tests whether they are equivalent (as defined in
the mural specification).

IsInstantiableBy Term× Instantiation→ B
tests the precondition for instantiating the first argument (a term) by the
second (an instantiation).

IsKnown Line→ B
tests whether the argument is one of the known lines of the proof.

IsPermissible Instantiation→ B
tests whether the argument is a permissible instantiation (i.e. only in-
stantiates metavariables which do not occur in the proof’s statement).

IsTriviallyTrue Sequent→ B
true if and only if the argument is a trivially-true sequent (one whose
upshot is included among its premises).

IsValidIndex Term× Index→ B
see Section 5.3.3.

KNOWNS → Line-set
returns the set of known lines in the current proof.

KnownsAt Line→ Line-set
returns the set of lines in the current proof which are known and which
are accessible from the argument (a line).

LeftOp Term→ Term
the argument is an ordinary expression or type with at least one argu-
ment. Returns the first of these.

LineBody Line→ Exp
given a proof line, returns the expression on it.

Lines → Line-set
returns all the lines in the current proof.

LinesAccessibleFrom Line→ Line-set
returns all the lines in the proof accessible from the argument (a line).

MapAt A m−→ B×A→ B
takes a map and an object. Returns the object’s image under the map if
it is in the domain, nil otherwise (map application).
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MapAtPut (A m−→ B)×A×B→ A m−→ B
adds a map element to the first argument (a map) mapping the second
argument to the third.

MatchAgainst Term×Term→ Instantiation-set
performs pattern matching with the two args. Both arguments are terms,
the first is to be instantiated.

MatchesLine Exp×Line→ B
matches the first argument (an exp) with the body of the second (a line).
Returns true if and only if the set of permissible instantiations returned
is non-empty.

MatchLineAgainstLine Line×Line→ Instantiation-set
matches the bodies of the two arguments (lines). Tries to make the
resulting instantiations permissible by throwing out of each instantiation
those elements which instantiate ‘fixed metavariables’.

MergeableWith Instantiation× Instantiation→ B
tests the precondition for merging two instantiations (i.e. that they are
consistent).

MergeWith Instantiation× Instantiation→ Instantiation
merges two instantiations.

NewMVar →MESymb
return a ‘brand-new’ metavariable (i.e. a completely new spelling).

NewTMVar →MTSymb
returns a ‘brand-new’ type metavariable (i.e. one with a completely new
spelling).

NewVar → VSymb
returns a ‘brand-new’ variable (i.e. one with a completely new spelling).

ProofConcl → OrdLine
returns the current proof’s conclusion line.

ProofOrdHyps → HypLine-set
returns the current proof’s ordinary hypotheses.

ProofSeqHyps → SeqHypLine-set
returns the current proof’s sequent hypotheses.

ReDrawProof →{nil}
causes the view of the main proof attempt to be re-drawn

RenameFreeVars Term×VSymb m−→ VSymb→ Term
replaces free variables in the first argument (a term) according to the
second (a map from (mural ) variables to variables)

ReplaceEquivTerm Term×Term×Term→ Term
returns the term which is like the first term, but with all subterms equiv-
alent to the second argument replaced by the third argument (all three
arguments are terms).

ReplaceTerm Term×Term×Term→ Term
returns a term which is the first argument with all (exact) occurrences of
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the second argument replaced by the third argument (all three arguments
are terms).

RightOp Term→ Term
the argument is an ordinary expression or type with at least one argu-
ment. Returns the last of these.

RuleConcl RuleStmt→ Exp
returns the conclusion of the argument (a rule statement).

RuleOrdHyps RuleStmt→ Exp-set
returns the ordinary hypotheses of the argument (a rule statement).

RuleSeqHyps RuleStmt→ Sequent-set
returns the sequent hypotheses of the argument (a rule statement).

RuleStmt Rule→ RuleStmt
returns the statement of the argument (a rule).

SequentPremises Sequent→ Exp-set
returns the premises of the argument (a sequent).

SequentUpshot Sequent→ Exp
returns the upshot of the argument (a sequent).

SubTerms Term→ Term-set
returns all subterms of the argument (a term).

Symb Term→ Symb
the argument is an ordinary expression or type, a binder expression or a
dependent type. This function returns the argument’s symbol.

TermAtIndex Term× Index→ Term | {nil}
see Section 5.3.3.

Unfold Term×Symb→ Term
returns the result of unfolding the definition of the second argument (a
symbol) in the first argument (a term).

UnifierOf Term×Term→ Instantiation× Instantiation
runs the unification algorithm on the two (term) arguments. Returns a
pair of instantiations, one to instantiate each of the arguments. Both
of these will be permissible. Names of metavariables in the first argu-
ment take precedence over those in the second. If the algorithm fails to
find a unifier, the pair < nil,nil > is returned. The ‘occurs check’ often
used as a precondition in unification algorithms is not needed, since any
‘clashing’ metavariables are renamed internally10.

User interaction with tactics

Two MuralCalls exist which allow the tactic writer to ask the user for some assistance
while a tactic is running. They both cause the execution to stop and wait for the user to
take some action before continuing with the tactic. The intention is to allow the user to
guide searches and so on.

10In fact, the problem of finding a most general unifier for terms of the mural language is not decidable.
What has been implemented is a partial algorithm (which always terminates!) based on [Hue75].
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UserSelection X∗→ X∪{nil}
the argument is a collection of objects. The user is presented with a
menu with an option for each of these objects (e.g. if a collection of
rules is passed in, then a menu of their names will appear). The function
returns the object which is selected, or nil if the user selects outside the
menu.

UserSelectionOfSubterm Term→ Term∪{nil}
this is similar to UserSelection, but the argument is a term, and one
of its subterms can be selected. Instead of a menu, this function first
prompts the user for the size and position of a window in which to dis-
play a structured presentation of the given term. A menu item allows
the designation of a particular subterm.

Make constructs

The Make construct which is provided for building composite objects is much the same as
the VDM ‘mk-’ function. The types of objects which can be formed with this construction
are limited to those listed below. For each type which can be ‘made’ the signature of the
corresponding mk- function is given. For each type, the make function has a precondition
which ensures that the resulting object will be sensible; if the precondition is false then a
run-time error occurs.

RuleJustif Rule× Instantiation×VSymb m−→ VSymb×OrdDeps-set11×SeqDeps-set12

→ RuleJustif

FoldDefJustif Line×Term→ FoldDefJustif

UnfoldDefJustif Line×Term→ UnfoldDefJustif

SeqHypJustif SeqHypLine×VSymb m−→ VSymb×OrdDeps-set→ SeqHypJustif

Justification → NullJustification

Ordinary Expression (CESymb |MESymb)×Term∗→ OExp

Ordinary Type (CTSymb |MTSymb)×Term∗→ OType

Binder QESymb×VSymb×Type×Exp→ QExp

Dependent Type QTSymb×VSymb×Type×Type→ QType

5.3 The implementation of tactics
This section describes the implementation of tactics which exists in the mural system; the
facilities provided by the tactics system and the user’s view of them are discussed, but no
mention is made of the methods and techniques actually used in implementing the tactics
subsystem.

11OrdDeps at present include only Lines, so no facilities are provided for constructing nested justifica-
tions from within tactics.

12SeqDeps are SeqHypLines or Boxes.
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5.3.1 Note on error checking
All error checking is done at run-time (indeed, since the language is not statically typed, it
is impossible to decide prior to the execution of a tactic whether errors would occur as the
result of incorrectly typed parts of the tactic language (for example, the condition part of
an If statement must be a Boolean) or calls to mural functions and operations. It would,
however, be possible to do some checking at the time a tactic is written – such as ensuring
that all mural calls have the correct number of arguments (though this was not done in the
implementation of mural ). The tactic system could be further enhanced by the addition
of an exception handling mechanism (such as exists in ML or Eiffel, for example) to deal
in a clean way with failures and abnormal conditions which occur at run time. Errors can

occur in several ways:

• calls (to tactics or the mural core) are given the wrong number of arguments.

• type check failure. Some typechecking is performed – for instance the ‘∧’ operator
must have Booleans as its arguments and ‘hd’ expects a non-empty collection as its
argument.

• the name supplied to a tactic call doesn’t refer to any tactic available in the theory
where the execution is taking place.

• certain operations or functions have preconditions (which include a test that the
arguments are correctly typed); an error will occur is one is violated.

• the execution of a Stop statement, while not strictly erroneous, will halt the execu-
tion and behave in just the same way as an error.

When any of these error conditions arises a run-time error notifier, similar in style to
the Smalltalk-80 source-level debugger, will be displayed, showing the code of the tactic
which was executing, with the particular statement in which the error occurred highlighted
and some diagnostic text explaining the reason for the failure. Clicking with a mouse
button will remove the error notification, stop the execution of the tactic and return control
to the user interface13.

5.3.2 Note on pattern matching and unification
The mural system provides algorithms for both pattern matching and unification of terms,
although the unification algorithm cannot be invoked directly form the user interface in
the way that the pattern matcher can – it is only visible from the tactic system. The
provision of these two algorithms can sometimes lead to confusion when writing tactics.

Why is unification necessary?

When rules are applied backwards to goals in proofs, pattern matching (or unification
for that matter) will not always be able to find the complete instantiation which will be

13The disadvantage of this kind of error notification is that the notifier window ‘grabs control’, which
means that the user cannot go off and do anything else (like look in another window to try and track down
the problem) while the error message is displayed.



190 5 The tactic language

required, so some metavariables will be mapped to arbitrary new values and the relevant
new lines added to the proof (e.g. applying a∧b

a to a line x the instantiation for b is not
known, so a new metavariable b̂ (actually just a unique number) is introduced and the
line x∧ b̂ is added to the proof. Before the proof can ever be considered complete, all
occurrences of b̂ must be ‘filled in’ using a call to InstantiateProof). Later on, when
these new lines are themselves being treated as goals, more information may be found
and these new metavariables can be ‘filled in’. Pattern matching is not enough since it
will only instantiate metavariables on one of its arguments (typically an expression from
an uninstantiated rule); here we need to instantiate metavariables in both a proof line and
a rule.

When to use unification and when to use pattern matching

When applying a rule backwards (or indeed doing anything involving matching or unifi-
cation) to justify a goal line in a proof, which may itself have been the result of an earlier
backward step, use unification – for most other things pattern matching will do (pattern
matching is somewhat more efficient, therefore preferable).

5.3.3 Indexing terms
The tactic language provides primitives for accessing and manipulating subterms of a term
by means of indices. Indices are sequences of non-zero natural numbers. Full details of
indexing are given in the specification in Appendix C, but here is an example.
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Figure 5.1: Structure of a mural Expression
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Figure 5.1 shows the structure of the expression A∧B. The nodes of the tree labelled
EListXTList, EList and TList are parts of the abstract syntax of the mural language which
are hidden from the user in ordinary circumstances (i.e. normal structure editing), but
which must be understood in order to write tactics which manipulate terms at this level
of detail14. In Figure 5.1 it can be seen (by following the branches of the tree which
are drawn as arrows) that the symbol B15 has the index [2,1,2,1]. For most applications
indices and the detailed structure of terms can be completely ignored, but the interested
reader (or one who is forced to write such perverse tactics) is referred to the specification
(in Appendix C.2.2) which defines the syntax of terms, explains indices, and specifies
the functions IsValidIndex and TermAtIndex as mentioned in Section 5.2.3. IndexOfTerm
takes a pair of terms, a and b, and returns the index of a subterm of a which is identical
to b16 (or nil if no such subterm exists). IndicesOfEquivalents is similar, but returns the
set of indices of those subterms of a which are α-equivalent to b.

The MuralCall ArgsMap is slightly more complicated. It takes a defined expression or
type symbol and returns a map from Index to set of Index. Each index in the domain of the
map is a singleton list representing one of the arguments to the definition (e.g. [3] indicates
the third argument) and its image under the map is the set of indices corresponding to
the occurrences of that argument in the definition. (Slightly) more formally this can be
specified as follows:

ArgsMap (s:ExpOrTypeSymbol) r: Index m−→ Index-set
pre isDefined(s)
post ∀h ∈ Holes(Defn(s)) · r([number(h)]) = IndicesOfEquivalents(Defn(s),h)

where Holes returns all the expression and type placeholders in a term, and Defn returns
the definition of a defined expression or type symbol17. The function number returns the
index of a placeholder18, with the quirk that it ‘adds type placeholders after expression
placeholders’. For example, if a definition had three expression arguments and two type
arguments the numbers of the type placeholders would be [4] and [5].

Well that’s enough of indexing. Now for something completely different.

5.3.4 Interacting with tactics
Editing

Inside a Tactic Notice (in a theory tool) a structured presentation can be displayed to
allow one of the theory’s tactics to be edited. When a new tactic is added to the theory it
is completely ‘empty’ – that is, it has no arguments, its result variable is set to a default
value (result) and the body of the tactic contains no statements. Middle-button menu
options are available when the whole tactic is selected to add arguments and to change the
name. Null statements can be added to the body, and can subsequently be refined into one
of the types listed in Section 5.2.1. When such a refinement is performed, a template form
of the new statement will be displayed, which will typically contain null expressions and

14Thankfully, such tactics seem to be fairly esoteric.
15Note: the symbol B, rather than the expression with the symbol B.
16i.e. the same Smalltalk object as b.
17To be fully formal, the symbol’s definition would have to be looked up in the signature of the theory

where it is introduced.
18In this case, ‘index’ refers to the numeric identifier of the placeholder (an element of N1), not to be

confused with the indices we’re mainly concerned with in this section.
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empty bodies (further blocks or sequences of statements) which can themselves be edited.
The editing options on expressions are similar to those for statements, and an expression
can be refined into any of the kinds listed in Section 5.2.1.

Figure 5.2: a Nearly-new Tactic

After a couple of editing steps, a tactic might look like Figure 5.2. The word body
is not strictly part of the tactic; it is simply a piece of concrete syntax which delimits the
beginning of a tactic’s block of statements so that the whole block can be selected when
structure editing, rather than just single statements.

Although there are some differences between the structure editor for tactics and that
for the rest of mural the general principles are much the same and anyone acquainted with
the other mural editors should have no trouble editing tactics.

A parser has been written for the tactic language, and works in much the same way
as the standard mural parser: left button to select and place the insertion point; middle
button menu option on text to copy and paste text and restore the previous state; middle
button menu option on the whole tactic to parse unparsed text19.

Invoking tactics

Tactics can (only) be invoked from a tactic tool inside a proof tool. A new tactic tool
(obtained by clicking on the ‘tactic tool’ button on a proof tool) initially has on its right-
hand side a list of the names of all the tactics which can be run in the current context
(i.e. all those in the current theory or its ancestors which have no ARBITRARY arguments).
The list of tactics can be filtered by selecting a theory from the left-hand list, causing the
right-hand list to show only the tactics in the selected theory.

When the user has selected an item from the list of applicable tactics the arguments
may be instantiated to appropriate things, and the tactic set to run. When the arguments
to a tactic are being ‘set up’ (prior to execution) a list appears, on the left-hand side, of all
the arguments, and when one is selected a list appears in the middle of the tool containing
all the things which can be added to the sequence corresponding to that argument (this
will either be all the rules in the current theory and its ancestors, or all the lines, boxes and
sequent hypotheses in the current proof, depending on the type of the argument). When

19Caveat: in the current version this sometimes behaves rather unpredictably, particularly when some-
thing fails to parse.
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one of the items in this central list is selected a menu option allows it to be added to the
argument sequence (shown in the right hand column). A menu option allows items to be
removed from the argument sequence.

It is often desirable to write tactics which are invokable from the user interface (i.e.
which have only sequences of rules or proof objects among their arguments), but which
actually require only a single object (for example the ‘goal’ line on which the tactic is to
operate). The simplest way of achieving this kind of effect is to pass in a unit list, and
only use the head of this list in the following way.

Tactic1 (arg1: SEQ OF PROOFOBJECT, · · · ) result
body goalLine← hd arg1

...

A couple of other things should be noted about the tactic invocation tool. Firstly, when
a tactic is running (after the start button has been clicked), the main section of the tactic
tool is replaced by a ‘trace’ of the tactic’s execution. A line is displayed in this trace each
time a mural call is executed, and when various other events occur. The purpose of this is
to give the user some idea of what is going on at any instant in time (and also to prove that
something is going on!). When a tactic is running the start button changes to be labelled
stop and can be used to interrupt an executing tactic. Secondly, each time the start
button is pressed to run a tactic, a copy is made of the main attempt of the proof and is
added to the list of existing proof attempts. This is a ‘back up’ facility so that the effects
of running a tactic can be undone – by simply switching back to the copied version.

5.4 Examples
In this section a few simple example tactics are presented.

5.4.1 Backwards rule application
The first example is of a tactic which takes as an argument a sequence of rules and
tries applying them in a backwards way to all the goal lines20 in the proof. The im-
portant part of the tactic is the line where the tactic ApplyRulesBackwards is called and
passed the rule list and one of the goals which is subsequently removed from the goals
set. ApplyRulesBackwards returns a pair of values, the first of which is a Boolean flag
indicating whether or not the tactic was successful in applying one of the rules to the
given line. The second element of the result is a set containing the new lines and boxes
which have been added to the proof. In general these lines correspond to a subset of the
instantiated hypotheses of the rule which was applied – a subset since some of the rule’s
hypotheses may already exist as known lines in the proof. These new lines are added
to the current set of goals, so that a similar attempt will be made to justify them. The
MultiApplyRulesBackwards tactic will terminate when there no goals left to try and
justify.

20All lines in the main proof attempt which have null justifications are considered to be goal lines.
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MultiApplyRulesBackwards (RL: SEQOFRULE ) result
body goals ← GOALS.

while goals 6= []
do g ← OneOf(goals).

res ← ApplyRulesBackwards([g],RL).
goals:← goals−{g}.
goals ← goals∪ snd(res)

Of course, care must be taken not to supply a tactic like MultiApplyRulesBackwards
with sets of rules which are ‘circular’. For example, either of ¬¬φ

φ
or φ∧ψ

φ
individually or

a:B
δ (a) and δ (a)

a:B together as arguments will cause the tactic not to terminate.

5.4.2 Forward rule application
Whereas the example tactic shown in the previous section applies inference rules to goal
lines in a proof, generating new sub-goals, the one shown below (ForwardStep) applies
single rules in a forward direction to generate new known lines from existing ones. It
could be used as the basis of a MultiApplyRulesForwards, which would make repeated
calls to ForwardStep from within a While loop. The arguments to ForwardStep are a
line (l0) to indicate the position at which new lines should be added to the proof, the rule
to be applied (R), a sequence of lines (ls) and a sequence of boxes (bs) which the tactic
will work forward from, and an instantiation (inst) which will be applied to the rule.
The return value is a pair, the first element of which is the new proof line corresponding
to the conclusion of the rule, and the second is the set of new lines added to the proof
corresponding to hypotheses of the rule.

ForwardStep ( l0: ARBITRARY,R: ARBITRARY, ls: SEQOFPROOFOBJECT,
bs: SEQOFPROOFOBJECT, inst: ARBITRARY )S

body rs ← RuleStmt(R).
inst′ ← FillOutInstantiation(rs, inst).
new ← InsertNewLineAfter(l0, Instantiate(RuleConcl(rs), inst′)).
newHyps ← ApplyMixedStep(new,R, ls,bs, inst′).
S ←< new,newHyps >

5.4.3 User interaction
As was mentioned in Section 5.2.3, tactics can be written which ‘poll’ the user for extra
information; the tactic shown below makes use of this facility. The purpose of this tactic
is to help the user set up a proof by induction over sequences. The rule for sequence
induction is built into the tactic (its name is enclosed in ‘Strachey’ brackets, [[Seq-Ind]] –
like this), but a variation could easily be written in which the particular induction needed
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was passed as a parameter, so that the tactic would be applicable in a larger set of theories.
Additionally, some checks should be put is to detect nil being returned from the user
selection calls, but have been omitted for the sake of simplicity. Both this tactic and
the next one (BasicEqualsSubstitution) operate at a fairly low level by manipulating
terms using the Symb, RightOp and LeftOp MuralCalls, and by constructing instantiations
for use in justifications. Subsequent tactics which rely on these can operate at a higher
level, so some of the gory detail is hidden.

SetUpInduction (gl: SEQOFPROOFOBJECT ) result
body g ← hd gl.

b ← LineBody(g).
l ← UserSelectionOfSubterm(b).
P ← ReplaceEquivTerm(b, l, [[e1]]).
r ← [[Seq-Ind]].
con ← RuleConcl(RuleStmt(r)).
ts ← Symb(LeftOp(con)).
Ps ← Symb(con).
inst ← InstAtPut(InstAtPut(mk-Instantiation({},{}), ts, l),Ps,P).
inst ← FillOutInstantiation(RuleStmt(r), inst).
ApplyRuleBackwards(g,r, inst)

The conclusion of the rule for induction over sequences (Seq-Ind) is of the form Q[x],
where Q is some predicate and x is the ‘induction variable’. The above tactic builds an
instantiation for the metavariables Q and x based on the line given as input to the tactic,
and the user’s selection, l. In building this instantiation, the subterm selected by the user is
replaced in (a copy of) the original l by an expression hole, [[e1]]. This is often necessary
in tactics which construct instantiations (such as BasicEqualsSubstitution below).

5.4.4 Equational reasoning
Basic rewriting tactic

The tactic shown here forms the basis of a range of others which use equations (or rather
inference rules with equations as their conclusion) to rewrite lines in a proof, substituting
equals for equals. BasicEqualsSubstitution takes three arguments: a line in the proof,
l, a subexpression of the expression on the proof line, term, and a rule (with an equation
as its conclusion), r. The idea is to add a new line to the proof which has the expression
of l with term rewritten using the equation of r. This involves applying the rule of equals
substitution:

= -subs
s1 = s2,E[s1]

E[s2]

The tactic ForwardStep is used twice, first with the rule r to add the equation as a line
in the proof, and secondly with the = -subs rule applied to this equation and the original
line which is to be rewritten (l).
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Not only is the name of the equals substitution rule ‘hard-wired’ into this tactic (for
simplicity), also the tactic contains information about the form of the rule, in the lines con-
taining MuralSymb(. . .) close to the end of the tactic. These are quoted mural metavari-
able symbols which correspond directly to the metavariables in the statement of the equals
substitution rule.

BasicEqualsSubstitution(l: ARBITRARY, term: ARBITRARY,r: ARBITRARY)lp
body left ← LeftOp(RuleConcl(RuleStmt(r))).

insts ← MatchAgainst(left, term).
if IsEmpty(insts)
then
else kl ← KnownsAt(l).

if IsEmpty(RuleSeqHyps(RuleStmt(r)))
then kb ← {}
else kb ← BoxesKnownAt(l)

.

inst ← OneOf(insts).
eqn ← fst(ForwardStep(l,r,kl,kb, inst)).
term′ ← RightOp(LineBody(eqn)).
newBody ← ReplaceTerm(LineBody(l), term, term′).
pterm ← ReplaceTerm(LineBody(l), term, [[e1]]).
s1s ← MuralSymb(s1).
s2s ← MuralSymb(s2).
Es ← MuralSymb(E).
inst2 ← InstAtPut(InstAtPut(InstAtPut(mk-Instantiation({},{}),

s1s, term),s2s, term′),Es,pterm).
lppair ← ForwardStep(eqn, [[= -subs]],{l}∪{eqn},{}, inst2).
lp ← fst(lppair)

Interactive rewrite

The previous tactic is rather unwieldy, and in any case cannot be invoked by the user
since it has arguments which are of type ARBITRARY. Consequently, a more ‘user-
friendly’ variant is required. InteractiveFR (or interactive forward rewrite) is a tac-
tic which hides the functionality of BasicEqualsSubstitution behind a user interface
similar in style to the induction tactic. The tactic takes a sequence of lines ll (contain-
ing the line to be rewritten), and a list of rules RL providing the rewriting equations.
The user is prompted for a subterm to rewrite and a rule to apply, then a call is made to
BasicEqualsSubstitution to actually perform the rewrite.

InteractiveFR ( ll: SEQOFPROOFOBJECT,RL: SEQOFRULE )newLine
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body l ← hd ll.
term ← UserSelectionOfSubterm(LineBody(l)).
if term = nil
then newLine ← nil
else rule ← UserSelection(RL).

if rule = nil
then newLine ← nil
else newLine ← BasicEqualsSubstitution(l, term,rule)

Multiple rewriting

A common strategy employed in proofs is to use chains of equalities to rewrite or simplify
terms over a number of steps, and further extensions can easily be made to the interface
of the term rewriting tactics which support this. MultInteractiveFR repeatedly calls
InteractiveFR until the user makes a nil selection (for example by clicking outside a
menu), thus creating a sequence of lines related by applications of the equals substitution
rule.

MultiInteractiveFR(startLine: SEQOFPROOFOBJECT,RL: SEQOFRULE)result
body line ← hd startLine.

while line 6= nil
do line ← InteractiveFR([line],RL)
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Chapter 6

Implementing the mural proof assistant

Previous chapters describe the mural proof assistant, both at the abstract level and in
terms of the specification of the system. We should not forget that this abstraction has
been realized as a working piece of software. This chapter discusses the process of im-
plementation and points out some of the things we learned along the way that we believe
may be of interest or significance to others. This is not the place to attempt to give full
detail of the implementation, rather we attempt to illustrate the general structure and to
focus on some of the interesting issues in its development. It is written more for the cu-
rious than for those who would like to implement their own version of the system1. This
chapter deals specifically with the implementation of the mural proof assistant, but much
of it applies to the entire mural system.

Background
As with any system of more than trivial size, much of the eventual form and style of
the mural proof assistant was due to an evolutionary process involving a large number
of design decisions. To understand the reasoning behind such design decisions without
having been present at these discussions is a difficult task. A lot can be deduced from the
scene setting given in Section 1.4. Here we offer a little more background to give you a
picture of our thinking and perspective during the design.

Things uppermost in our minds

There were many possible routes we could have taken in the development of the mural
proof assistant, even after things had been fixed at the specification level. To give you a
flavour of the things that led us in the direction we chose, the points that were uppermost
in our minds at the time were:

• The VDM specification was the Bible of current information. It was the sole repos-
itory for decisions already made.

• Any decision that had been made in the abstract had to be reflected in the code.
If we discovered the need during implementation to alter something recorded in
the specification, then the only permitted mechanism for doing so was to amend

1If there are any such people, and if going and sitting in a dark room for a while doesn’t cause you to
think better of it, then we suggest you get in touch with us directly. We should be able to give more useful
information in higher bandwidth communication than anything we could provide in a book of this kind.
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the specification and then to implement from the revised specification. Given the
lack of a system offering the functionality of a full mural , it was not reasonable
to attempt a formal development of the mural proof assistant. However, the rela-
tionship between the specification and the code was monitored informally as if the
retrieve functions had been written. In a few cases where the correspondence of
the implementation was not obvious, some formal proof was done. The specifica-
tion also contained some validation properties of the operations that were used as a
confidence check on some parts of the implementation.

• The initial implementation had to be a fully functional prototype. It was considered
acceptable to compromise on performance to a reasonable extent to expedite the
development, but we had to provide all of the functionality necessary to use the
mural proof assistant on realistic examples.

• We viewed the system as broadly divided into two parts:

1. the kernel functionality covered by the specification;

2. the user interface that permits access to this kernel.

The specification had addressed many of the design issues involved in 1, but we had
no way of conveniently discussing 2 without constructing prototypes. We needed a
great deal of flexibility in constructing interfaces since we were sure to get it wrong
the first time.

These points should be kept firmly in mind when reading the following sections.

The implementation language: Smalltalk-80

We have been asked on many occasions: ‘Why Smalltalk?’2, as this would seem to dis-
tance ourselves from most of the other work that was being done in the area of supporting
formal reasoning. Traditionally, theorem provers and their brethren have been imple-
mented in either ML [Pau85a] or one of the LISP dialects. It is generally believed that
these languages are particularly suitable for supporting the symbolic manipulation in-
volved in this class of application. As was discussed in Chapter 1 and above, we had
different priorities as far as the mural proof assistant was concerned.

As we have said, we believed that one of the key requirements of the mural system
was to provide an interface that was helpful in constructing proofs. Since we had no clear
picture of precisely what this entailed when starting out, we needed to be able to try a
number of different approaches to the UI. This led us to pick an environment where the
basic facilities necessary for building an interface, such as windows, selection mecha-
nisms and so forth, were available and could be easily combined in a variety of ways.
From the literature and simple experiments, we thought Smalltalk to be more suitable in
this regard than any of the other options we had available since it offered the necessary
primitives and allowed rapid experimentation without a high rebuilding overhead for a
large application. We were also of the opinion that Smalltalk lost nothing on the sym-
bolic manipulation front since it supported abstract data types, such as sets and lists, that
matched the way we had specified the kernel operations. This would allow a very direct

2The mural system was developed in Objectworks for Smalltalk 80, Version 2.5, ParcPlace Systems,
using Sun 3 and 4 as our development systems.
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implementation of the specification. Early experiments to convince ourselves (and others)
of the suitability of Smalltalk and the conclusions we reached are discussed in [Jon87a].
Section 6.3.4 gives our opinion on this matter at the end of the project.

As is often the case, our choice of implementation language had some effect on the
style of the eventual implementation. It is obvious to anyone familiar with Smalltalk that
mural is a Smalltalk application. It is equally obvious that it is not a standard application.
This is discussed later.

6.1 The process of implementation
One of the interesting aspects of the mural project was that it combined the approaches of
formal specification and prototyping in a complementary way. In this section, we discuss
this relationship and explain why we feel that this proved to be a very successful approach
to building our system.

As we mentioned above, the starting point for the implementation per se was the VDM
specification (Appendix C). This document recorded a complete description of the core
of the system at a behavioural level.

The process by which we arrived at the final version of the specification is of interest
in itself. We will describe it here, even though it is a precursor to what would normally
be considered part of the implementation.

‘Ground Zero’ was a mathematical presentation of the functionality of the kernel.
This was written as a description of the logical frame the mural proof assistant was to
support [Lin87a]. This document allowed many of the discussions and decisions to be
taken at a very abstract level where the issues were clearer. This allowed a separation of
concerns, since we could concentrate solely on the issues of importance at that level of
abstraction.

Once we were happy at this level, the mathematical description was then translated
into a VDM specification [Jon87b] which gave the base for the system specification. From
this point, the specification was expanded to be a complete functional specification for the
kernel [Moo88].

At this point, we realized that we needed some feedback on aspects of our design, such
as the level of user interaction involved, that could not be examined very well in abstract.
To get this feedback, we built a prototype by ‘translating’ the specification into Smalltalk3

and executing it. As expected, this led to our realizing the need for some changes in the
primitives and a revision of the structure of the kernel.

At this point it would have been too easy to just make what we felt were the necessary
changes at the implementation level, ignore the specification hereafter, and plough on
regardless – especially since we now had a working prototype to play with. This is not
the model that use of a formal method suggests and we forced ourselves to take our own
medicine. It should be noted that this was easier for some than for others and any project
using these techniques can expect some problems with programmers who don’t see that
this discipline is necessary for their work. It’s also easy to predict which people have
responsibility for the parts of the system that cause problems further down the track!

The changes were documented by producing a revised version of the specification
and this document ([LM89]) served as the gospel during the construction of the mural

3This translation was not exactly a mechanical process since in general the specification was not directly
executable. However, this sentence gives the flavour of what we were trying to achieve.
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proof assistant. The prototype was notionally thrown away and the implementation began
cleanly. In retrospect, we feel that this was one of the key points in the process and the
reason that the combination of techniques worked well for us. If we had not been prepared
to incorporate the feedback from the prototype at the specification level, rather than at the
code level, then this is the stage where we would have lost our precise specification and
would have been reduced to a ‘hack it and see’ strategy. Given the number of times an
appeal to the specification solved a problem, or resolved an ambiguity, or cleared up a
misunderstanding, in the weeks that followed, this would have been a high price to pay
for the instant gratification of being able to carry on playing with our prototype.

Just to complete this historical perspective, the system kernel was then implemented
from the specification, exploiting the obvious relationship between the types in the spec-
ification and the objects that could be constructed in Smalltalk4. A user interface was
designed and built on top of this, and the system was released to the group for feedback.
The final step in the process was modifying the system according to user feedback, via the
specification where this was relevant, and by improving efficiency where this was shown
to be important.

Now that you know some of the reasons the mural proof assistant looks the way it
does, we can look at some detail of the implementation.

6.2 The implementation

6.2.1 The implementation of the kernel
The kernel of the mural proof assistant was implemented as a class hierarchy with Mu-
ralObject as its root. Fig. 6.1 shows an outline of this hierarchy. Items followed by . . .
have further subclasses. Those marked with ∗ are pragmatic rather than semantic entities.
Since there is a natural correspondence between a VDM type and a Smalltalk class (par-
ticularly when the type is a record, as most of the types in the mural specification are),
the derivation of the classes in this hierarchy was quite straightforward.

Since there is no notion of inheritance in VDM, we were somewhat surprised how
inconvenient it was to be limited to Smalltalk-80’s single inheritance model when trans-
lating the types. All of the kernel classes needed to be subclasses of MuralObject, to
inherit the basic properties of any mural type, but we often would have liked to be able
to inherit functionality from a pre-existing Smalltalk class as well. An obvious example
of this is the ArgList type. As well as being a Construct, it is also an obvious subclass of
OrderedCollection.

To illustrate the correspondence between the code and the specification, Fig. 6.2 shows
both the specification and the implementation for Rule.

Each field of the record was represented as an instance variable of the class. In ad-
dition extra variables were used to hold information that was not relevant at the level of

4During this part of the implementation, we evolved a style of working that was remarkable successful
for us, involving two people at one workstation. This is now referred to as the ‘spare feet on the desk’ pro-
gramming paradigm, so named because of the working position usually adopted by the person not driving
the keyboard. The combination of this style, which avoided many errors of both omission and commission
that would have been harder to track down after the fact, together with the use of the formal specification
in an environment that provided powerful programming abstractions, gave us high productivity during this
phase. How well this would translate to other teams, on other projects, is left as an exercise for the interested
manager.
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MuralObject *
MICollector ... *
Store
Theory
Signature
ThMorph
Proof
Box
HypLine ...
Rule
Sequent
Term

Construct
ArgList ...
BTerm ...
Exp ...
Type ...

Symb ...
Zilch *

Figure 6.1: An outline of the mural class hierarchy

abstraction at which the specification was written, such as a comment associated with the
rule.

The rest of the kernel types were implemented in a similar fashion. In some cases, we
had to resort to tricks to simulate multiple inheritance. This was usually done in one of
two ways, although in some cases of sheer desperation we had to resort to copying code.

1. For the cases where we wished to inherit the functional behaviour of an existing
class, the trick was to encode an object of the desired second superclass in an in-
stance variable of the class. For example, ArgList is a subclass of MuralObject and
has an instance variable, list, which contains an OrderedCollection.

2. When we were actually interested in subtyping (i.e. not in method inheritance), we
made use of a separate hierarchy rooted by MICollector, the subclasses of which
were used to represent second parents for mural classes. For example, Leaf has
one instance variable that contains a list of all the classes that would be considered
subclasses of Leaf, such as Atom, Vsymb, etc. We could then test if something was
a subtype by checking if it was in this list.

This lacked the elegance of true multiple inheritance but was sufficient to allow us to write
the operations we were interested in.

Most of the operations given in the specification were implemented as methods on the
obvious class. Sometimes, the class structure of Smalltalk allowed a number of possibil-
ities for the ‘right’ place to attach a method. In such cases, ‘obvious’ was decided by the
toss of a coin. If the specification was sufficiently explicit, the code was usually written by
simply translating the VDM, since most of the operations used in the specification (such
as ∪,† etc.) were also available in Smalltalk (Fig. 6.3).



204 6 Implementing the mural proof assistant

For the cases where the specification was implicit, some non-trivial design was neces-
sary. The problem usually involved searching thorough a fairly small domain of possibil-
ities, taking advantage of some meta-knowledge of the situation. In these cases, a proof
of consistency with the specification was done in an informal manner. The correctness of
the relationship shown in Fig. 6.4 is less obvious than for the case above.

The security of the mural proof assistant depends only on the security of this kernel,
since all operations available to the user through the user interface interact with the state
only through the kernel functions.

6.2.2 The implementation of the user interface
Our aim for the user interface was to take advantage of the sophisticated interaction possi-
ble on a workstation to make the process of constructing a proof as convenient as possible
for the user. We had a number of broad principles in mind:

• No arbitrary restrictions on the order of actions or on the layout of information.
We assumed that the user was more intelligent than the machine and if he or she
wanted to do things in a particular order, or lay out windows in a particular way,
then, provided there were no semantic restrictions, we should allow this. We should
support the user, not enforce a style.

• Wherever possible, the interface should follow the direct manipulation principle,
i.e. you should be able to edit the representation of the object that you see.

• Notation and layout etc. should be as close to what the user actually wants as we
were able to achieve. Mathematical founts make a large difference to the readability
of the texts.

• In contrast to the previous item, we should not slavishly follow what one would do
on paper, but should take advantage of the processing power of the machine and the
interactive nature of the medium to do better than paper.

This led us to create two basic interactors which underlie most of the the mural proof
assistant user interface:

• Structured presentations are representations of an object that allow the binding of
menu actions to subcomponents. Using this mechanism, the mural proof assistant
presents a structure editing interface to the underlying objects. This mechanism is
used for the construction and editing of most small objects within the system.

• Noticeboards allow the grouping of notices, which can be regarded as sub-windows,
in arbitrary ways. This technology allows the user to decide on the layout and
organization of information within a view of a larger structure. For example, the
presentation of components within a theory uses a noticeboard to allow the special
grouping of related rules and signature items for convenient navigation. This is in
keeping with the principle of allowing the user complete freedom when there are
no semantic constraints.

Both of these components are visible in a number of forms in the picture in Fig. 6.7 on
page 213.
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User interaction with small-scale objects

The basic user interface component necessary for the majority of kernel objects was some
mechanism for constructing such objects. We chose to use structured presentations which
permit the editing of the objects. As an efficiency improvement, a parser was added later.

The basic interactor for a simple kernel object is presented as a notice containing the
syntactic definition of the object, plus a definition of its concrete syntax. A RuleNotice is
shown in Fig. 6.5.

User interaction with complex objects

For objects of more involved structure, one structured presentation would not be a very
good interaction mechanism. In fact, a Rule is the largest structure we approached in such
a fashion. For objects of greater complexity, such as a Theory or a Proof, we used the
notion of a Tool as a structuring mechanism, together with a ToolView which handles the
physical layout on the screen.

Tools can be considered as part of the user interface even though they have nothing to do
with the screen interaction as such. The basic idea behind a tool (we shall take ProofTool
(Fig. 6.6) as an example) is that there is information that is not part of the state, in the
sense the specification describes the state, but that needs to be stored somewhere. For
example, in the ProofTool, there are a number of instance variables. Some contain kernel
information, such as the proof itself. Others hold selection or caching information, such
as the selected attempt. It is the tool that provides the functionality the user actually sees.
Since the tool only changes the state via the kernel operations, the security of the system
depends only on the security of the kernel functions. Tools should be viewed solely as
pragmatic constructs.

ToolViews describe the layout of the interface to an object in terms of the panes, buttons,
lists and so on that the user sees on the screen. Most views are built of a number of
common interactors, such as buttons, menus, selection from lists and so forth. There is
little point in discussing these here since the best way of getting a feel for what’s in a
ToolView is to look at some of the example screens in this book, such as Figs. 2.1 to 2.12
in Chapter 2.

6.3 Lessons learnt and advice to the young
The mural project has two things to offer: the system itself and the experience of the
use of formal methods gained by building this system. To benefit from the former, you
need a large workstation and a copy of mural . The benefit from the latter is more cheaply
obtained and perhaps of more general interest. Many of the points are made piecemeal
and by implication in the preceding sections. This final section tries to bring them together
and make some definite comments. Much of it is repetition of what’s above, but being
brought together makes it a stronger statement of what we believe. This is probably even
less of a consensus view than most of the preceding comments. Comments in bold should
be surrounded by a <Mounts soapbox> bracketing.
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6.3.1 The use of formal specification with prototyping
Since mural is a support system for formal methods, we obviously had to make use of
such technology in its development5. We are convinced that this made the development
much easier and more successful than it would have been otherwise. It was a number
of months before the first line of code was written and by the time it was, many of the
contentious and difficult problems had already been resolved. This is evidence of one
of the classic arguments for the use of formal specifications: problems are picked up
earlier in the lifecycle. The initial implementation was quite straightforward and went
much more quickly than we had hoped. Had we had more suitable tools, this would have
been done more formally. Given what was available, this was not feasible; the actual
development can at best be described as rigorous. Some of the code was verified, using
the claims in Chapter 4 as validation conditions. A bold statement: formal specification
has benefit even without formal verification. Also, formal verification increases the
benefit but at higher cost.

We feel that the interaction between the specification and the prototypes contributed
significantly to the development of the system. The early feedback from a running system
allowed us to validate our specification at a pragmatic level and helped us to improve the
system at a number of levels of abstraction. This worked only because we made sure all
of the feedback was reflected in the specification. Prototypes enhance a development
provided they feed back into the specification, not replace it. This was a difficult
discipline to maintain at first, but we are convinced that this is one of the most important
points we learned: the specification should be the ‘Truth’ at all stages of the project
lifecycle. Also, the specification should lead the code, not track it.

6.3.2 Naive implementation
Our approach to writing the code was perhaps atypical. Where possible we took ad-
vantage of Smalltalk’s sophisticated abstractions and simply translated the VDM into an
executable form. Generally, this would have been decried as sure to produce a grossly
inefficient system. And, surely enough, it did. However, we would argue that this was not
a problem and actually saved us much wasted effort. One of the benefits of a language
like Smalltalk is the ease with which things can be changed. There were large portions
of the code for which optimization was completely unnecessary since the significance of
these sections to the overall performance of the system was small. The chances are that
if we’d tried to write optimal code from the start we would have wasted time and effort
in these areas. For the places where the system did need tuning, and there were quite a
number of these, Smalltalk allowed us to do so in an incremental fashion. Eventually, we
ended up with a system that has acceptably efficient code, without much wasted effort.
It’s not clear how much more we could have gained if we’d been prepared to do a more
complex development from the specification and benefited from optimization at a more
global level. I can’t think of a nice pithy one-liner that sums up this point, so I’ll use
a quote that I first heard from Richard Bird in a slightly different context: premature
optimization is the root of most evils.

5Would you trust a BMW salesman who drives a Mercedes?
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6.3.3 User interface experimentation
Formal techniques were not much help to us in designing the user interface. Actually,
that’s not entirely true. The specification ensured that we knew precisely what functional-
ity the interface had access to, so the underlying structure of the interface was determined
by the specification. The actual combination of buttons and texts and what-nots that repre-
sent the system as far as the user is concerned was designed by scribbles on a whiteboard
and experimentation. We followed the guiding principles mentioned above and tried to
give an interface that permitted as much freedom as possible. This made the task of build-
ing the interface much harder. It is much easier to develop an interface to a proof, for
example, that only allows you to construct new lines from existing lines (forward rea-
soning) than one which allows you to go forwards, backwards or from the middle. The
other thing that became obvious was that to design an interface that allows total flexibility
without significantly increasing the user’s workload, is a very hard task. The mural proof
assistant allows a lot of freedom but it has its price: the user often has to do a lot of the
positioning of windows by hand, such as in noticeboards. This is often inconvenient if
you really don’t care where they go and just want a quick look at the contents. Perhaps
this could be summarized as freedom has its price?

The first interfaces we tried on the mural proof assistant were more simplistic than
the current version. Such interfaces were quickly shown to lack some functionality that
users needed. The current interface is the end point of a number of experiments and
seems to offer most of the facilities one would look for. However, using some of these
features is more complicated than we would have wished. Further development would
now concentrate on packaging some of the more common features to make them easier
to use. Interfaces are not right the 1st (or nth) time, no matter how hard you try, and
need to evolve with feedback.

6.3.4 Smalltalk as an implementation language
We should state here that we doubt that we could have built mural to the level of sophisti-
cation we did, in the time that we had, in any other language that was available to us at the
time. It’s important to mention this since most of the rest of this section is griping about
various features of Smalltalk that we were unhappy with. We’ll try to remember to point
out the positive features, but it’s always easier to take what you’re happy with for granted
and complain noisily about the bits you’d like to change.

The abstractions provided as standard in Smalltalk, such as sets, lists and dictionaries,
make it very easy to program the complex structures the mural proof assistant depends
upon. However, it was not as easy to take full advantage of these as we had hoped.
We often found ourselves in the situation of wanting to make a subclass of a system
container class to add functionality specific to the element type, as in, say, ArgList. We
also usually wanted these classes to have the functionality of any other mural class in
the same category. Usually the only way to achieve this was to copy code from one or
other of the possible parents which seemed contrary to the reuse philosophy of Smalltalk.
Inheritance is nice but nothing more complex than an amoeba is really born from a
single parent.

We made much use of some features of the environment that are not provided in
many languages. The most important of these was the dependency mechanism. Smalltalk
provides a class, Model, which gives mechanisms for attaching dependents to an object,
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and notifying these dependents whenever certain events take place with respect to the
object. The obvious use of such a mechanism is within the interface to notify a view that
its underlying object has changed state. We use this mechanism heavily in our interface
code. However, we also make use of dependencies in other ways. For example, a Line is
dependent on its Justification, which in turn is dependent on the lines it refers to and the
rules it uses. If one of these rules is changed in any way, then the dependency mechanism
is used to inform the proof that, say, it is no longer complete and should unset the relevant
flag. Use of this mechanism was one of the main modifications we made when improving
the efficiency of the implementation. To have had to either build such a mechanism, or
manage without it, would have made life a lot harder for us.

We managed to build prototype interfaces very quickly and easily making use of
Smalltalk’s MVC6 mechanism and using the provided window classes. Unfortunately,
this only gave a loose approximation to the interface we actually wanted. Once we moved
away from the standard Smalltalk kind of interface, the cost seemed to go up exponen-
tially. Eventually, the mural interface code required the redevelopment of the interface
components from a very low level. Smalltalk makes building interfaces easy, but only
provided you stick within the bounds of its standard philosophy.

Smalltalk works best as a single person environment7. We found that it was often quite
difficult to successfully hive off chunks of the development to different people and then
recombine the code. The problem was usually caused by needing to modify an existing
class in both branches of the development, with each developer needing to add an instance
variable to the class, say. There is then no automatic way of combining these classes into
a single image. We often ended up reading through the code manually, trying to work
out what could be read in, what needed modifications to be done by hand and so forth.
Smalltalk needs to provide a mechanism for multi-person change management.

The final, and perhaps largest, complaint we had about Smalltalk was that after the
development was finished we had no way of doing the equivalent of shipping a binary.
In a conventional compiled language, we could have compiled to a client’s machine and
shipped the binary. With Smalltalk, we could only give the system to those people who
had a license for the Smalltalk runtime system, and then we had to be careful to ensure
that the sources were not visible in the circumstances where we didn’t want them to be.
The opposite of this complaint is the benefit that the mural system runs on any system
that supports Smalltalk-80 without any porting whatsoever.

Our final word on Smalltalk would be that there was much we were unhappy with, but
for a prototyping project we could not have done as much without it.

6.4 The future
At the end of any project, you can see how you could have done better. This section8 tells
some of the truth about what we believe could be better in mural .

One of the things we would like to do, now that we have a complete system, is to
reimplement in a language that would avoid the problems mentioned in the final point of
the preceding section. This would give us easier distribution and probably more efficiency.

6Model-View-Controller.
7Actually, it works even better as a two person environment – provided they adopt the ‘spare feet on the

desk’ paradigm mentioned earlier.
8Subtitled, a better mural would have been. . .



6.5 The final word 209

The drawback is that we would have to target to some generally available window system,
such as X. The porting exercise would be non-trivial, to say the least.

Some of the features of the interface, and the justification tool springs immediately
to mind as an example, are general enough to permit all the desired functionality, but
are overly complex for most simple interactions. The system would be better from the
user’s perspective if these general tools were replaced (or more probably augmented) by
a number of simpler mechanisms for those simple cases. We have some ideas about ways
in which this could be achieved by extending certain basic selection mechanisms to allow,
for example, selecting a set of lines in a proof.

It would also be nice to increase the power of the prover in a number of ways to
remove some of the burden of proof construction from the user. Extending the system to
incorporate rewrite rule technology, in a way consistent with the fundamental belief that
things should always be under the user’s control, would make certain kinds of proof less
tedious to construct. In a similar vein, the tactic language did not get as much attention
as other aspects of the mural proof assistant, and was considered more of an existence
proof than the ideal language. The system should have a powerful tactic language together
with a basic library of tactics. These should be easy to invoke from the interface with a
minimum of interaction to make their use in proof more seamless.

6.5 The final word
The best way to truly understand any system is to use it! So just to pique your interest,
Fig. 6.7 presents a picture of the mural proof assistant in action.
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specification

rule :: STMT : RuleStmt
THEORY : Theory-ref
PROOF : [Proof ]

implementation

MuralObject subclass: Rule
instanceVariableNames: ’STMT THEORY PROOF comment lemmaStatus metaVars’
classVariableNames: ’RuleActions’
poolDictionaries: ’
category: ’mural-Kernel’

Figure 6.2: The specification and implementation of Rule

specification

subterms :Exp→ Term-set
subterms(e) 4 cases e of

mk-QExp(qet,be) →{e,qet}∪ subterms(be)
mk-OExp(oet,elxtl)→{e,oet}∪ subterms(elxtl)
others {e}
end

implementation

(This method is on the class OExp. Something similar is on the class QExp)

subterms
| s |
s ← Set with: self with: self symbol.
↑s union: self args subterms

Figure 6.3: The subterms function
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specification

establishesSequent :Sequent×Sequent→ B
establishesSequent(s,s′) 4 ∃m ∈ VSymb m−→ VSymb ·

dom m = NFV(s)∧ rng m⊆ NFV(s′)
∧ (freeVars(s)−NFV(s))∩NFV(s′) = {}
∧ isEquivalentTo(renameFreeVars(UPSHOT(s),m),UPSHOT(s′))
∧∀e ∈ PREMISES(s) · ∃e′ ∈ PREMISES(s′) ·

isEquivalentTo(renameFreeVars(e,m),e′)

implementation

establishesSequent: seq
"One sequent establishes another ‘weaker’ sequent
(i.e. one with more hypotheses and less collapsing of freevars).
This kind of enumeration is believed to be acceptable
since there are unlikely to be many premises or many free vars"
| mSeemsOK equivfound testExp |
self nfv size < seq nfv size ifTrue: [↑false].
((self freeVars diff: self nfv) intersect: seq nfv) isEmpty
ifFalse: [↑false].
"Try all possible renamings to find an equivalent"
(Map makeAllMapsFrom: self nfv to: seq nfv)
do: [:map |

"first check upshots - if they’re not equivalent, forget this map"
((self upshot deepCopy renameFreeVars: map)
isEquivalentTo: seq upshot)
ifTrue:
[mSeemsOK ← true.
‘Now try to find an equivalent premise’
self premises do: [:exp |

"if the map’s not already junked, keep trying"
mSeemsOK ifTrue:
[equivfound ← false.
"so far we don’t have an equivalent"
testExp ← exp deepCopy renameFreeVars: map.
"try all premises of seq"
seq premises do: [:expprime |

(testExp isEquivalentTo: expprime)
ifTrue: [equivfound ← true.]
"Ah ha we’ve found one"]].

equivfound ifFalse: [mSeemsOK ← false]]].
"if m still seems good then we’ve found a map that works,
so seq is established"
mSeemsOK ifTrue: [↑true]]].

↑false

Figure 6.4: The establishesSequent function



212 6 Implementing the mural proof assistant

Figure 6.5: A Rule Notice

Tool subclass: ProofTool
instanceVariableNames: ’proof markedBuffer selectedAttempt’
classVariableNames: ’
poolDictionaries: ’
category: ’mural-Interface’

Figure 6.6: ProofTool
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Figure 6.7: The mural proof assistant in action



214 6 Implementing the mural proof assistant



Chapter 7

Supporting formal software
development

This chapter presents the concepts of formal software development as a basis for the
description of the VDM Support Tool in the following chapter.

The primary aim of formal methods of software development is to produce software
systems that are formally verified with respect to their specifications. It is important
that the specification should be at a high, ‘human-oriented’ level of description, devoid
of machine-dependent or implementation-specific representations. Most formal develop-
ment methods incorporate an abstract specification language designed for this purpose.
To determine that an implementation formally satisfies its specification often involves the
generation and discharge of proof obligations; the foundation of a formal method is that
the proof of these is sufficient to ensure the correctness of the implementation. Discharg-
ing a proof obligation involves the construction of a proof; ensuring the correctness of
the reasoning in this proof is of central importance. The development method should also
be compositional, so that the process of moving from an abstract specification towards a
particular implementation can be performed in small, manageable steps. Even with com-
positionality, the management of a fully formal design is non-trivial. Machine support
for the processes involved is essential in order to maximise the degree of formality. This
applies not only to the construction of proofs as described in Chapter 1, but also to the
roles that these proofs play in the design process.

7.1 Abstract specification

7.1.1 Aims
An abstract specification of a system should concentrate upon what a system should do,
rather than how it should do it. The intention in the design of the abstract specification
should be to describe the properties the system should exhibit, rather than to attempt
to describe a particular way to produce such a system. Thus, the specification should
avoid making decisions about the data representations or algorithms to be used in the
final system. This is not merely an exercise in the joys of abstraction; the separation
of implementation decisions from the description of the system has many benefits. For
example:

• The specification provides a precise description of the system earlier in its develop-
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ment and thus may expose faults in design that would otherwise not have emerged
until after implementation.

• Discussion and correction of any weaknesses in a design is easier by reference to
a specification than an implementation, (for example, there is no need to ‘back-
translate’ from program-language constructs to what they are intended to represent
or achieve).

• A specification makes it possible to consider alternative implementations (using
different data representations, algorithms, or implementation languages).

There are two main ‘flavours’ of formal specification language: model-oriented and
property-oriented (or ‘algebraic’). In each case, the specification describes the class of
those mathematical models which can be considered to satisfy the specification. The
making of implementation decisions can be viewed as narrowing this class of models.

Both kinds of specification language typically have high-level data type constructors:
model-oriented data type definitions correspond to set constructions, while algebraic type
constructions define algebras (which may be modelled in a variety of ways, not necessar-
ily set-theoretically). In the model-oriented approach, functions are specified by giving
mathematical predicates that describe the relationship between the result and the argu-
ments. An algebraic specification language uses axioms (often equations) which define
properties of (combinations of) functions over data types.

Each of the two approaches has advantages and disadvantages. We will not go into
these here. In the following, we will adopt the model-oriented approach, and work with
the Vienna Development Method (VDM) as our example, but it should be noted that much
of what follows can also be applied to the algebraic approach.

7.1.2 Specifications in VDM
We will give only a brief outline of specifications in VDM; further details may be found
in [Jon90c].

A VDM specification typically consists of a set of data type definitions and a set of
function and operation definitions upon these data types. The type definitions are ab-
stract in the sense that they are built from mathematical type constructors (sets, maps,
sequences). Of particular importance is the use of data type invariants: in a type defini-
tion, an invariant is a property that must always hold for members of that type. The use
of invariants gives a richer (more expressive) type language than type constructors alone.

Unlike algebraic specifications, VDM specifications have a notion of state. The state
is described as a particular type; often this is a composite type whose components can
then be referred to separately. Operations can be defined in terms of their effects upon the
state (i.e. operations can have side effects). Functions cannot have side effects.

Both functions and operations may be implicitly specified by giving pre- and post-
conditions which stipulate criteria that are to hold before and after their ‘execution’. The
pre-condition of a function is a predicate on its ‘arguments’ whilst the post-condition is
a predicate on it’s ‘arguments’ and ‘result’. For an operation these predicates may in
addition describe how the operation must effect the state. Thus functions and operations
may be defined in terms of their effects rather than the means by which they are to achieve
them.
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VDM permits specification at varying levels of abstraction. Through the use of ab-
stract data types and implicit function and operation definitions, specifications can be
written which capture what a system should do, rather than how it should be done. How-
ever, other specifications can capture particular design decisions through the use of type
definitions with more implementation bias or through more explicit function and opera-
tion definitions. How one verifies that such a specification implements a more abstract
specification will be discussed in more detail later.

7.1.3 Validation and verification of specifications
The construction of a formal specification is motivated by an informal notion of the be-
haviour of the final system. It is important to satisfy ourselves (or our clients) that the
formal specification agrees with this informal idea. For example, we should check that
no unexpected behaviour arises, and that every eventuality is catered for. The name given
to this process of relating a formal specification to informal requirements is validation.
We can formally prove that an implementation is correct with respect to a formal specifi-
cation, but since validation concerns the interface between formality and informality, we
can never conclusively prove that a formal specification agrees with an informal one: we
can only increase our confidence that this is so. In a sense, validation is to specifications
as testing is to programs. However, it can be carried out at a higher level of reasoning,
using terminology suited to the particular application, rather than implementation-biased
representations. The use of a formal development method increases confidence in a de-
sign by minimising the informal aspects, and by restricting the informal/formal interface
to an early stage in the design process.

In the VDM Support Tool, our main concern is in reasoning about formal specifica-
tions and developments: the verification side of the design process. Some techniques for
validation of formal specifications are addressed in Chapter 9.

A major advantage of a formal specification over an informal specification is that it
can be mathematically analysed for flaws and weaknesses. There are several kinds of
checks that will reveal inconsistencies in a formal specification.

One possible check is to determine whether or not a particular data type in a specifica-
tion is actually inhabited (whether or not it will be possible to construct an object of that
type). ‘Simple’ type-checking, as is performed in most programming languages, can be
used to detect blatant type errors. However, the use of invariants can lead to subtler type
errors, whereby one can construct objects that have the correct ‘type shape’, but which
fail to satisfy the invariant. In general, this cannot be decided automatically, and thus type
checking becomes a theorem proving exercise.

Another check, given an implicit specification of a function, is to consider whether
or not there are indeed functions that satisfy this specification. The implementibility or
satisfiability obligation states that for any valid inputs, there is at least one possible valid
output. A proof of this assures us that so long as we implement the data types correctly,
then there will be some way to implement the function1. The statement of the implemen-
tibility proof obligation is wholly determined by the function specification (and the type
definitions), and so it can be automatically generated in a support environment.

1In fact this is not quite true, as it is possible to implicitly specify a non-computable function that
could not then be implemented. Thus a satisfiability proof is to be seen as eliminating one kind of non-
implementability.
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The major role of verification, however, arises when relating one formal specification
to another, as we will see in the next section.

7.2 Relating specifications
Once we have a formal specification, the remainder of the development process towards an
implementation can be made fully formal. Note that this does not mean that the process is
automatic, for the design decisions often involve a degree of intuition, but that each design
step can be formally verified. Indeed, the need for proof obligations is partly due to the
presence of intuitive steps. Each time we introduce intuition into a formal development,
we must back it up by verification.

We can view the development process as the production of successive layers of speci-
fications, where each layer adds some implementation bias to the previous layer. Thus we
move from an abstract specification that describes the task to be performed towards one
particular solution to the problem.

7.2.1 Data reification
In data reification, the designer chooses new representations of data types in the abstract
specification. The new representations will typically be suited to data types available
in the final implementation language of the design. A particular choice may be made
to ensure that some operations can be efficiently implemented. In a multi-layered design,
each layer might encapsulate a single small design decision. For example, we may choose
to represent sets by lists of non-repeating elements in one reification, and then represent
lists in turn by arrays. By breaking the reification into several steps we can isolate the
issues involved in each form of representation.

When a new data representation is made on an intuitive basis, we must then justify the
choice formally. In VDM, when we claim that one data type is a reification of another, we
must give a retrieve function which for any element of the more ‘concrete’ type will give
the corresponding element of the more ‘abstract’ one. We can then prove the adequacy
obligation, which insists that every element of the abstract type is represented by some
element of the concrete type (via the retrieve function). Note that two or more elements of
the concrete type could be retrieved to the same abstract value; in other words, redundancy
is permitted in the concrete representation.

7.2.2 Function/operation modelling
As well as relating the data structures of the two specifications via data reification, we
must also relate the functions and operations in the ‘concrete’ specification to their coun-
terparts in the ‘abstract’ specification. Roughly speaking, the concrete version of a func-
tion or operation must behave ‘no worse than’ the abstract version in analogous cir-
cumstances. That is, there must be an increase in definedness and a decrease in non-
determinism.

In VDM, these conditions are captured in the domain and result proof obligations.
The domain obligation states the increase in definedness: that is, whenever the abstract
specification can be invoked, then so can the concrete counterpart. The result obligation
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encapsulates the decrease in non-determinism: that is, when invoking the abstract speci-
fication could lead to one of a range of behaviours, then the possibilities for its concrete
counterpart will be a subset of these. The precise formulation of these obligations is
detailed in Section 8.2.3; for further explanation and justification, see [Jon90c].

7.2.3 Operation decomposition
In a VDM specification, it is also possible to define an operation as a composition of other
operations, for example as the invocation of one operation followed by another. The con-
structs for composing operations are very much like some of those found for composing
statements in many programming languages. Though such a definition may be thought
of as an explicit definition of the operation, it should not be forgotten that the individual
‘statements’ may consist of implicit operations, or even pre- and post-assertions. Sim-
ilarly, a function may be explicitly defined by an expression in its arguments, but that
expression may contain applications of other implicit functions.

The above description details ‘bottom-up’ design. Often, it is desired to build the
operation in the opposite direction: that is, given its pre- and post-conditions, we wish
to decompose it into simpler operations, such that their composition satisfies the original
conditions. Associated with the composition constructs are a set of rules in the style of
Hoare logic which relate the pre- and post-annotations of a composition to those of its
components and thus provide a means for the verification of decomposition steps.

Thus, development of a specification can proceed in two directions: by data re-
finement through reification and function/operation modelling, and algorithm refinement
through function definition and operation decomposition.

7.3 Support for reasoning about formal developments
A method such as VDM prescribes the proof obligations whose discharge ensures validity
of design decisions. Thus such formal software development processes are suitable for
automated support, not only in generating proof obligations from designs and in assisting
in their proof, but also for maintaining the relationships between the proof obligations and
the particular design steps from which they arise.

Clearly, we want our support tool for VDM to use the proof assistant for the dis-
charging of proof obligations. In this section we discuss some of the issues involved in
achieving this. (A more detailed description of the VDM Support Tool will be given in
the next chapter.) Though our description will be based upon a support tool for VDM,
there is much that will apply to the design of any specification support system that intends
to use mural ś proof assistant for its formal reasoning.

7.3.1 Instantiating the theory store for VDM
Before we can reason about VDM proof obligations, we must instantiate the proof assis-
tant to provide the logic, types, constants, axioms and rules which form the ‘reasoning
kernel’ for VDM, and which will be used in every single development. In addition to the
LPF predicate calculus, this includes definitions of integers, sets, maps and so on, axioms
which define the properties of them and functions on these types such as set membership
and addition that VDM specifications assume are available. Note that this instantiation
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need only be carried out once, by the designers of the specification support tool: users of
the tool need only know how to browse through the resultant body of knowledge2. In
Section 3.5 it is shown how such an instantiation can be carried out in detail; here, we
merely note that every development in our support tool for VDM can take advantage of
this large, structured body of knowledge.

7.3.2 Translation of specifications and reifications
The foregoing is not the end of the theory-building story. Each VDM specification can be
thought of as an extension of the base theory: it may define new types; and its function
(and operation) specifications define properties of functions upon these data types (and
its state). When attempting to discharge the proof obligations arising from a specifica-
tion, the proof assistant (or the user thereof) must have access to this new information,
otherwise the statement of the proof obligation will be meaningless. Where proof obli-
gations concern the reification of one specification by another, then the information from
both specifications should be available. This can be done by placing reification obliga-
tions in a theory which inherits information from the theories of its abstract and concrete
specifications.

The VDM Support Tool provides a means for extracting the relevant information from
a specification to form a theory (or hierarchy of theories) in the proof assistant; this then
becomes the theory within which the proof obligations connected with that specification
can be discharged. It also constructs suitable theories within which to reason about reifi-
cations. Thus the generation of proof obligations is part of a much larger translation
process. Ideally, the writer of a VDM specification could be ‘sheltered’ from the theory
construction. Perhaps the support system should even go so far as to never let the writer
see the resultant theory, but to always ‘unparse’ it as a VDM specification. (Of course,
this could only be done for theories that arose from translated VDM specifications.)

In our case, we are interested in showing that it is possible to use mural to support
a particular development method; we are not so concerned with the niceties of convert-
ing specifications into theories. Our solutions are therefore crude, and fail to make the
best use of the sharing and reuse of information that is possible using the full power of
mural ’s hierarchical theory store. Instead of directly translating a specification (or in-
deed, a development) into a mural theory, we shall have a separate VDM store which
contains specifications and reifications as structured objects in their own right3; these are
then translated to create mural theories containing the appropriate definitions and proof
obligations. The translation process is defined in greater detail in the next chapter.

2Of course, this ‘core of knowledge’ about VDM constructs need not be static. In order to simplify
proofs of obligations, users are likely to want to prove new theorems about the basic types and functions of
VDM which would then be available for use in subsequent proofs.

3At first thought, it may seem that this is the only sensible approach, on the basis that specifications
etc. contain extra information in addition to theoretical content (their display format, semantic relationships
between certain components, and so on). However, there is no reason to prevent such extra information from
being associated with the generated mural theory; this could even be done by providing an extension to the
implementation of mural theories. (Readers who have an understanding of Smalltalk may best appreciate
this point.)



Chapter 8

The mural VDM Support Tool

This chapter describes the support tool for VDM which has been built to integrate with
the proof assistant. Through reference to the formal specification of the tool, it intro-
duces the notions of specification, reification and development, and describes some of
the operations upon the components of a development, including the generation of proof
obligations.

As will be seen, there are many respects in which the support offered is incomplete.
The VDM Support Tool was never intended to be a complete support environment for
VDM, its main purpose being to demonstrate that mural could be extended by such tools.
The tool only caters for a subset of the VDM specification language, and only permits
limited kinds of reifications. In particular, operation decomposition is not addressed at
all. Finally, the tool makes little effort to ‘track’ dependencies between specifications or
reifications and their counterparts in the mural theory store.

The first section describes the support offered for building specifications in VDM and
the second how theories can be built in the proof assistant to reason about them. In the
third section we focus on some particular areas where the level of support provided could
be improved.

8.1 Specifying VDM developments in VDM
From an early stage of its design, the VDM Support Tool (or VST) was envisaged as a
structure editor within which specifications (and indeed reification relationships between
specifications) could be built. Thus far it is a separate tool from the mural proof assistant
and its theory store. In order to reason about specifications and reifications constructed
in the VST, it would be necessary to construct corresponding mural theories about them.
Originally considered to be a separate process, this ‘translation’ stage later became a
function of the structure editor itself.

In developing the VST as a structure editor, we had to determine at least the ‘abstract’
syntax of the structures to be constructed. We chose to do this by specifying it in VDM,
using type structures for the various syntactic classes.

For the specification language, this had already been done, as part of the BSI stan-
dardisation effort for VDM. From the (then current version of the) draft standard, we
chose what we considered to be an ‘interesting’ subset of the language’s abstract syntax
definition. Here, ‘interesting’ means, ‘neither too hard, nor too dull’! Some parts of the
language were not considered because they introduced too much syntactic complexity,
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others because they were too similar to constructs that had already been introduced1. In
practice, many constructs from the draft standard’s syntax for expressions were added on
a ‘need to use’ basis (as in, ‘I need a set comprehension expression for this example’).

As mentioned above, one of the main interests in constructing a support tool for VDM
was in the generation of proof obligations that would ‘exercise’ the proof assistant. The
most interesting proof obligations in VDM arise not from the need to check that an in-
dividual specification is well-formed and implementible, but from the need to justify the
intuition behind design decisions in reification of one specification (or even of a single
type definition) by another. In order to get to the stage of producing such interesting
proof obligations, we chose to provide structure editing support for the construction and
maintenance of reifications as objects in their own right. This led us to the model of a
structure for developments, which record a formal development leading from an abstract
specification towards a concrete implementation by reification. Such a model for devel-
opments is not provided in BSI/VDM.

It is important to note that for most of its lifespan, a development is incomplete, in that
one or more levels of specification will be unfinished, or a reification of one specification
by another will be incomplete, or incompletely justified.

Another important point to note is that the process of constructing different levels of
specifications and reifications between them should have the same degrees of freedom
as the construction of theories and proofs in the proof assistant. It should be possible
to ‘expand’ a development in any direction, leaving some aspects incomplete whilst ex-
ploring others. For example, a developer may wish to concentrate upon reifying the type
definitions in an abstract specification, perhaps for several levels, before considering the
functions and operations in detail. In preference to imposing a process model of devel-
opments that insists (for example) that the abstract specification should be syntactically
complete and semantically well-formed before work can begin on a more concrete spec-
ification, it should be possible to construct partial versions of both. Though this freedom
in construction order could lead to misfortune (a mis-managed development could end up
with countless ‘loose threads’ to be tied up), we consider it preferable to the imposition
of unnecessary order2. It is not for us to decide what is ‘the’ correct manner in which to
proceed with a development. What matters is that, regardless of the route taken, the final
development is verified (as ever, with respect to its most abstract specification). Our struc-
ture for developments does not record the order of construction, but only the relationships
between the parts constructed thus far.

8.1.1 Developments
In its most abstract sense, a development is a directed graph, whose nodes are specifica-
tions, with an edge from a specification A to a specification B when B is a reification of A.
We might expect that a completed development will have a single ‘most abstract’ specifi-
cation (which does not reify any other specification) and one or more ‘implementations’,
and that for each implementation we can trace a path from the abstract specification to
it. However, during construction, a development may look quite unlike this. There may

1The above is not intended as a criticism of BSI/VDM, but is merely the result of our intention to develop
a prototype which examined some interesting issues, rather than a marketable support tool.

2It must be recognised that there is also a degree of necessary order in the design process. For instance,
it is not possible to determine whether or not a function definition is well-formed if the types it refers to
have not yet been defined.
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be multiple attempts at the most abstract specification; there may be incomplete spec-
ifications and reifications even in the middle of a development path; or there may be
specifications which have not yet been related to any others. In short, there is very lit-
tle structure that we can impose upon developments in mid-construction that would not
restrict the developer’s style of working.

In preference to defining a general notion of directed graphs in VDM, and then us-
ing this to define our ‘syntax’ for developments, we chose to model a development as
a collection of (named) specifications, and a collection of (named) reifications between
them:

Development :: SPECM : SpecName m−→ SpecDef
REIFM : ReifName m−→ ReifDef

8.1.2 Specifications
The abstract syntax of the specifications we support closely follows that of (part of) the
draft BSI standard for VDM.

In a SpecDef , we associate the body of a specification with a theory in a mural theory
store; the intention is that the associated theory will contain or inherit all of the informa-
tion necessary to reason about the specification.

SpecDef :: Spec : VdmBody
Theory : MuralTheoryName

A VDM specification may define new types, constants, functions and operations. We
model this by a collection of maps from names to these different kinds of definitions. It
may also define a state model.

VdmBody :: typem : TypeName m−→ TypeDef
state : [StateInfo]
constm : ConstName m−→ ConstDef
fnm : FnName m−→ FnDef
opm : OpName m−→ OpDef

The VDM Support Tool does not support modular specification as, at the time of writ-
ing, both the syntax and semantics of modularity in the draft standard are in a state of flux,
and we considered that to provide such support would require a considerable amount of
research into reification of modular specifications. As a result, each specification in a de-
velopment is both ‘flat’ and isolated from every other specification. If the same definition
is required in two different specifications, then it must be duplicated in each. This could
lead to confusion if the two specifications define the same name in different ways. It was
a sad but necessary decision that we did not have the effort to consider modularity issues,
especially as the hierarchical nature of the mural theory store encourages reuse of defini-
tions. We will return to this subject when we consider the generation of mural theories
from developments in Section 8.2.
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Type definitions

A type definition in a specification has a ‘type shape’ and possibly an invariant, which is
described as an explicit function definition.

TypeDef :: shape : Type
inv : [ExplFnDef ]

The type shape part is made up from a number of type constructors:

Type = BasicType | CompositeType | UnionType | SetType |
SeqType |MapType | FnType3 | TypeName | OptionalType

We shall not give the formal definitions of the various type constructors here: a full
definition of Type can be found in [BSI90]. To give two examples, BasicType includes the
types N, N1, B, etc., whilst CompositeTypes are Cartesian products with named compo-
nents, such as:

Date :: day : Day
month : Month
year : Year

(Note: this is actually a named type definition. Unlike other Types, CompositeType
shapes are not used except in type definitions.)

Notice that invariants are only associated with type definitions, and cannot appear
within type shapes. However, a type shape can of course be the name of a type whose
definition includes an invariant.)

Describing the invariant as a function definition raises the question of what type it
should have. The approach we take is that the invariant is a function from values of the
type shape part of the type definition to B; the type being defined can then be described as
comprising those values of the type shape part for which the invariant holds. For example,
in the type definition:

Evens = N

where
inv-Evens(n) 4 ∃m:N ·n = m×2

the invariant function inv-Evens has the type N→ B.
This interpretation fits in well with mural ’s subtyping construction. However, it leads

to problems with composite type definitions: though CompositeType is indeed a Type,
it is not properly a ‘type expression’ in that it can only be used in type definitions, and
not in other places where a type expression is expected. In particular, a CompositeType
cannot appear as an argument type of a function definition. One solution would be to
introduce an ‘intermediate’ type name to represent the composite type without the invari-
ant’s restriction, but we feel that these ‘in between’ types are usually irrelevant. Instead,
we prefer to treat the invariant as a function from the Cartesian product of the field types
to B. For example in:

3FnType is included only to simplify the specification of explicit function definitions; it is not available
as a ‘first class’ type in our model.
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Date :: day : Day
month : Month
year : Year

where
inv-Date(d,m,y) 4 (m = JAN ⇒ d ≤ 31)∧ . . .

the invariant is considered to have type Day×Month×Year→ B.4

State definitions

The state of a specification is defined to be a special type definition whose shape is a
CompositeType. This defines the ‘state variables’ of the specification as the components
of the record, with the appropriate types. In addition to an invariant, the state may also
have an initialisation condition, which specifies properties of the initial state.

StateInfo :: name : Name
tp : CompositeType
inv : [ExplFnDef ]
init : [ExplFnDef ]

Constant definitions

Constant definitions declare constants of particular types, which may or may not be given
explicit values:

ConstDef :: type : Type
val : [Expr]

As with the type shapes, we will not describe the various forms of expression here –
a full definition of expressions can be found in [BSI90]. It will suffice for the moment to
say that there are a large number of them and that the support tool does not cater for them
all.

Function definitions

Functions may be defined explicitly or implicitly:

FnDef = ImplFnDef | ExplFnDef

ImplFnDef :: dom : PatternTypePair∗

rng : IdTypePair
pre : Expr
post : Expr

4Since this decision was made, the abstract syntax of BSI/VDM type definitions has changed, so that an
invariant is recorded as an expression and an ‘argument pattern’, where the free variables in the expression
should also occur in the pattern.
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ExplFnDef :: type : [FnType]
pre : [ExplFnDef ]
parms : Pattern∗

clause : Expr

An implicit function definition has a precondition and a postcondition. The precondition
should be a predicate in the arguments to the function; the postcondition can additionally
refer to the result (whose name is given by the Id in the rng). An explicit function has no
postcondition; instead it has an explicit clause expression. In both cases, the arguments
are given as Patterns (either a single variable, or an expression containing variables, such
as mk-Date(d,m,y)).

Operation definitions

Operation specifications are similar to functions, but with an additional list of ‘read and
write’ state access descriptions:

OpDef = ImplOpDef | ExplOpDef

ImplOpDef :: dom : PatternTypePair∗

rng : [IdTypePair]
exts : ExtVarInf ∗

pre : Expr
post : Expr

ExtVarInf :: mode : (READ | READWRITE)
rest : IdTypePair

ExplOpDef :: dom : Type∗

rng : [Type]
pre : [ExplFnDef ]
parms : Pattern∗

clause : Stmt

The above gives a brief overview of the components of specifications in the VDM
Support Tool. More detail will be introduced when we describe the generation of proof
obligations and the kinds of consistency checks to be made upon specifications.

8.1.3 Reifications
The above abstract syntax definition of a VDM specification has followed, more or less,
that given in [BSI90]. However, that definition does not give a model for the reifica-
tion process. The basis for the following model of reification is the description given
in [Jon90c].

The main information to be recorded in the reification of one specification by another
is recorded in a ReifDef . It gives the names of the specs, the definition of the initial state
reification obligation, and the operation and function models:
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ReifDef :: Reifier : SpecName
Reifiee : SpecName
StateReif : StateReif
OpModels : OpModel-set

We could also have added a set of data reifications at this level, to match the type
definitions of the specifications. However, as we shall see, the required data reifications
are ‘driven’ by the operation and function models, rather than by the type definitions
themselves. Therefore, we have encapsulated the data reifications within the operation
and function modelling components.

State reifications

Reification of the state model of one specification by another involves showing that the
more concrete specification’s state type reifies that of the more abstract specification. In
addition, there is an obligation to show that the concrete invariant initial state condition
satisfies their abstract counterparts under retrieval:

StateReif :: DataReif : DataReif
InvStateObl : OblPacket
InitStateObl : OblPacket

This is the first place where we have introduced a proof obligation into our model.
(Strictly speaking, we should have done so earlier, and associated an implementibility
proof obligation with each implicit function definition.) We model proof obligations as
OblPackets, which simply record the (VDM) form of the obligation and possibly a refer-
ence to the corresponding theorem in the mural theory store:

OblPacket :: ProofObl : Expr
Place : [ThmRef ]

(In the implementation the need for OblPackets has been circumvented: proof obliga-
tions, in the form of unproven rules, are generated directly as part of the translation of the
specification.)

Operation modelling

Each operation model records a modelling relationship between an abstract and a concrete
operation. Though we refer to them as abstract and concrete operations, ‘concrete’ in this
case does not mean ‘explicit’. Both operations should be implicit. Relationships between
implicit and explicit operations fall within the remit of operation decomposition, which is
not catered for in our support tool.
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OpModel :: AbstractOpn : OpName
ConcreteOpn : OpName
DomReifs : DataReif ∗

RngReif : [DataReif ]
ExtReifs : DataReif ∗

DomainObl : OblPacket
ResultObl : OblPacket

We associate a data reification with each argument (DomReifs) and each state desig-
nator (ExtReifs), and with the result (RngReif ). (The two operations must have the same
number of arguments and state designators for this to be possible.) This is done because
it is possible that each argument of the abstract operation could be reified in a different
way in the concrete operation (even if they are of the same abstract type, although this
would be somewhat unorthodox.) Furthermore, the arguments of an operation may have
type shapes that are not just the names of types given in the type definitions of the speci-
fication. (Consider an operation which takes an argument x:X-set.) This is why it is not
sufficient to have data reifications only for the type definitions of a specification.

The insistence that the abstract and concrete operations must have the same number
of state designators imposes restrictions upon the ways in which the state model can be
reified. If an operation refers to state components rather than to the state as a whole, this
forces us to treat the reification of the state as a composition of the reifications of the
components, whereas in general, data reification of the state model of a specification is
performed on the state as a whole.

To see this in more detail, suppose that the abstract state model AS contains two com-
ponents, a1:A1 and a2:A2, and that an abstract operation OPA reads a1 and writes a2. In
order for a concrete operation OPC to be a candidate to model OPC, the concrete state CS
must have components c1:C1 and c2:C2 which are the concrete counterparts of a1 and a2
under retrieval. In other words, there should be retrieve functions

retr-A1:C1→ A1, retr-A2:C2→ A2

such that these components are independent of each other when the entire state is re-
trieved, thus forcing the definition of the state retrieval as:

retr-AS :CS→ AS
retr-AS(mk-CS(c1,c2)) 4 mk-AS(retr-A1(c1),retr-A2(c2))

(i.e. forcing retr-AS to satisfy a homomorphism property). Furthermore, the abstract and
concrete operations must mention the corresponding components in the same order in the
externals list.

The alternative to the above treatment would be to ‘expand out’ the externals of an
operation, replacing their occurrences in the pre and postconditions by references to the
entire state. For example, suppose our abstract state model is as above and we have the
abstract operation:

OPA ()
ext rd a1 : A1

wr a2 : A2
pre P(a1,a2)

post Q(a1,
↼−a2 ,a2)
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then the externals information would be expanded to give the operation:

OP′A ()
ext wr as : AS
pre P(s-a1(as),s-a2(as))
post Q(s-a1(as),s-a2(

↼−as),s-a2(as))∧ s-a1(as) = s-a1(
↼−as)

Each instance of a component in the pre and postcondition has been replaced by an appli-
cation of the corresponding selector function upon the whole state. Note in particular how
the ‘before’ state has to be handled in the postcondition, and the need to explicitly state
that the a1 component remains unchanged. The situation is more complex when there are
state components that are neither read nor written by the operation.

Ideally, rather than build a new data reification for each argument of each operation
we model, we would want to refer to some existing body of data reifications. This can be
modelled by having a ‘library’ of named DataReifs within each ReifDef , and by giving
these names in the operation models instead. However, at the moment we want to avoid
introducing such ‘referential clutter’ as much as possible (it is a form of implementation
bias, after all), in order to concentrate upon the relationships between data reifications and
operation models. Therefore we choose our abstract specification as above5.

Domain and result proof obligations are associated with the operation model. Details
of how this is done will be given in Section 8.2.3.

Data reifications

A data reification is between an abstract type and a concrete type. It requires a retrieve
function from the concrete type to the abstract type, and has an associated adequacy proof
obligation (as described in Chapter 7.)

DataReif :: concr type : Type
abstr type : Type
retrieve fn : ReifFn
adequacy obl : OblPacket

8.1.4 Well-formedness checks: an apology
As stated in the introduction to this chapter, it was never intended that the VDM Support
Tool should be ‘complete’. Effort in its design has concentrated upon the generation
of proof obligations together with sufficient information to permit the use of the proof
assistant in discharging them. As a consequence, many of the checks that one might
expect such a tool to perform (without resort to the proof assistant) have been omitted:
static patent type-checking, checks on arities of function calls against their definitions,
use of undefined names, and so forth. Some such checks are described in earlier project

5In this case, it is easy to see how the transition towards a more referential implementation may be
made. It is more problematic to consider how one might alter our model to allow the composition of data
reifications, that would for example allow us to use the information in a reification of WeekDays by N in the
construction of a reification of WeekDay-set by N∗.
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documents. In the main, these checks would not be difficult to perform. However, errors
of these kinds in specifications will be revealed either during the translation into the theory
store (see next section), or in attempting to reason about the translated specification.

8.2 Theories from specifications
In this section we outline how specifications and reifications are translated into a mural
store to yield new theories complete with relevant proof obligations.

Recall from the previous chapter that the mural store to which we translate should be
instantiated for VDM, so that it contains a ‘VDM Primitives’ theory. This theory should
be an ancestor of every theory generated from a specification or reification in the VDM
Support Tool.

8.2.1 Translation of specifications
How best to divide the objects corresponding to specifications into theories is largely a
matter of taste. For example, we could try to place each type definition in a theory of
its own; this would allow reuse of the type definition when reasoning about other spec-
ifications. However, we would then have to make the theory structure reflect the inter-
dependency of type definitions, in particular, mutually recursive type definitions would
present some difficulties. We choose a simpler approach where each specification be-
comes a single mural theory. If a ‘finer-grained’ structure is required, then the theories
must be rebuilt by hand.

Thus, the result of translation of a specification is a single mural theory, with the
VDM Primitives theory as its (sole) parent. The theory contains:

• mural type definitions, type formation and checking axioms corresponding to the
type definitions of the specification;

• definitions of any constants and explicit functions;

• definitions of the pre- and postconditions of implicit functions and operations;

• (initially unproven) rules corresponding to proof obligations and type-checking (in-
cluding invariant checking) of functions and operations

Translation of types and type definitions

Generally, a type definition in a specification will be translated to a similar type definition
in mural . Most of the type constructors of VDM can be described in ‘general’ theories
which form part of the VDM Primitives theory. Sets, maps, sequences, (binary) type
unions and optional types are in this category. Type definitions using these constructors
can be translated as mural definitions using instances of the generic constructors. N-ary
type unions can be translated as a composition of binary unions.



8.2 Theories from specifications 231

Invariants

For a definition of type T with an invariant where the type shape uses the above construc-
tors, translation is straightforward. First, the definition of the invariant inv-T is translated
as an explicit function definition (as will be described later), then the type definition is
translated to a SubType definition. For example, the type definition:

T = Texp

where
inv-T(v) 4 P(v)

is translated to

T 7→< v:Texp′ | inv-T(v)>

where Texp′ is the translation of the type shape Texp and inv-T is the defined constant
corresponding to the invariant function.

Composite types

Composite type definitions require a different treatment. It is not a simple matter to define
a generic ‘composite type constructor’ in mural . Therefore composite type shapes cannot
be translated into mural type expressions directly. Furthermore, a greater amount of
information is associated with composite types than with other type constructions, in that
a composite type definition also defines constructor and destructor functions. Instead, we
create an axiomatic definition, with formation and typing rules for expressions involving
the constructor and destructors.

For example, the composite type definition

T :: f 1 : A
f 2 : B

should be translated to a type constant T and a declaration of the constructor and
destructor functions as expression constants with expression arity two and one:

mk-T 7→ [2,0]; s-f 1,s-f 2 7→ [1,0]

with the appropriate typing axioms:

mk-T formn
a:A,b:B

mk-T(a,b):T

s-f1 formn
t:T

s-f 1(t):A

s-f2 formn
t:T

s-f 2(t):B

and axioms defining mk-T , s-f 1 and s-f 2:

mk-T intro
t:T

mk-T(s-f 1(t),s-f 2(t)) = t
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s-f1 intro
mk-T(a,b):T

s-f 1(mk-T(a,b)) = a

s-f2 intro
mk-T(a,b):T

s-f 2(mk-T(a,b)) = b

(note the use of typing assertions to ensure that mk-T(a,b) is well-formed)
When a composite type definition has an associated invariant, this must also be de-

clared and mentioned in the mk-T formation axiom, e.g.:

mk-T formn
a:A,b:B, inv-T(a,b)

mk-T(a,b):T

and we must also provide an axiom for asserting the invariant:

inv-T intro
mk-T(a,b):T

inv-T(a,b)

Translation of functions and operations

A VDM definition of a function, f , declares a new function name for use in expressions.
Therefore the process of translation creates a declaration in the corresponding theory of
a constant symbol f of the appropriate arity. To help the readability of any expressions
involving them, it is also useful to create declarations for the precondition and postcon-
dition of the function where appropriate. Operations do not form part of the expression
syntax and therefore have no direct counterpart in the theory of the specification; rather
we create, in the translation of operations, unproven rules whose proof corresponds to
the demonstration of desired properties of the operation such as satisfiability or well-
formedness.

There are various different approaches that can be taken to ‘interpretation’ of func-
tions and operations in the theory store. In this section we describe just one possible
approach and give some discussion of its advantages and disadvantages over some pos-
sible alternatives. In particular, the approach described here differs somewhat from that
described in Chapter 3.

Translation of preconditions and postconditions

The most natural way in which to interpret preconditions and postconditions is as defined
constants in the proof assistant. Thus, for example, the implicit function:

f (a:A,b:B) r:R
pre P(a,b)
post Q(a,b,r)

Would give rise to two defined constants:

pre-f 4 P([[1]], [[2]])
post-f 4 Q([[1]], [[2]], [[3]])

Here, P([[e1]], [[e2]]) is the translation of P(a,b) with instances of a and b replaced by the
placeholders [[e1]] and [[e2]] respectively.
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These are then available in the theory of the specification. For example, one might
wish to show that the function is implementable by proving the rule:

f-implementibility
a:A,b:B,pre-f (a,b)
∃r:R ·post-f (a,b,r)

During this proof, pre-f and post-f could be unfolded and folded simply as required.
There are, however, a few consequences of this approach that are worthy of elabo-

ration. One difficulty arises when the expressions P and Q do not mention all of their
possible free variables. If the expression P say, does not involve variable a, then the
translation is complicated for it is impossible simply to construct the definition6:

pre-f 4 P([[2]])

A possible solution would be to simply add some clause to the translated form of P that
mentioned the absent variable but did not alter the semantic content. One such possibility
would be to add ‘∧ a = a’ to the body of the definition. This would have the additional
consequence of making the precondition strict in all the arguments of the function which
may or may not be desirable. In either case, it is certainly not an elegant solution.

Another approach, indeed that which is favoured here, is to translate such predicates
to definitions of smaller arities and for the translation mechanism to ‘remember’ which
arguments are to be used in the translation other things that use them. For example, in the
above case, the precondition translates to the definition:

pre-f 4 P([[1]])

but then the mechanism that constructs the satisfiability obligation must ‘know’ to insert
the second of the possible arguments into the precondition, thus:

f-implementibility
a:A,b:B,pre-f (b)
∃r:R ·post-f (a,b,r)

A third alternative is to translate the preconditions and postconditions to primitive
constants and give their semantics via axioms added to the theory. This was considered
to complicate their manipulation unnecessarily and is not discussed here, though the ap-
proach will be described in the treatment of the function bodies in the next section.

Another source of possible debate regards whether preconditions should be denoting
for all values of the types of the function’s arguments. One viewpoint is that we are only
interested in those properties of a function that hold when its precondition is true, and
therefore the precondition need not be defined for all possible values of the function’s
argument types. It does not matter whether the precondition is false or undefined for
some values, because in either case we will not be able to prove anything about the result
of applying the function. However, this does become relevant if we want to be able to
determine for which values the function is not defined. This may happen in validation, for
example. Furthermore, a prototype implementation may include tests to check whether or
not preconditions hold before functions and operations are invoked (providing one form
of specification testing). This could run into problems if such tests were derived from
non-total preconditions.

6The proof assistant does not allow this kind of defined constant as the ensuing complication of the
folding and unfolding of definitions would work against their intended purpose. Technically, definitional
equality corresponds to strong equality and so is non-strict. Consider pre-f (a,b) = P(b) where a is non-
denoting.
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The insistence that the precondition should be total can be captured by the proof obli-
gation:

wf-pre-f
a:A,b:B

pre-f (a,b):B

A similar requirement can be made of the postcondition: that is, that it should always
be denoting, or at least whenever the precondition holds. Formally, this is captured by the
rule:

wf-post-f
a:A,b:B,pre-f (a,b)

post-f (a,b,r):B

These two well-formedness rules can be thought of as describing points of style rather
than being essential to the validation of the specification. Instead of regarding them as
proof obligations, they could be thought of as ‘proof opportunities’.

Translation of explicit function definitions

It is possible to use defined constants for the translation of the body of explicit functions
definitions. This approach is described in 3.5. Thus the explicit function definition

f :A×B→ R
f (a,b) 4 Q(a,b)
pre P(a,b)

could be translated to the two defined constants

f 4 Q([[e1]], [[e2]])
pre-f 4 P([[e1]], [[e2]])

The information in the signature can be captured by the rule:

f-form’n
a:A,b:B,P(a,b)

f (a,b):R

and this can be proven by using the typing rules for the constructs in Q. This rule
plays a similar role to that which implementibility plays for implicit functions.

Again, however, we have the problem of unmentioned arguments, this time addition-
ally in the function body. However, the translation of a binary function to a unary defi-
nition is not really acceptable as some of the intended meaning of the function definition
would be lost. Equally the addition of a dummy clause to mention the dummy argument
is not very attractive: if the function is Boolean valued, we could use ‘∧ a = a’ again;
however, if it is not, then a different ‘trick’ needs to be found. One possibility would be
to use a let expression; thus:

f :A×B→ R
f (a,b) 4 Q(b)
pre P(a,b)

would give:

f 4 let a:A = [[1]] in Q([[2]])
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but this is not at all natural7.
Therefore we have chosen to translate explicit functions into primitive constants and

to give their meaning via axioms rather than directly via definitions. This has the fur-
ther advantage of making the translation of explicit functions similar to that for implicit
functions. In this way:

f :A×B→ R
f (a:A,b:B) 4 Q(a,b)
pre P(a,b)

yields a primitive constant with expression arity two (and, as described above, a defined
constant for the precondition). The semantic content is given via the axiom:

f-def’n
a:A,b:B,pre-f (a,b),Q(a,b):R

f (a,b) = Q(a,b)

Note that we encode the fact that the body should be well formed as a hypothesis in
the axiom. This precaution prevents reasoning about ill-formed functions; however, it
is likely to cause some inconvenience in use. Thus it may be advisable to discharge a
general well-formedness requirement:

wf-f
a2:A2,pre-f (a2)

Q(a2):R

Then we could prove a lemma corresponding to the axiom without the last hypothesis.

With this mechanism for translating explicit functions it becomes a simple matter to
handle unmentioned arguments. For example:

f :A×B→ R
f (a:A,b:B) 4 Q(b)
pre P(a)

would still yield a primitive constant with expression arity two and the axiom:

f-def’n
a:A,b:B,pre-f (a),Q(b):R

f (a,b) = Q(b)

Translation of implicit function definitions

Using the above mechanism for the translation of explicit functions has the aesthetic ad-
vantage of making it possible to handle implicit functions in a similar manner. Consider
the similar example:

f (a:A,b:B) r:R
pre P(a,b)
post Q(a,b,r)

This again yields one new primitive constant f of expression arity two. In this case we
have two defined constants, the extra one being for the postcondition:

f 7→ [2,0]

7Of course, we could consider defining a new binder λ , and translating f to a nullary defined constant:
λa:A.λb:B.Q(b) but this is departing too far from the style of VDM.
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pre-f 4 P([[1]], [[1]])
post-f 4 Q([[1]], [[2]], [[3]])

The definition axiom is also similar to the implicit case except that now we do not know
the value of the application of f , rather only that the postcondition holds for this value:

f-def’n
a:A,b:B,pre-f (a,b),∃r:R ·post-f (a,b,r)

post-f (a,b, f (a))

This time the typing information must be given via an additional axiom:

f-form’n
a:A,pre-f (a),∃r:R ·post-f (a,r)

f (a):R

As before, general implementability is then a rule that can, but need not, be dis-
charged:

f-impl’y
a:A,pre-f (a)
∃r:R ·post-f (a,r)

In this case it is crucial to have the last hypothesis to the definition and formation
axioms. Without it one could prove the implementability obligation directly from the for-
mation axiom (see the discussion in Section 3.5.3). More generally, one would also be
able to introduce inconsistencies into the theory – even when the function is not imple-
mentable. To see how this might happen, consider the function specification:

f (a:A,b:B) r:R
pre true
post false

The definition axiom (without the extra hypothesis) would become:

f-def’n
a:A,b:B

false

This is certainly not desirable!

Translation of operation definitions

As operation decomposition is not supported, only implicit operation definitions are trans-
lated.

Preconditions and postconditions are translated in a similar manner to that for function
definitions except that their translation is slightly more complicated because they can
additionally refer to the ‘before’ and ‘after’ states of the operation. The externals construct
makes it possible to refer to subcomponents of the state and these are added to the list of
parameter variables in the predicates. The order in which these variables are arranged is
unimportant but, of course, the same order must be used in all cases.

The implementibility obligation for an operation

OP (x:X) r:R
ext rd rd : Rd

wr wr : Wr
pre P(x,rd,wr)
post Q(x,r,rd,↼−wr,wr)
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is translated as an unproven rule:

OP implementibility
x:X,rd:Rd,↼−wr:Wr,pre-OP[x,r,rd,↼−wr]
∃r:R · ∃wr:Wr ·post-OP[x,r,rd,↼−wr,wr]

8.2.2 Translation of reifications
In order to reason about a reification of one specification by another, we need the infor-
mation contained in the two specifications. Therefore, the theory within which we reason
about the reification inherits from the theories associated with both specifications. This is
achieved by making the theories of the two specifications parents of the reification theory.

Roughly, the theory of a reification contains definitions of the retrieve functions used
in the data reifications, together with all the concomitant proof obligations of data reifi-
cation and operation modelling. It also contains definitions of any auxiliary types and
functions used.

Translation of data reifications

Within a reification, a particular data reification from concrete type C to abstract type A
via a retrieve function retr-A translates to:

• a definition or declaration of the retrieve function (in the same manner as for explicit
function definitions), as a function from C to A:

retr-A 7→ [1,0];

• and an unproven rule expressing the adequacy obligation for the data reification:

retr-A adequacy
a:A

∃c:C · retr-A[c] = a

Both of these are situated in the theory of the overall reification.

8.2.3 Translation of operation models
Recall that an operation modelling refers to the abstract and concrete operations and a
number of DataReifs. Translation of the OpModel amounts to the translation of each of
these along with the creation of two unproven rules in the reification theory: one express-
ing the domain obligation, and another expressing the result obligation.

Suppose an abstract operation OPA is modelled by a concrete operation OPC and
that ac,rc,rdc,wrc are names of the argument, result, reads and writes of OPC and that
retr-a,. . . ,retr-wr are their associated retrieve functions. Then the proof obligations gen-
erated are of the form:

OPC domain obligation

ac:Ac,rdc:RDc,wrc:WRc,
pre-OPA[retr-a(ac),retr-rd(rdc),retr-wr(wrc)]

pre-OPC[ac,rdc,wrc]

which says that the concrete precondition should hold whenever the abstract precon-
dition holds for the retrieved values, and
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OPC result obligation

ac:AC,rc:RC,rdc:RDC,
↼−wrc:WRC,wrc:WRC,

pre-OPA[retr-a(ac),retr-rd(rdc),retr-wr(↼−wrc)],

post-OPC[ac,rc,rdc,
↼−wrc,wrc]

post-OPA[retr-a(ac),retr-r(rc),retr-rd(rdc),

retr-wr(↼−wrc),retr-wr(wrc)]

that is that the abstract postcondition should hold on the retrieved values whenever
both the abstract precondition and the concrete postcondition hold. The generalisation to
multiple arguments and state references is straightforward.

Note that this definition supports operation modelling where the types of the argu-
ments and results are reified. It could be argued that these are the ‘visible’ types of the
specification and as such should not be subjected to refinement. We choose the more gen-
eral formulation here, but notice that a simpler form of the obligations could be given in
the restricted case.

8.3 Scope for growth
As we have frequently pointed out, our VDM Support Tool is not a fully-fledged envi-
ronment, but was developed to demonstrate some of the interesting issues arising from
reasoning about VDM specifications and developments. In this section we describe some
of the ways in which the tool could be improved or extended, both in itself and with
respect to its interface with the proof assistant.

8.3.1 Theory structuring for greater reuse
At present, each specification is translated into a single theory which is a direct descendant
of the ‘VDM Primitives’ theory. In practice, this proves very restrictive: for example, it is
not possible to re-use the type definitions etc. of one specification in other specifications.
From the proof assistant’s point of view, there is no reason why this cannot be done.
However, our tool would then have to support modular VDM specifications, or extend
its VDM with some form of non-standard ‘use the definitions from this theory’ construct.
The latter approach is unacceptable in the face of current attempts to standardise the VDM
notation; the former awaits the outcome of further research in modularisation.

Reification is also limited in practice by the present approach of making the reification
theory a direct descendant of the theories of its abstract and concrete specifications. Just
as it would be useful to be able to reuse type definitions, etc., it would be useful to be able
to draw data reifications from a library, and to compose new data reifications from them.

This suggests a far more complex theory structure for developments. Commonly used
type definitions would reside in their own theories, creating a hierarchy of type definition
theories. Data reifications between particular types would belong in theories which are
descendants of the theories of those types, or possibly of other data reifications. Specifi-
cation theories would then inherit information from the theories of the types (and possibly
other specifications) to which they refer. Finally, reification theories would inherit from
the theories of their abstract and concrete specifications, and from the theories of the data
reifications that they use.
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8.3.2 Determining a correct order for translation
Ideally, when asked to translate a specification, the VDM Support Tool should determine
the dependencies between the components of the specification, and translate them in the
correct order. At present, this is not done, and ‘blind’ translation can cause problems;
frequently, the user must translate the components individually in the correct order. Fur-
thermore, it is not possible at present to translate recursive type definitions or mutually
recursive function definitions. At the time of writing, some work is planned to improve
this situation.

8.3.3 Tracking of proof obligations
At present, the VDM Support Tool does not keep track of the translations of specifications
and reifications. This has two main disadvantages: firstly, changes to a specification or
reification are not carried through to any existing translation; and secondly, there is no way
of knowing from the VDM Support Tool whether or not all the obligations pertaining to
a specification or reification have been discharged. The latter problem would be easy to
solve, modulo the first problem, which would be more difficult.

8.3.4 Consistency checks
As mentioned earlier, the VDM Support Tool performs very few consistency checks.
Many errors in specifications that are left to be discovered when using the proof assis-
tant (or during translation) could be detected much earlier, for example:

static (patent) type-checking: in the presence of invariants, it is not possible to be cer-
tain that an expression is correctly typed without resorting to proof; however, it
would be perfectly possible to detect and inform the user of ‘blatant’ type errors.

consistency of usage: it would be easy to check that function calls have the correct num-
ber of arguments, etc.

consistency of definition: for example: at present, it is possible to change the arity of the
retrieve function, and to give it the wrong type signature. It would not be difficult
to make it impossible for the user to do this, thus limiting the damage.

undefined names: would be easy to detect.

unfilled templates: in some cases an incomplete definition in a specification will yield an
incomplete translation in the proof assistant. (The user is warned, but the translation
is still performed.) In other cases (for example, an uncompleted operation model),
an attempt to translate will fail. It would be better if unfilled templates could be
checked for in advance of translation.

8.3.5 Data reification and patterns
In BSI VDM, the formal arguments to operations can take the form of patterns such as
mk-T(a,b):T; then the pre- and postconditions can refer to a and b. However, if this were
the argument to the concrete operation OPC in an operation model, we would want to
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retrieve mk-T(a,b) as a single value, rather than retrieve a and b separately. At present,
this is not possible in our support tool, and patterns are not supported.

Unfortunately, the same problem arises when an operation accesses subcomponents
of the state rather than the state as a whole. An abstract operation can only be modelled
by a concrete one if both refer to the state as a whole, or if, when retrieving Ta from Tc,
we have:

retr-Ta(mk-Tc(ac,bc)) = mk-Ta(retr-Aa(ac),retr-Bc(bc))

This greatly limits the possibilities for state reification.
One solution in the state case is to consider a and ↼−a in the above as abbreviations

for s-a(t) and s-a(↼−t ), where t and ↼−t are names representing the initial and final states
and to replace occurrences of a and ↼−a by the latter expressions in translation of proof
obligations. Suppose that the abstract operation OPA in an operation model as above
writes a component c of the abstract state, and that OPC only writes state component a.
Then the result obligation might look like:

OPC result obligation

t:T,↼−t :T

pre-OPA[s-c[retr-T[↼−t ]]],

post-OPC[s-a[t],s-a[↼−t ]]

post-OPA[s-c[retr-T[t]],s-c[retr-T[↼−t ]]]

A similar solution may be possible for patterns.

8.3.6 Support for operation decomposition
This would require a considerable amount of work. One possible approach would be to
construct a theory of a Hoare-like logic for operation decomposition within the mural the-
ory store, and to then translate ‘explicit’ operations into this (in an analogous fashion to
explicit functions). Another approach would be to construct a specific tool for operation
decomposition, which would encapsulate the Hoare-like logic. In order to show that a par-
ticular composition satisfies certain assertions (for example, the pre- and postconditions
of an implicit operation) this tool could produce proof obligations (in ‘ordinary’ predi-
cate logic rather than as Hoare triples) for the proof assistant to discharge. Certainly, our
model would have to be significantly extended to accommodate operation decomposition.



Chapter 9

Foundations of specification animation

One major problem in producing software (both using formal and informal methods) is
the capture of the user’s requirements. Although one can (at least in theory) prove the
correctness of an implementation with respect to a specification, this is no help at all if
the specification itself is not correct, i.e. does not match the user’s requirements.

It was therefore decided to include in mural some support for the validation of spec-
ifications against their informal requirements, in order to allow validation early on in the
development process while it is still comparatively cheap to correct any mistakes. The best
method for doing this was considered to be animation of the specification, where anima-
tion is taken to mean any method for making the specification ‘move’ or ‘behave’ in some
way in order to derive some consequences or properties of the specified software system
before it is actually implemented. The following discussion will only be concerned with
animation and not with other validation techniques, such as static checks, including for
example checking of syntax and static semantics, even though their use should obviously
also form part of the validation process. It will always be assumed that syntax checks
have already been done and the specifications handled are syntactically correct.

9.1 Approaches to animation
Animation can be done on different levels, for example:

Actual execution (Testing or prototyping) Interpreting the specification on given input
values. This approach obviously requires that one uses an executable specifica-
tion language, which is a severe restriction on the expressiveness of the language
(cf. [HJ89]). Actual execution is discussed in more detail in Section 9.1.1 below.

Symbolic execution Running the specification on symbolic input, i.e. variables over the
input domain or, more generally, predicates on such variables, which we will call
‘description values’. This approach is discussed in more detail in the following.

Formal reasoning Deriving properties of the specification using theorem proving tech-
niques. This can be a useful technique in some cases but in general it is often not
clear what should be proven about a specification (although formal methods such as
VDM do give rise to a number of proof obligations). Possible properties to derive
include implementability, security with respect to some security model, or correct
treatment of certain border cases.
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Formal reasoning is a very general technique and can be said to include both actual
and symbolic execution: execution can be viewed as deriving theorems of the form
input = . . .⇒ output = . . ..

User interface prototyping User interface (UI) ideas can be used for animating a spec-
ification in two different contexts. First, they can be used to animate and validate
the UI, as opposed to the functionality of the system. This usually involves building
a prototype that displays only some of the functionality of the system, but basically
the same UI as is intended for the final system, or at least a good graphical de-
scription of it. Such a graphical description might be most adequate for computer
systems that regulate or control some other equipment and which require the user
to enter some data, for example by pressing buttons.

Second, graphics can be used to help understand the functionality of a specified
system. In this case, they just provide a different front-end to (or view of) the output
of animation. Consider for example a specification of a lift system. Rather than
describing with formulae and/or text that the lift moves from one floor to another,
one might display a picture of a lift moving on the screen.

This second approach seems very difficult to generalise: any one system can prob-
ably only support graphical animation of a small group of similar applications.

For a survey of different approaches to user interface prototyping see [HI88, §3.2].

Each of the methods described has got a number of drawbacks if used on its own as a
tool for ensuring the correctness of a program. To a certain extent, these can be overcome
by combining the different methods and using each to check a particular aspect of the
program’s correctness. Since mural is intended to support non-executable specification
languages, it was decided to use symbolic execution as the main approach to animation,
thus complementing the support for formal reasoning provided by the proof assistant. In
this chapter, we will therefore discuss some of the theoretical questions that had to be
solved in order to support symbolic execution for a range of different languages. Ap-
pendix D will then describe the specification animation tool SYMBEX developed as part
of mural . Chapter 9 and Appendix D are based heavily on [Kne89].

9.1.1 Actual execution and prototyping
For some languages, actual execution of specifications will be possible directly (this is
often referred to as prototyping). As described in [Flo84], a prototype is a system that
displays some, but not all, of the features of the final product. This way, one can try out
some ideas without investing the effort to build a complete system. Which features are
left out depends on the particular application; a common approach is to ignore efficiency
and UI questions and build a prototype which only displays (some of) the functionality
of the final system. Often this can be done in a language that is higher-level than the
implementation language of the final system, because the prototype does not have to be
as efficient.

[Flo84] distinguishes three main classes of prototyping:

exploratory prototyping puts the emphasis on clarifying requirements and on helping
communication between software developer and user. Used for discussing various
alternative solutions.
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experimental prototyping puts the emphasis on determining the adequacy of a proposed
solution before implementing it.

evolutionary prototyping puts the emphasis on adapting the system gradually to chang-
ing or evolving requirements. In this case, the prototype gradually develops into the
final product.

The following is mainly concerned with experimental prototyping, since it is assumed
that a specification (and hence a ‘proposed solution’) already exists, or at least a high-
level rudimentary version of it.

In general, prototyping is different from animation of specifications since a prototype
is not usually derived directly from the specification. It usually has to be implemented
separately and, since it is executable, the prototyping language cannot be as rich as a spec-
ification language might be, an aspect that is often ignored in the prototyping literature.
Strictly speaking, prototyping can only be regarded as animation if the prototype itself
is (part of) the specification of the final system, or at least can be derived directly from
it. Languages suitable for this are often referred to as executable specification languages.
[HJ89] gives a detailed account why it is not advisable to restrict oneself to executable
specification languages.

Examples of executable specification languages that are used for prototyping are me too [Hen84,
HM85] and EPROL [HI88]. They are both based on the executable part of VDM, ex-
pressed in a functional style. In particular, this implies that implicit definitions and oper-
ations (functions with side effects) cannot be handled. In me too, specifications written
in this restricted subset of VDM are then translated into a version of LISP called Lispkit.
EPROL is interpreted in the EPROS prototyping system.

In general, however, a specification may contain non-executable constructs, so that
testing or prototyping will not be possible directly. In this case, one has to translate (manu-
ally, semi-automatically or automatically) the specification into a suitable (programming)
language. This requires a major refinement of the specification before it can be ani-
mated. Note here that the specification and programming language are not necessarily
separate languages: wide-spectrum languages combine the two into a single language
(e.g. CIP, see [B+87]) to allow for a gradual refinement from a specification including
non-executable terms to an executable program.

A different approach to prototyping is based on algebraic specification or program-
ming languages, where systems are described in terms of (conditional) equations on terms.
Functions are defined implicitly by giving equations describing their effects, for example
pop(push(e,st)) = st. These equations are then directed to turn them into rewrite rules.
The specification is animated by applying the resulting rewrite system. Example systems
of this approach are OBJ (see [GM82]) and RAP (see [Hus85, GH85]).

Prototyping can be very useful for providing some early ‘hands-on’ experience of a
system and helping to clarify the requirements on the system. The benefits that can be
gained from prototyping are discussed in some detail in [HI88, §2.5]. However, prototyp-
ing as a method for validating specifications also has a number of disadvantages, including
all the usual disadvantages of testing. In particular, it is very unreliable as a tool for valida-
tion, since testing only provides results for a fairly small set of input values. Furthermore,
it loses at a very early stage in the development process all the under-determinedness1 that

1A specification [[spec]] is non-deterministic, if, given any input values, the output value of executing
(an implementation of) [[spec]] is not uniquely defined and may be different in different executions. [[spec]]
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a good specification usually allows, since a prototype will always have to choose one out
of several possible output values. Additionally, any possible non-determinacy will often
not be visible to the user.

9.1.2 Symbolic execution
The problems described above were the reason why it was decided to use symbolic exe-
cution as the main technique for animation of specifications in mural . The work done on
this is described in detail in [Kne89].

Symbolic execution is a concept that was first introduced by King (see [Kin76]). It is
based on the idea of executing a program without providing values for its input variables.
The output will then in general be a term depending on these input variables, rather than an
actual2 value. This is usually described as supplying a symbolic input value and returning
a symbolic output value.

Symbolic execution has been used for a number of different purposes, such as program
verification, validation, and test case generation. See [Kne89, §2.1] for a summary of
these different approaches and a survey of systems implementing symbolic execution,
including in particular those mentioned below.

In the work described here, the original concept of symbolic execution has been ex-
tended in order to handle specifications as well as programs. This is done by introducing
so-called description values, in addition to the usual actual and symbolic values. Descrip-
tion values of (program) variables are formulae that describe (usually implicitly) the value
associated with this variable.

Symbolic execution can be considered as a technique for ‘executing’ programs when
some of the information normally needed is not available. In this sense, symbolic execu-
tion allows one to handle partial information about

• input data: the input values are not determined (or at least not uniquely); this means
one has to handle a whole range of input values, rather than a single value.

• algorithm: the algorithm for computing the output value for any given input value
is not provided (or at least is incomplete). In this case one usually talks about a
specification rather than a program. So far, symbolic execution has usually only
been applied to programs; only in the GIST system [Coh83] and the system devel-
oped by Kemmerer [Kem85] has the concept of symbolic execution been extended
to specifications.

• output data: the output values are not determined uniquely by the input values
and the algorithm, i.e. the program or specification is non-deterministic or under-
determined.

The symbolic execution system described here (called SYMBEX) is intended to be
used as a tool to validate a (formal) specification against its (informal) requirements, and
thus to support the first step in formal software development. SYMBEX should help the

is under-determined if, given any input values, the output value of executing an implementation of [[spec]] is
not uniquely defined, but for any given implementation the value is always the same. Under-determinedness
is thus a property of specifications only, while non-determinism may be a property both of specifications
and of programs, see [Wie89].

2I shall call values in the usual sense ‘actual values’, in order to distinguish them from ‘symbolic values’.
Similarly, I shall call the usual form of execution of programs ‘actual execution’.
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user to analyse and understand a specification before it is implemented, by providing suit-
able feedback about the specified behaviour. Therefore, symbolic execution as described
here is intended to be used during and after the development of a specification. Symbolic
execution can indeed be a useful tool even during the specification phase, since it can be
applied to incomplete specifications. This is possible since symbolic execution can deal
with names (symbols) of functions instead of their definitions.

A problem with using symbolic execution for checking the correctness of a specifi-
cation or a program is the danger that, even though the system might show a mistake,
such as referencing a wrong variable, the user might not notice it. This can happen in
particular when the results of symbolic execution look too similar to the original speci-
fication. Since the user overlooked the error there, he will probably do the same again
when looking at the results of symbolically executing the specification. This puts special
importance on the UI of SYMBEX, since it has to present the information in such a way
that it helps the user understand a specification. The UI of SYMBEX is discussed in more
detail in [Kne89, §6.2].

Providing a useful symbolic execution system is made more difficult by the fact that
users are different from one another and therefore find different kinds of expressions easy
to understand. Thus, a ‘simplification’ for one user, perhaps by folding a function def-
inition, will make the output considerably more difficult to understand for another user,
who might not know the new function introduced. This implies that the system has to be
highly interactive and give the user a lot of control about the information presentation,
for example what simplification to apply. For this reason, ‘simplification’ in the follow-
ing will always mean ‘simplification with respect to a certain user’. Section 9.3.3 will
describe simplification in more detail.

The remainder of this chapter will discuss the theoretical foundations of SYMBEX.
First, the denotational and operational semantics of symbolic execution are discussed.
These will be used to achieve language genericity of SYMBEX. The denotational se-
mantics of symbolic execution, expressed in terms of the denotational semantics of the
specification language, provide a correctness notion for symbolic execution. A descrip-
tion of the operational semantics of the language is used as a parameter to tailor symbolic
execution to that language. The operational semantics of a specification language will
be expressed as a collection of theories in mural . These theories are introduced in Sec-
tion 9.4. (For more detail on the semantics of symbolic execution see [Kne89, Kne91].)
Additionally, Appendix D describes the specification of the SYMBEX system. This spec-
ification builds on the theoretical basis given here by using the theories describing the
semantics of the relevant language.

Using this approach, language-genericity was achieved in the sense that SYMBEX

supports all languages whose semantics can be expressed in terms of states and state
transitions. This includes in particular specification languages such as VDM or Z, and all
imperative programming languages. The language-genericity of SYMBEX is discussed in
detail in [Kne89, §4.3].

9.2 Denotational semantics of symbolic execution
Given a set Name of identifiers (names) and a set Val of values, a state is a map of type

Σ = Name m−→ Val⊥
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Define

Σ = Σ∪{ }

where denotes abortion or non-termination.
Pred is the type of predicates (over states) whose valuation function is some function

MPred:Pred→ Σ → B

such that

∀f :{partial recursive functions Σ → B} ·∃[[ϕ]]:Pred ·MPred[[ϕ]] = f

This condition is introduced in order to ensure that the language of predicates as used
later is ‘sufficiently expressive’, i.e. that all recursive predicates can be expressed.

A specification denotes a binary relation on states. A valuation function on specifica-
tions Spec therefore is some function that satisfies

MSpec ([[spec]]:Spec) R:(Σ ×Σ )→ B
post ∀σ :Σ · [R( ,σ) ⇒ σ = ]∧∃σ ′:Σ ·R(σ ,σ ′)

and

∀f :{partial recursive functions Σ ×Σ → B} ·∃[[spec]]:Spec ·MSpec[[spec]] = f

We now can define the denotational semantics of symbolic execution in terms of the
denotational semantics of the specification being executed. This definition should satisfy
the following requirements:

• The input should model a set of input states to a specification. Originally, this set
will often be the universe of all states, but may be restricted by the user to a subset,
usually because the result expressions would otherwise get too complicated. For ex-
ample, when symbolically executing a conditional statement, the user may assume
that the condition is true, after which symbolic execution only needs consider the
true-case.

• The semantic model should describe the relationship between individual input and
output states (and not just the relationship between the set of all input states and
the set of all output states). Otherwise, given for example the specification x =

0 ∨ x = ↼−x + 1, symbolic execution would only map N to N and thus not really
provide sufficient information. To get more useful information, one would have
to restrict the input set S, in this case {σ | σ(x) ∈ N}, to a small subset, which
would be contrary to the ideas of symbolic execution and lead towards ‘testing’ of
specifications.

• It should allow composition of two (or more) symbolic execution steps. This im-
plies in particular that input and output must be of the same type.

• Furthermore, it should be possible to make assumptions on the set of input states
(as described above) not only at the beginning of a sequence of symbolic execution
steps but also at an intermediate stage. In this case, assumptions may be expressed
in terms of the values of variables in earlier states.

The model of symbolic execution that we are going to use is based on a ‘symbolic execu-
tion state’ called SEStateDen which contains sets of sequences of states. The definition
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of SEStateDen is given in Figure 9.1. The name SEStateDen is a shorthand for Symbolic
Execution State as used for Denotational semantics. Similarly, Section 9.3 will introduce
SEStateOp for states in operational semantics.

In addition to the set of sequences of states, SEStateDen contains a field LEN which
stores the number of symbolic execution steps performed, plus 1 for the initial state (see
Figure 9.1). At the same time, this is the number of actual execution steps modelled
in any sequence of states in the field SEQS plus 1, which leads to the first conjunct in
the invariant. In this model, user-introduced restrictions on the set of states allowed are
modelled by ‘cutting off’ as much as necessary from the end of all sequences of states
until the condition is satisfied. This intuition explains the second conjunct on the invariant
on SEStateDen, which demands that no sequence in SEStateDen is an initial segment of
another such sequence.

A state as used in symbolic execution is given by

SEStateDen :: SEQS : P(Σ∗ )
LEN : N

where

inv-SEStateDen(mk-SEStateDen(set, l)) 4

∀σ -seq ∈ set · len σ -seq≤ l
∧∀σ -seq1,σ -seq2 ∈ set · ∀σ -seq:Σ∗ ·

σ -seq1 = σ -seq2
y

σ -seq ⇒ σ -seq = []

Figure 9.1: Denotational semantics of symbolic execution – State

As a convention, τ will be used to denote elements of SEStateDen, while σ denotes
elements of Σ , as before.

Symbolic execution of a specification is modelled by adding another state to all those
sequences that have not been ‘cut off’, see Figure 9.2. Just as interpretation or execution,
given a specification, maps states to states, so symbolic execution, given a specification,
maps SEStateDens to SEStateDens.

Doing symbolic execution in the way described here and storing all possible se-
quences of states allowed by a sequence of specifications requires a fairly rich language
for expressing the results of symbolic execution, which might not always be available. For
example, the result of executing a while-loop will often not be expressible in the language
available. Therefore, in addition to such full symbolic execution Figure 9.2 also defines
weak symbolic execution, where the result includes the set of all possible sequences of
states. This ensures that the properties one gets as a result of weak symbolic execution
still hold for the denotation of the full result; they just do not in general give a complete
description.

Note that there is a distinction between symbolic execution of the composition of
specifications and the composition of symbolic executions. They give rise to SEStateDens
that describe the same relationship between initial and final states, but the SEStateDens
themselves are different. They lead to SEStateDens of different lengths, since symbolic
execution of the composition of specifications is considered as a single step, while a
sequence of symbolic executions in general consists of several steps (Lemma 4.1.7 of
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(Full) symbolic execution is given by the functions

symbolic-ex :Spec→ SEStateDen→ SEStateDen
symbolic-ex[[spec]]τ 4

mk-SEStateDen(
{σ -seq | len σ -seq = LEN(τ)+1∧ front σ -seq ∈ SEQS(τ)

∧MSpec[[spec]](last front σ -seq, last σ -seq)
∨ len σ -seq < LEN(τ)∧σ -seq ∈ SEQS(τ)},

LEN(τ)+1)

and

symbolic-ex-s :Spec∗→ SEStateDen→ SEStateDen
symbolic-ex-s[[spec-seq]]τ 4

if spec-seq = []
then τ

else symbolic-ex-s[[tl spec-seq]](symbolic-ex[[hd spec-seq]]τ)

Weak symbolic execution is a function
w-symbolic-ex ([[spec]]:Spec,τ1:SEStateDen) τ2:SEStateDen
post SEQS(τ2)⊇ SEQS(symbolic-ex[[spec]]τ1)

∧LEN(τ2) = LEN(symbolic-ex[[spec]]τ1)

with a similar function for sequences of specifications.

Figure 9.2: Denotational semantics of symbolic execution – Functions

[Kne89]).
It is not immediately obvious that symbolic-ex as defined is a total function. Although

a result is constructed for any input values, this result might not satisfy the invariant and
thus might not be of type SEStateDen. The following lemma shows that this case does
not arise.

Lemma 9.2.1 The function symbolic-ex is total, i.e. symbolic-ex[[spec]]τ satisfies the in-
variant inv-SEStateDen for all [[spec]] and all τ .

Proof See Lemma 4.1.1 of [Kne89]. �

Example 9.2.2 Let Name = {x,y}. We want to symbolically execute the operation

OP1
ext wr x : Z

wr y : Z
pre x≥ 0
post y2 ≤↼−x ∧ x =↼−x +1

Then

MSpec[[OP1]](σ ,σ1)
⇔ if σ(x)≥ 0 then σ1(y)2 ≤ σ(x)∧σ1(x) = σ(x)+1 else true

Now the user assumes that the pre-condition of OP1 is true. This means that OP1 is to
be symbolically executed in the SEStateDen τ1 which represents the predicate x≥ 0:

τ1 = mk-SEStateDen({[σ ] |MPred[[x≥ 0]]σ},1)
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= mk-SEStateDen({[σ ] | σ(x)≥ 0},1)

Then symbolic execution of the specification OP1 starting in the SEStateDen τ1 results in
the SEStateDen

symbolic-ex[[OP1]]τ1

= mk-SEStateDen({σ -seq | len σ -seq = LEN(τ1)+1∧ front σ -seq ∈ SEQS(τ1)

∧MSpec[[OP1]](last front σ -seq, last σ -seq)
∨ len σ -seq < LEN(τ1)∧σ -seq ∈ SEQS(τ1)},LEN(τ1)+1)

= mk-SEStateDen({σ -seq | len σ -seq = 2∧σ -seq[1](x)≥ 0
∧MSpec[[OP1]](σ -seq[1],σ -seq[2])},2)

= mk-SEStateDen({σ -seq | len σ -seq = 2∧σ -seq[1](x)≥ 0
∧σ -seq[2](y)2 ≤ σ -seq[1](x)
∧σ -seq[2](x) = σ -seq[1](x)+1},2)

9.3 Operational semantics of symbolic execution
This section describes a model of symbolic execution based on the operational semantics
approach. The style of operational semantics used is based on that of Plotkin’s ‘Structured
Operational Semantics’ [Plo81], but of course many of the transitions themselves are
rather different since they describe symbolic rather than actual execution. However, if
there is no danger of confusion, I shall in future not explicitly mention that I am dealing
with the particular version of operational semantics used for symbolic execution, but just
talk about operational semantics.

The following discussion starts off with the underlying data structure used, then shows
a number of transitions and rules for various language constructs.

There is an important difference between the descriptions of the denotational and op-
erational semantics of symbolic execution. While it is possible to explicitly define the
denotational semantics of symbolic execution itself by expressing them in terms of the
denotational semantics of the language used, this is not feasible for the operational se-
mantics. Instead, one here has to provide a different version of the operational semantics
of the language, specifically for symbolic execution. This chapter does not try to provide
the complete operational semantics for any language, but shows the rules for a number of
important language constructs instead.

9.3.1 The data structure
States as used on the operational level will be called SEStateOps – Symbolic Execution
States as used for Operational semantics. In SEStateOps, the information derived by sym-
bolic execution should get associated with those identifiers whose values are described by
it. For this reason, SEStateOps use maps from Name to the relevant information. This
information will be modelled by predicates. These predicates must be predicates on se-
quences of states rather than single states, since they should model the relationship be-
tween different states. Such predicates are introduced as PredS below. These are the
predicates the user should actually get to see as description values of variables at any
stage in the symbolic execution. A PredS then is any expression whose semantics can be
given as
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MPredS:PredS→ StateSeq→ B

where StateSeq is defined as

StateSeq = (Σ | StateSeq)∗

StateSeq is defined recursively rather than just as a sequence of states in order to be able
to handle blocks and loops, as described below. This decision does not seriously affect
the definition of PredS. The language of PredS has to include constant symbols true and
false, and operator symbols for ∧, ⇒, ⇔ (all with their standard interpretation), and a
conditional provided-then (as defined in Section 9.3.3).

The only condition on the internal structure of PredS is that it must be possible to
define a function

mentions:PredS→ Name-set

which collects the identifiers mentioned in a given PredS into a set. No other conditions
are needed since symbolic execution itself makes almost no use of the information con-
tained in the PredS; only simplification needs to know about the syntax and semantics of
PredS (in particular, it needs to know when two PredS are equivalent.). The definitions of
the syntax and semantics of PredS are therefore given in a theory which is used to instan-
tiate symbolic execution for a particular specification language (and thus for a particular
language of PredS), but they are not used in the model of symbolic execution itself. These
simplification theories will be described in Section 9.4.2.

Since allowing sets of PredS rather than only individual PredS as description values
makes it easier to combine different PredS and, when needed (for example for simplifi-
cation), split the result again to get its components, SEStateOps are modelled using maps
from Name to PredS-set.

An additional complication arises because each symbolic execution step gives rise to
a new predicate on sequences of states, and obviously each such predicate may provide
valuable information that should be associated with the appropriate identifier and the ap-
propriate execution step. Therefore, SEStateOps will be defined as sequences of maps
from identifiers to sets of predicates on sequences of states. An SEStateOp thus stores a
history of the results of symbolic execution.

In this history a loop should be considered as a single step, even though it may really
consist of any number of steps (including 0). Therefore, the result of the loop is modelled
as an SEStateOp itself, which is then considered as one step in the original SEStateOp.
Similarly, blocks should be considered as a single step and are therefore also modelled
as an SEStateOp themselves. This leads to the recursive definition of SEStateOp given
below. One might thus consider an SEStateOp as a tree, where the leaves of the tree are
maps and the inner nodes are SEStateOps. Pre-order traversal of this tree describes the
execution sequence modelled by the (root) SEStateOp.

In addition to the sequence described above, SEStateOp contains a field INDEX which
stores the index or position of this SEStateOp in the recursive definition – this will be
needed to get the right description values in the SEStateOp. Since these express properties
of sequences of states, they need to know which sequence of states they should refer
to. This issue should become clearer in the discussion of simplification in Section 9.3.3.
Compare also the example transition for VDM-operations given in [Kne89, §4.2.6], where
INDEX is actually needed.

Definition 9.3.1 (SEStateOp) Define
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Index = N∗1
A state as used for describing the operational semantics of a language as used for

symbolic execution is defined recursively as

SE-map = Name m−→ PredS-set

SE-elem = SE-map | SEStateOp

SEStateOp :: SEQ : SE-elem∗

INDEX : Index

where

inv-SEStateOp(mk-SEStateOp(Seq, ix)) 4

Seq 6= []
∧hd Seq:SE-map
∧∀k ≤ len Seq ·Seq[k]:SEStateOp ⇒ INDEX(Seq[k]) = cons(k, ix)

The invariant on SEStateOp ensures that every SEQ(S) has a first element which defines
the allowed parameter states. An SEStateOp itself would not be allowed as first element
because it should only arise as a result of symbolically executing a specification (usually
a loop or block). Additionally, the invariant ensures that SEStateOp describes the intu-
ition behind INDEX as described above – the INDEX of any SEStateOp which is the k-th
element of SEQ of the SEStateOp S is the INDEX ix of S with k added at the front, or
cons(k, ix).

A valuation function MSEStateOp has also been defined, see [Kne89, Figure 4.3]. It
maps an SEStateOp to an SEStateDen, where the SEStateDen contains those sequences
of states that satisfy all the predicates in the SEStateOp.

In Figure 9.1 we described how an SEStateDen can represent a predicate on states
(expressed there as a set of states). Similarly, one can represent such predicates by
SEStateOps. Given ϕ:Pred, let Φ be the PredS

MPred[[ϕ]]{n 7→ σ̃([1],n) | n:Name}

and let

S(ϕ) 4 mk-SEStateOp([{n 7→ {Φ} | n:Name}], [ ])

Then MSEStateOp[[S(ϕ)]] is the SEStateDen that represents ϕ , and we say that S(ϕ) is
the SEStateOp that represents ϕ . Of course, Φ does not have to be associated with each
Name n; one could alternatively only associate it with those n that are mentioned in Φ, or
even only with one arbitrary n.

The valuation function of SEStateOp, like the others defined before, could also be
considered as a retrieve function [Jon90c, pages 204ff]. In this case, it has an adequacy
proof obligation associated with it.3 If Val is finite, then it depends on the expressiveness
of PredS whether MSEStateOp satisfies this obligation. For infinite Val, however, there are
uncountably many sets of state sequences and therefore uncountably many SEStateDen.
On the other hand, there are only countably many SEStateOp, and therefore SEStateOp
cannot be adequate w.r.t. MSEStateOp.

3A representation Rep is adequate with respect to a retrieve function retr:Rep→ Abs
iff ∀a ∈ Abs · ∃r ∈ Rep · retr(r) = a
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9.3.2 Transitions and rules
In the following I am going to define the kind of transitions and rules used for describ-
ing the operational semantics of language constructs in general, and then give the ap-
propriate transitions and rules for various constructs. In many cases (e.g. the rule for
if-then-else), the transitions and rules of the operational semantics of various lan-
guage constructs are defined by translating them into an equivalent construct in the lan-
guage used for describing the results, then simplifying the result whenever possible. This
simplification will hopefully help to eliminate the construct from the description.

From the point of view of their purpose, one can therefore distinguish three different
kinds of transitions:

• Transitions describing (state-changing) specifications. Since such operations actu-
ally lead to a new state, they are described by transitions that extend an S:SEStateOp
by adding another element to the sequence SEQ(S).

• Transitions that eliminate combinators such as if-then-else for specifications by
translating them into equivalent constructs used inside PredS expressions.

• Simplification transitions derived from the theory for PredS, as discussed in Sec-
tion 9.3.3. The transition S1 ↪→ S2 is allowed if S2 can be derived from S1 by
simplification of PredS only.

We now define the various components that will be needed to express transitions.
SpecName is the type of specification names, and SpecMap associates specification names
with specifications:

SpecMap = SpecName m−→ Spec

A configuration consists of a sequence of SpecNames (which may be empty) and an
SEStateOp:

Conf :: SNSEQ : SpecName∗

STATE : SEStateOp

A configuration mk-Conf (sn-seq,S) will be written as 〈sn-seq,S〉. The configuration
〈sn-seq,S〉:Conf describes the fact that the sequence of specifications given by sn-seq
is to be applied to S. Given some sm:SpecMap, the denotation of a configuration is there-
fore defined as (using the auxiliary function evalseq which applies sm to every element of
the sequence sn-seq)

MConf :Conf → SEStateDen
MConf [[〈sn-seq,S〉]] 4 symbolic-ex-s[[evalseq(sn-seq,sm)]](MSEStateOp[[S]])

Transitions are defined as

Trans =
⊎

E E×E

where ] denotes disjoint union, and E ranges over Conf and the different syntactic cate-
gories of the specification language, such as Expr. A transition mk-Trans(e1,e2) will be
written as e1 ↪→ e2.
〈Op1,S1〉 ↪→ 〈Op2,S2〉 denotes the fact that one interpretation step transforms 〈Op1,S1〉
into 〈Op2,S2〉, but ↪→ will also be used to denote its transitive-reflexive closure.
Rules take the form
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Rule :: ordhyps : (Trans | PredS)-set
conc : Trans

This is a simplified version of the definition of rules (or rule statements, to be exact)
in mural , since both Trans and PredS are special forms of Exps. Sequent hypotheses are
not needed here.

An important general rule that shows how symbolic execution of a sequence of speci-
fications can be split up into symbolic execution of its elements is the following:
Rule 9.3.2

〈[sn],S〉 ↪→ 〈[ ],S′〉
〈cons(sn,sn-seq),S〉 ↪→ 〈sn-seq,S′〉

Lemma 9.3.3 Rule 9.3.2 preserves faithfulness: if the hypothesis transition is faithful4,
then so is the conclusion.

Proof See Lemma 4.2.6 of [Kne89]. �

9.3.3 Simplification
Now assume we are given a fixed specification language L . To reason about PredS,
for example to decide whether a PredS ps1 can be simplified to ps2, one needs a suitable
theory of PredS. This theory, which will be called T̃h(L ), needs to be based on the theory
used to reason about terms in L , but additionally an indexing mechanism is needed to
differentiate between the values of program variables (identifiers or names) at different
stages in an execution sequence. To do so, sequences (σi)i of states are introduced, where
σi:Σ . Since the definition of SEStateOp is recursive, simple sequences are not enough –
we actually need iterated sequences where σi might be a sequence of states itself. This is
modelled by introducing a function σ̃ , which returns the name of the value of the identifier
n at a given stage in the execution, with the signature

σ̃ : Index×Name→ Val-ref

For simplicity, we shall in the following identify the element i:N1 with the index [i].
Now a PredS is a predicate that contains names of values of identifiers at some stage,
instead of the identifiers themselves. See Section 9.4.2 for a more detailed explanation
of PredS. The resulting theory of PredS is the theory used for simplification: ps1:PredS
inside some SEStateOp can be simplified to ps2:PredS if they are equivalent in T̃h(L ).
Weak simplification, as used in weak symbolic execution, requires that ps1 implies ps2 in
T̃h(L ).

The language of T̃h(L ) has to include the provided-then construct on PredS, which
is used for expressing predicates with pre-conditions. The following should hold

(provided true then ϕ) ⇔ ϕ

and

(provided false then ϕ) ⇔ true

4A transition c1 ↪→ c2 is faithful with respect to M , if it implies M [[c1]] =M [[c2]], or M [[c1]]⊇M [[c2]]
if M returns a set of valuations. See [Sch86, §10.7]
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The reason for not expressing provided ϕ then ψ as if ϕ then ψ else true is that
one may want to treat unsatisfied pre-conditions differently and for example provide a
warning message. The denotational semantics of both expressions are the same.

9.3.4 Block structures and local variables
We start off the description of operational semantics of language constructs with some
rules describing block structures. The approach taken, for example, by Plotkin [Plo81]
for operational semantics of actual execution of blocks and local variable declarations is
not adequate here, since it discards information about earlier states, only the current values
of variables being stored. In symbolic execution, this is not sufficient since the predicates
describing a current value of a variable in general refer to earlier values, therefore the
whole history needs to be preserved.

Therefore, as mentioned before, blocks will be modelled by SEStateOps that are ele-
ments of the sequence SEQ of the original SEStateOp. In order to be able to describe how
this is done, the following auxiliary functions will be needed:

current-names :SEStateOp→ Name-set
current-names(S) 4 if last SEQ(S):SE-map

then dom last SEQ(S)
else dom hd SEQ(last SEQ(S))

and

add-to-SEStateOp :SEStateOp×SE-elem→ SEStateOp
add-to-SEStateOp(S,e) 4 mk-SEStateOp(SEQ(S)⊕ e, INDEX(S))

Here ⊕ denotes addition of a single element to the end of a sequence.
The function start-block starts a new block by creating a new SEStateOp which is then
added as a new element to the sequence SEQ of the current one. SEQ of the new SEStateOp
only consists of one element which describes that ‘nothing changes’ – all identifiers keep
the same value that they had before.

start-block :SEStateOp→ SEStateOp
start-block(S) 4

let S′ = mk-SEStateOp
(
[{n 7→ {σ̃([1, len SEQ(S)+1]y INDEX(S),n) =

σ̃([len SEQ(S)]y INDEX(S),n)}
| n ∈ current-names(S)}],

cons(len SEQ(S)+1, INDEX(S))
)

in
add-to-SEStateOp(S,S′)

finish-block :SEStateOp→ SEStateOp
finish-block(S) 4

let m = {n 7→ {σ̃([len SEQ(S)]y INDEX(S),n) = σ̃(INDEX(S),n)}
| n ∈ dom hd (SEQ(S))} in

add-to-SEStateOp(S,m)

The rule for describing the operational semantics of a block is then given by
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Rule 9.3.4
〈sn-seq, last SEQ(start-block(S))〉 ↪→ 〈[ ],S′〉

〈begin sn-seq end,S〉 ↪→ 〈[ ],add-to-SEStateOp(S,finish-block(S′))〉

where begin sn-seq end is used as the name of the appropriate sequence of specifica-
tions. A similar convention will be used for other constructs below.

The functions start-block and finish-block are not just auxiliary functions for express-
ing these rules, but will also be used in the specification of the UI of SYMBEXin order to
be able to display the newly-started SEStateOp, which represents the block (or, similarly,
a loop), as an element of SEQ of the old one. As long as discharging the hypotheses in a
rule such as Rule 9.3.4 above can be done automatically, one does not need such a special
mechanism, but if user interaction is required then one needs to display some of the results
before the hypothesis has been fully discharged. In this case, the functions start-block and
finish-block should be used to ‘tell the system’ that it is dealing with a block which should
be displayed accordingly.

9.3.5 Example: A VDM-operation
Given the specification OP1 from Example 9.2.2. As before, we assume that the pre-
condition holds. Since x and y are the only identifiers used, we therefore start with the
SEStateOp

S = mk-SEStateOp([{x 7→ {σ̃([1],x)≥ 0},y 7→ {σ̃([1],x)≥ 0}}], [ ])

The appropriate instantiation of the rule giving the operational semantics of VDM-
operations is then given by (after some simplification)

let m =

 x 7→ {σ̃([2],y)2 ≤ σ̃([1],x),
σ̃([2],x) = σ̃([1],x)+1}

y 7→ {σ̃([2],y)≤ σ̃([1],x)}

 in

` 〈[OP1],S〉 ↪→ 〈[ ],add-to-SEStateOp(S,m)〉

In the resulting state we then have

value of x : y2
2 ≤ x1

x2 = x1 +1
value of y : y2

2 ≤ x1

The full rule describing the operational semantics of VDM-operations is given in [Kne89,
§4.2.6].

9.3.6 Applying the Operational Semantics
Assume we are given some configuration 〈sn-seq,S〉, plus the operational semantics of
the relevant language. Such a configuration, as defined in Section 9.3.2, consists of a
sequence sn-seq:SpecName∗ of specification names and an SEStateOp S, and denotes an
interpreter configuration in which the sequence of specifications referred to by sn-seq is
to be applied to S. The operational semantics will be expressed as a collection of theories,
as described below in Section 9.4.

One now wants to transform the configuration 〈sn-seq,S〉 into an equivalent configu-
ration (under the equivalence relation induced by MConf ) of the form 〈[ ],S′〉, since this
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provides the resulting SEStateOp S′. This transformation is done by repeatedly applying
transitions from the operational semantics to the configuration until it has the right form.

Considered as an object handled by mural , a transition is an expression of type Prop
(proposition). The rules of the operational semantics correspond to axioms or rules as
defined in the specification of mural , and thus consist of zero or more assertions (pos-
sibly themselves transitions) and sequents as hypotheses and an assertion which is its
conclusion, and, in the case of (derived) rules, a justification.

So what exactly happens if one has a configuration 〈sn-seq,S〉 and wants to evaluate
it? The relevant theory should contain (an instantiation of) a rule that has as its conclusion
the transition 〈sn-seq,S〉 ↪→ conf for some configuration conf . The hypotheses of such a
rule consist of a (possibly empty) set of transitions and PredS (predicates on sequences of
states). Before a rule can be used, its hypotheses would have to be discharged. For each
PredS this is done by trying to prove it using the PredS known to hold in S as hypotheses.
A transition is therefore discharged by recursively running the same algorithm on this
transition as on 〈sn-seq,S〉 ↪→ conf :

transform(trans) 4

1. Try to find a rule r with (instantiated) conclusion trans
cases Number of such rules of
0 → answer NO and stop
1 →make the appropriate substitution and store it
≥ 2→ let user decide which one to use
end
2. for every preds in hyps(r)
do try to decide – is it the conclusion of a provable rule,

where all hypotheses are known to hold?
cases result of
true→ nothing needs to be done
false→ ignore the rule r and go back to 1.
others keep it as a condition on future results
end
3. for every trans in hyps(r)
do transform(trans)
4. If you get this far, the collected substitution applied to trans gives

the provable instantiation

This recursive algorithm will be expressed as a proof tactic, which can then be used to
find a proof of the relevant transition. Alternatively, it could be expressed as a program
procedure or an oracle.

If conf has the form 〈[ ],S′〉 then symbolic execution of sn-seq on SEStateOp S is
finished with the resulting SEStateOp S′. If not, then conf must itself have the form
〈sn-seq′,S′〉. In this case there should be (an instantiation of) a rule that has as its conclu-
sion the transition 〈sn-seq′,S′〉 ↪→ conf ′ for some configuration conf ′. Now one needs a
rule that says: if the transitions a ↪→ b and b ↪→ c are (instances of) conclusions of rules,
then one can derive a rule with conclusion a ↪→ c, i.e. transitions are transitive. In the ex-
ample, this leads to a rule with conclusion 〈sn-seq,S〉 ↪→ conf ′, and the same cycle starts
again. If conf ′ has the right form, symbolic execution is finished, otherwise there should
be a transition starting with conf ′. This cycle is repeated until one gets to a configuration
of the form 〈[ ],S′′〉.
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Effectively, in symbolic execution one tries to prove a theorem but, in contrast to the
usual way of doing so, one does not know the conclusion of the theorem when starting to
prove it. Instead, one knows that it should take the form 〈sn-seq,s〉 ↪→ S′, and that at any
stage either there is only one rule that applies, or the user gets the choice which one to
apply.

9.4 Theories to support symbolic execution
The theory of the operational semantics of a particular language L is split up into two
separate theories

• ThOpSem is common to all such theories

• ThOpSem(L ) contains the part specific to language L

Simplification is based on a theory T̃h(L ) which includes the logic used for describing
L (for VDM, this would be LPF [BCJ84]), plus the theories of its basic data types. Addi-
tionally, every specification module has a theory ThModule(Mod) of its own containing,
among other things, the type and function definitions of the module.

So far, only ‘full’ theories were mentioned, i.e. theories that describe the operational
semantics of full symbolic execution (as defined in Figure 9.2). Additionally the ‘weak’
theories WThOpSem(L ) and WThModule(Mod) are needed that describe weak symbolic
execution where some of the restrictions on the result state are ‘lost’, leading to non-
faithful transitions in the operational semantics.

These theories are all based on the same logic, a common ‘logic of operational se-
mantics’, rather than having a collection of different language-dependent logics. Here
one has to distinguish between the logic of a specification language, which is included
in Th(L ) and used for reasoning about terms of the language, and the logic used for
reasoning within the various theories about transitions etc., which is independent of the
language used. LPF was chosen as this common logic.

Before describing these theories in more detail, the following diagram shows the
parent→ child relationships existing between them. ( ∗→ denotes the fact that the par-
ent theory is inherited by the child theory via a morphism.)

ThOpSem -∗

T̃h(L )

?

ThOpSem(L ) - ThModule(Mod)

WThOpSem(L ) - WThModule(Mod)
? ?

Several of the definitions in the following were already introduced earlier. The new
definitions are given because they now define objects in the various theories of operational
semantics, used by SYMBEX, while before they defined general data structures.
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9.4.1 The common theory ThOpSem

Sorts

The theory ThOpSem should have the sort symbols name, preds and SEStateOp. Here
one has to distinguish between the primitive sort symbols name and preds as introduced
in ThOpSem, and the defined sorts Name and PredS which are language-dependent and
will therefore be introduced in ThOpSem(L ). ThOpSem(L ) will inherit ThOpSem via a
morphism translating name to Name and preds to PredS.

ThOpSem also has the sort constructors A∗ for sequences, with type parameter A, and
A m−→ B for maps and A | B for type union, both with type parameters A and B. All these
sort constructors have their appropriate theory associated, either as part of ThOpSem itself,
or, more likely, as a parent theory. Also needed is the sort Prop of propositions. Among
other things, this includes equations and transitions.

Transitions

ThOpSem has the primitive (polymorphic) constant

↪→:A×A→ Prop

which denotes transitions, and the constants from and to denoting the inverses of ↪→.
Since ↪→ is polymorphic, from and to cannot be declared as having a certain type.
Transitions are reflexive and transitive:

` E ↪→ E
E1 ↪→ E2 E2 ↪→ E3

E1 ↪→ E3

and from, to are the inverses of ↪→:

` from(E1 ↪→ E2) = E1 ` to(E1 ↪→ E2) = E2
from(t):A

to(t):A

SEStateOps

SEStateOps are defined as in Definition 9.3.1, except that we here use name and preds
instead of Name and PredS. Note that an SEStateOp as defined here is an object in the
theory ThOpSem rather than a general data structure.

9.4.2 The simplification theories Th(L ) and T̃h(L )

Now assume that a fixed specification language L is given. Let Th(L ) be the theory
used to reason about terms in L . For example, Th(VDM) = LPF+ theories of data
types. Th(L ) should not be considered as denoting one parameterised theory, but rather
a collection of different theories, one for each language L .

Th(L ) is based on the logic of L , with type PropSimp of propositions, and addi-
tionally contains the theories of the basic data types of L such as sets, sequences, etc.
It is thus the theory needed for reasoning about L in general, independent of symbolic
execution.

Let Name be the type of identifiers or program variables of L , as before. For a typed
language L , this would actually have to be a collection of types, but for simplicity this
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fact is ignored here. Let Val be the type of values that an identifier may take. Again, for a
typed language this would have to be a collection of types.

We require that the language of PropSimp includes the constants true and false, and
operators ∧, provided-then, ⇒ and ⇔. Also needed are the functions start-block and
finish-block, as defined in Section 9.3.4. These are needed in order to be able to describe
the operational semantics of blocks (cf. Section 9.3.4) or loops (cf. [Kne89, §4.2.8]). Fur-
thermore, the language should be ‘reasonably expressive’ in the sense that the transitions
of the operational semantics of L , as will be discussed in Section 9.4.3, can be expressed.

One needs to introduce an indexing mechanism to differentiate between the values
of program variables (identifiers or names) at different stages in an execution sequence.
To do so, we introduce sequences (σi)i of states, where σi:Σ . Since the definition of
SEStateOp is recursive, simple sequences are not enough – we actually need iterated
sequences where σi might be a sequence of states itself. This is modelled by introducing
a constant symbol σ̃ with arity (2,0), which is the name of the value of the identifier n at
a given stage in the execution, with the only axiom

i-seq:N∗1 i-seq 6= [] n:Name
σ̃(i-seq,n):Val-ref

For simplicity, the element i:N will in the following sometimes be identified with the
sequence i-seq = [i].
Now define a PredS as a proposition of Th(L ) where each Name n has been replaced by
σ̃(i-seq,n) for some i-seq.

Φ:PropSpec i-seq:N∗1
Φ[n/σ̃(i-seq,n) | n:Name]:PredS

These are the predicates the user actually gets to see as description values of variables
at any stage in the symbolic execution. The resulting new theory with PredS instead of
PropSimp will be called T̃h(L ). Effectively, this new theory then contains multiple copies
of PropSpec, one for each value of i-seq. Note that, in the example of LPF, if n gets
replaced by σ̃(i,n) then ↼−n gets replaced by σ̃(i−1,n).

Also needed is the following auxiliary function:

mentions:PredS→ Name-set

which collects the identifiers n mentioned in a given ps:PredS, i.e. those n for which ps
contains σ̃(i,n) for any i. This function has to be defined recursively over the syntax of
PredS (or PropSimp).

The theory T̃h(L ) is used for simplification: ps1:PredS inside some SEStateOp can

be simplified to (i.e. replaced by) ps2:PredS if they are equivalent in T̃h(L ), given that
all PredS that occur in the SEStateOp at an earlier stage hold. Note that, in symbolic
execution, one is not directly interested in the theorems of T̃h(L ) as such, but indirectly
in them providing a justification of those theorems of ThOpSem(L ) which describe sim-
plification steps.

9.4.3 The language-dependent theories ThOpSem(L )

Again assume one is given some fixed language L and wants to describe the theory
ThOpSem(L ) of its operational semantics. As before, ThOpSem(L ) does not denote one
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parameterised theory, but a collection of different theories. ThOpSem(L ) is the theory
that describes the operational semantics of symbolic execution of a particular language L .
It inherits as parent theories the theory ThOpSem of operational semantics in general (via
a morphism translating name to Name and preds to PredS), independent of the language
L , and T̃h(L ), the simplification theory of L .

Let Spec be the type of all specifications and programs, i.e. all terms in L denoting
a binary relation on states. SpecName is the type of specification names, and SpecMap
associates specification names with specifications:

SpecMap = SpecName m−→ Spec

Configurations consist of a sequence of SpecNames and an SEStateOp:

Conf :: SNSEQ : SpecName∗

STATE : SEStateOp

One can now introduce the transitions and transition rules describing the language L
as axioms or rules of ThOpSem(L ), as described in Section 9.3, and derive the wanted
transitions from them.

9.4.4 The theories ThModule(Mod) of specification modules
A specification module Mod5 consists of

• type definitions

• function definitions

• definitions of specifications. Here specifications are terms denoting a relation on
states. In VDM, these would be called operations.

The theory ThModule(Mod) of a specification module Mod then inherits the theory
ThOpSem(L ) of the language used and additionally contains

• symbols for all the defined types of the module, plus their definitions

• symbols for all the functions of the module, plus their definitions (axiomatic or
otherwise)

• a constant specmap:SpecMap

• transitions found by symbolic execution, expressed as rules.

However, in ThModule(Mod) all these definitions have to be expressed in the language
of mural rather than the specification language, since they are to be part of a mural the-
ory. Since they are originally expressed in the specification language (and stored in the
specification support tool described in Chapter 7), they will have to be translated first.

5Note that a specification module is similar to, but not the same as, a Module in the BSI-Protostandard
for VDM [And88, BSI90].
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The constant specmap

The function specs takes a reference to a theory (it will be applied to theories of speci-
fication modules) and returns the names of specifications in the domain of the constant
specmap, i.e. the names of specifications in the module. From now on, specmap will be a
fixed constant symbol of type CESymb.

specs (thr:Theory-ref ) r:SpecName-set
ext rd mural : Store
pre thr ∈ dom THS(mural)
∧ specmap ∈ atoms(thr,THS(mural))
∧ `THS(mural)(thr) specmap:SpecMap

post ∀sn:SpecName · sn ∈ r ⇔ `THS(mural)(thr) sn ∈ dom specmap

We require for any theory ThModule(Mod) that the axioms provided about specmap
ensure that specs is implementable. This will usually be achieved by defining the map
specmap explicitly.

9.4.5 The weak theories WThOpSem(L ) and WThModule(Mod)

The theory WThOpSem(L ) includes those rules of the operational semantics of L which
are not faithful (and therefore do not describe full symbolic execution) but which do de-
scribe weak symbolic execution. It has ThOpSem(L ) as a parent theory. The PredS-
information contained in an SEStateOp after weak symbolic execution is also correct un-
der full symbolic execution, but it may be incomplete and not fully describe the results of
actual execution.

The theory WThModule(Mod) merges information about the module Mod and infor-
mation about weak symbolic execution. Therefore it is defined as a theory that does not
contain any constants or axioms itself, but only the two parent theories ThModule(Mod)
and WThOpSem(L ).

One can see that from the point of view of the theories involved, weak symbolic ex-
ecution is not essentially different from full symbolic execution. The rules used take the
same form, and they will be applied in the same way. The essential difference between
the two is that the rules for weak symbolic execution convey less information in the sense
that the sets of PredS one gets as values for the different Names may be smaller, and the
individual PredS may only be consequences of rather than equivalent to those one gets
from full symbolic execution. However, this does not affect the structure of these rules;
indeed a rule describing weak symbolic execution of one operation may at the same time
describe full symbolic execution of some other operation: let SORT1 be an operation that
sorts a list of Persons by their age. If several Persons have the same age then they may be
put in some arbitrary order. Alternatively, SORT2 requires that in this case they should be
ordered alphabetically on their names. Then in weak symbolic execution of SORT2 the
additional requirement might be dropped and thus lead to the same result as full symbolic
execution of SORT1.

9.5 Conclusions
This chapter described the theoretical foundations for a component of mural called SYM-
BEX. SYMBEX supports the symbolic execution of specifications in order to validate
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them against the informal user requirements. In order to achieve language-genericity
for SYMBEX, it is based on a variation of the operational semantics of the language con-
cerned. These are expressed as a collection of theories in the TPA. A notion of correctness
of symbolic execution is added by defining the denotational semantics of symbolic exe-
cution. As a result of this approach, symbolic execution as described here is applicable
for a large class of specification (and programming) languages, namely all those that are
based on a notion of states and state transformations.

A specification of SYMBEX is given in Appendix D. This specification only deals
with the functional aspects of the system; the user’s view of the system is not covered
here but is described in [Kne89, §6.2].

Because of time pressure, only a very basic prototype of SYMBEX was eventually
implemented, and it is therefore not included in the version of mural distributed. At the
time, the tactics language was still under development; there was only a small number
of tactics available, and the pattern matching/unification algorithms were fairly naïve and
slow. As a result the system at that stage was very slow, and only a few small experiments
with it were possible.



Chapter 10

Case Studies

The PA (‘proof assistant’) has been instantiated with a hierarchy of theories with rules for
VDM. These cover rules for inferring the well-definedness and the dynamic properties
of VDM specifications. This chapter contains two case studies highlighting some of the
capabilities of this special instantiation of the mural system. To prepare for the case
studies, we first give a description of VDM specifications, and then describe how a few
VDM constructs can be transformed into mural .

The first case study is a watchdog for a reactor system1. This case is nice, since it
is small and fairly simple without being trivial. The second case study is an algorithm
for topological sorting2. The algorithm is interesting, because its formal specification
involves an abstract data structure that is not trivial. This ‘TopSort’ example is so far the
largest example that has been processed on mural . The case studies are presented in turn.
In the presentation we show most of the mural constants and rules directly representing
the specification, but have skipped most of the additional rules (and constants) created as
lemmas during proof construction.

When doing the case studies, the VST was still at a rather prototypal level, which
meant that it was necessary to create the PA theories for the VDM specifications ‘by
hand’ in order to come through. However, with the later additions to the VST both case
studies could have been carried out using the direct transformation from specifications in
the VST to theories in the PA.

The basis for these case studies is the VDM instantiation of mural . The theory for
VDM entered into mural is a form of LPF [BCJ84] extended also to handle types3, where
conservative extensions are added to handle sets, sequences, mappings, etc. The work on
the VDM instantiation has been done independently of – and does not correspond to – any
established proof theory for VDM apart from what is described here. The VDM theory
store consists of a huge number of rules. We only present a few of these rules, namely
the ones that have been applied in the small examples we are giving of proofs. The style
of the proofs and proof rules is similar to that in Cliff Jones’ book [Jon90c], so that is the
place for the hungry reader to collect more information.

1The reactor example originates from Bloomfield and Froome [BF86]. The VDM formulation given
here has been extracted from [FE91].

2The algorithm for topological sorting has previously been given a VDM formulation in [EB89], which
includes a complete VDM development from an abstract specification over several design stages to an
implementation in VAX-11 Pascal. The VDM development in this chapter is extracted from [Elv90].

3There is no magic in this. We are referring to expressions of the form s:T , saying that s has type T .
Such typing expressions are not part of the original definition of LPF.
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10.1 Specifications in VDM
A VDM development – in its purest form – consists of a sequence of less and less ab-
stract specifications and of reifications between succeeding abstract/concrete specifica-
tions. The first specification in the sequence is referred to as the abstract specification.
The succeeding specifications are referred to as design step one, two, etc.

VDM specifications automatically give rise to some proof obligations that have to be
discharged in order for the specification to be consistent. Similarly for steps of develop-
ment. There are also a number of proof obligations that arise less automatically, namely
those we regard as validation conditions. Thus proof obligations for a VDM development
divide into three classes: validation conditions for the specifications, consistency proof
obligations for the specifications, and proof obligations for the reifications.

To validate an abstract specification means to increase your own confidence that it is
really a model of the problem you want to solve. To validate design steps means to assure
yourself that the new features/properties added to the design do not affect the validity of
the specification.

Each of the specifications must be internally consistent. Functions must be total over
their specified domains and operations must be satisfiable4.

Concrete specifications must be proper refinements of more abstract ones. The con-
crete data structures must be adequate to represent the abstract ones. The concrete func-
tions and operations must be proper models of the abstract ones, which can be ensured by
discharging the domain and result proof obligations.

The two latter classes of proof obligations can easily be extracted from the speci-
fications. The obligation to validate a specification is more difficult to formalize: you
can never undertake a formal proof that guarantees you a contented customer. It is only
necessary to validate the extensions added to the design steps, since validity of the core
part of the specification, originating from the refinement of the previous step (initially the
abstract specification), is inherited.

Discharging a proof obligation is performed through a formal proof. The preparation
for carrying out such formal proofs is usually to represent the specification or develop-
ment as logical formulae in some theorem prover or proof assistant. This is exactly the
approach that we take in the two case studies, where the properties expressed by the proof
obligations must be logical consequences of (the representation of) the specification: that
is they must be derivable from the specification by the rules in the VDM instantiation of
mural .

10.2 Transformation of VDM into mural -theories
This section describes the transformation of a few VDM constructs into constants and
rules in the VDM theory store. We are only giving a few very specific examples, which
have all explicitly been used as central parts of the transformation of the case studies.
A more complete set of transformation rules for VDM constructs has been developed in
connection with the description of the VST – see Chapter 8. This section is not comple-

4Satisfiability was in the first edition of [Jon90c] called implementability. Satisfiability means that
an operation satisfies the satisfiability proof obligation. If some function ensures this property, then this
function is denoted as the implementation of the operation. We use the sloppy convention, that an operation
is an ‘implicitly defined function’, and that a function is ‘an explicitly defined operation’.
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menting, but rather illuminating, other aspects of that work. The transformation schemes
in this section have been developed solely as an aid to carry the case studies through.
Better schemes could perhaps be found.

10.2.1 Data types
The VDM instantiation takes a number of types as primitive, such as natural numbers,
sets, sequences, and maps. These will not be described here. Instead we propose a way of
providing new composite data types with induction rules. The technique is based on the
algebraic principle of generator induction.

In VDM a new data type is introduced by a (set of) domain equation(s). The valid
objects are pointed out by an invariant. To prove properties of such defined data types we
often need an induction rule.

One way to derive an induction rule can be found in the algebraic principle of gener-
ator induction over finitely generated domains. Consider the following example:

Example 10.2.1 (Generator Induction) Let the domain L be non-empty lists of elements
from the VDM domain P, with the partial ordering �:P×P→ B.

L = P+

where

inv-L :L→ B
inv-L(l) 4 (len l≥ 2) ⇒ (hd tl l� hd l)

L is finitely generated by the single generator function

gen-L :P×L→ L
gen-L(p, l) 4 if hd l� p

then [p]y l
else [hd l]y [p]y tl l

from the basic set5 of objects {[p] | p:P} of singleton lists over P. To prove that
objects in L have some property Q:L→ B, the following generator induction scheme can
be applied:

L ind

[p]{p:P} ` Q[[p]],
[p, l]{p:P, l:L,Q[l]} ` Q[gen(p, l)]

∀l:L ·Q[l]

Example 10.2.1 is easy to generalize for other finitely generated domains, and we will see
another example of how this works for the TopSort case study.

The principle of generator induction is in particular applicable in VDM, where all
objects of any domain must be of finite size, and therefore are very likely to be finitely
generable in some sense.

Remark: In [Elv90] we tried to formulate a general scheme for how to formulate induction
rules, where the soundness of the resulting rules should be provable in the PA. This turned
out to be very indigestible. It seems that such induction rules are best formulated ad

5This set is not a VDM set.
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hoc and then added as axioms to the PA. Whether their formulation in practice can be
automated is still an open question, even though there are no deep foundational questions
involved in this.

10.2.2 Functions
We use a loose abstract notation – borrowed from mural – to express how function defi-
nitions look in general. Thus a function defined in VDM as

f :A1× . . .×An→ D
f (a1, . . . ,an) 4 E[a1, . . . ,an],n≥ 0
pre P[a1, . . . ,an]

transforms in mural to

f[n,0]4 E[[[e1]], . . . , [[en]]] pre-f[n,0]4 P[a1, . . . ,an]

Here we have used E to denote an arbitrary expression and P an arbitrary predicate, both
with free variables among a1, . . . ,an. Note that it is possible also to define recursive func-
tions in this way. Examples of recursive functions can be seen in the TopSort case study.
The typing information of the precondition and the function are expressed in definedness
rules, which need to be proved, i.e. they are consistency proof obligations:

def f
a1:A1, . . . ,an:An, pre-f [a1, . . . ,an]

f [a1, . . . ,an]:D

def pre-f
a1:A1, . . . ,an:An

pre-f [a1, . . . ,an]:B

For proving properties about recursive functions defined over some abstract data type,
we have defined a rule for well-founded induction, which could also have been called
induction ‘on the size of the argument’:

WF Induction

par:PAR,
∀pp:PAR ·ord[pp]:N

[q]{q:PAR,(∀p:PAR · (ord[p]< ord[q]) ⇒ F[p])} ` F[q]
F[par]

The function ord is a function that decides the ‘size’ of a given argument. It is always
possible to define such a function for objects in a finitely generated domain, since the
size can be defined as the number of generator function applications that is necessary in
order to generate the object. Thus ord is not a bijection, but an injection from PAR to N,
defining a well-founded ordering on PAR (of course PAR must be finitely generated).

Refer to Chapter 8 for a description of how to transform operations.

10.2.3 Let expressions
The let-expressions used in the case studies generalize to expressions of the form

let P[x] in E[x],
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which can be translated to an expression of the form

E[(ε x:A.P[x])] iff ∃x:A ·P[x],

where ε is the usual choice operator from first order logic. Since variables can only be
primitive, there is no way to define things like (recursive) functions in let constructs.

The ε-operator is defined as a primitive binder, together with the following axioms:

ε def
∃x:A ·P[x]

P[ε x:A ·P[x]] ε form
∃x:A ·P[x]

ε x:A ·P[x]:A

There are no problems with non-determinism of choice. To see that choice is determinis-
tic, one can easily prove:

ε deterministic
∃x:A ·P[x]

ε x:A ·P[x] = ε x:A ·P[x]
This follows since a rule in the VDM instantiation requires that all well-defined expres-
sions are equal to themselves.

10.3 A watchdog for a reactor system
The system – a part of which we are going to specify – is illustrated in Figure 10.1.
It consists essentially of four units: a reactor, its controller, a watchdog, and a display.
Trip, veto, and indicator signals are transmitted between these units. We shall specify the
functionality of the watchdog unit, whose responsibility it is to set the indicator signals
and the mode (a special ‘error’ or ‘danger’ indicator) on the basis of the trip and veto
information it receives from the other units.

REACTOR CONTROLLER

WATCHDOG

DISPLAY BOARD

CONTROL SIGNALS

VETO SIGNALS

GUARDLINE

TRIP SIGNALS

INDICATOR SIGNALS

Figure 10.1: The Reactor Control System

The presence of a trip signifies an abnormal situation (for example, the output of
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some sensor in the reactor rising above a threshold level) which may require intervention
by the user (the ‘user’ could either be a human operator or another part of the system).
The display board, therefore, must be notified (by setting indicators) if a trip occurs. A
veto is a signal indicating that a particular trip signal has either been properly handled
or that the controller unit has decided to ignore or override the trip. An indicator signal
is a notification of the occurrence of a particular trip (the indicator signals could drive
warning lights on the display board). There are only a finite number of different signals.
The mode (or overall safety indicator of the reactor) can take one of two values: OK or
TRIP, representing, respectively, the normal operating state and some emergency state.

The function of the watchdog – specified as an operation called watch – is to control
the reactor by setting (i.e. updating) indicators and the mode depending on how trips and
vetoes have been altered since the last update. The (mode of the) reactor is OK if (and only
if) the set of all trips is equal to the set of all vetoes and the reactor was not previously
in TRIP-mode, otherwise the reactor is in TRIP-mode. Problems of initialization and
so on are not being considered. It is envisaged that something periodically causes the
watchdog to execute the watch operation. We are mainly concerned with the internals
of the watchdog. A specification of the whole reactor would have to ensure that watch
was, for example, executed sufficiently frequently or immediately following certain other
events.

The watchdog’s watch operation must satisfy the following conditions in order to
operate safely:

• signals (indicators, trips, and vetoes) must latch – that is, once on, watch must not
turn them off,

• a signal can never be indicated before it has been tripped,

• a signal can never be vetoed before it has been tripped,

• once the reactor is in TRIP-mode we must rely on some external agent to cancel the
TRIP (that is, watch must never take the system from a TRIP state to an OK state),

• if there is an un-vetoed trip, then watch must set the state to TRIP-mode, and

• any tripped signal must be indicated by the watchdog.

The condition described in the third item is a requirement on parts of the reactor system
external to the watchdog. In the validation of the abstract specification in Section 10.3.2
we discuss this in more depth.

10.3.1 Design guidelines
We model signals as a type with finitely many objects. The state of the watchdog is
then modelled as consisting of four parts: vetoes, trips, and indicators, which are sets of
signals, and a reactor mode, which is either OK or TRIP. With access to this state the op-
eration watch operates. In the first design stage signals are changed to be natural numbers
from some index set, and the sets of signals are changed to be lists of Booleans with a
fixed length equal to the maximum of the index set. Each number then indexes a position
in the list, and that position’s Boolean value indicates whether the signal represented by
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that number has been registered. It is not decided how the watchdog interacts with the
other units. We are mainly interested in the functionality of the watch operation6.

10.3.2 Formal development
Abstract specification

We model signals as a type with finitely many objects. This type is described by an
index set of natural numbers, where max denotes some fixed but arbitrary natural number.
The state of the watchdog is then modelled as consisting of four parts: vetoes, trips, and
indicators, which are sets of signals, and a reactor mode, which is either OK or TRIP.
With access to this state the operation watch operates.

Signal = {1, ..,max}

Mode = {TRIP,OK}

State :: tr : Signal-set
vt : Signal-set
md : Mode
ind : Signal-set

The fields of State are trips, vetoes, a mode and some indicators. The state of the watchdog
is formalized as a subtype of State. Note how the requirements that no signal can ever
be indicated before it has been tripped and that no signal can ever be vetoed before it has
been tripped are built into the state through the invariant.

WDstate = State

where

inv-WDstate(s) 4 (ind(s)⊆ tr(s)) ∧ (vt(s)⊆ tr(s))

watch
ext wr s : WDstate
post ((md(s) = TRIP) ⇔ ((¬(tr(↼−s )⊆ vt(↼−s ))) ∨ (md(↼−s ) = TRIP)))∧

ind(s) = ind(↼−s )∪ tr(↼−s )∧
tr(s) = tr(↼−s )∧
vt(s) = vt(↼−s )

Strictly speaking it is not necessary to model the change in the indicators as the union of
the trips and the indicators in the old state. It would be sufficient just to assign the trips to
the indicators, since a trip can only be removed by some reset operation.

6It is very convenient to limit our concern to pure functionality, since there is no standard way of han-
dling interaction, that is concurrency, in VDM, and in particular not in the VDM logic implemented in mu-
ral . (Such extensions have been seen. Refer for instance to the work of Woodcock and Dickinson [WD88]
or Ketil Stølen [Stø90]).
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First design stage

The design decision guiding the data reification from the abstract to the concrete level uses
the information that only finitely many different signals exist. The three sets of signals in
the abstract state can then be modelled as sequences of Booleans of length equal to the
number of different signals; the state still includes a mode.

Mode = {TRIP,OK}

State2 :: tr2 : B∗
vt2 : B∗
md2 : Mode
ind2 : B∗

WDstate2 = State2

where

inv-WDstate2(mk-State2(tr,vt,md, ind)) 4

len tr = len vt∧
len ind = len vt∧
ptwImpliedBy(tr, ind)∧
ptwImpliedBy(tr,vt)

All the lists of Booleans must have the same length, and still no signal can be indicated
or vetoed before it has been tripped. The auxiliary function ptwImpliedBy (‘pointwise
implied by’) models the ⊆-relation on sets.

ptwImpliedBy :B∗×B∗→ B
ptwImpliedBy(l,m) 4 ∀i:N1 · (i ∈ inds l∧ i ∈ inds m) ⇒ (m[i] ⇒ l[i])

In the initial state all items in the lists are false. We insist that watch must not take
the system from a TRIP state back to an OK state. The refined version of watch is called
watch2. Note that the predicate restUnchanged makes sure that the lengths of the lists
in the old and the new states are the same. This property is not ensured by the invariant,
since we did not give fixed length to the lists – we simply stated that they should all have
the same length. Now we have also made sure that this length is fixed over time.

watch2
ext wr s : WDstate2
post ((md2(s) = TRIP) ⇔ (sigNotVetoed(s) ∨ (md2(↼−s ) = TRIP)))∧

indsCorrect(↼−s ,s)∧
restUnchanged(↼−s ,s)

The auxiliary functions are self-explanatory:

sigNotVetoed :WDstate2→ B
sigNotVetoed(s) 4 ∃i:N1 · (i ∈ inds ind2(s))∧ tr2(s)[i]∧¬(vt2(s)[i]))

indsCorrect :WDstate2×WDstate2→ B
indsCorrect(s,ss) 4 ∀i:N1 · (i ∈ (inds ind2(s)∩ inds ind2(ss)))

⇒ ind2(ss)[i] = (ind2(s)[i] ∨ tr2(s)[i])
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restUnchanged :WDstate2×WDstate2→ B
restUnchanged(s,ss) 4

tr2(s) = tr2(ss)∧
vt2(s) = vt2(ss)

Proof obligations

Consistency of the abstract specification
The following two formulae express ‘sensibleness’ conditions (i.e. well-formedness proof
obligations) to ensure that the definitions are total and correctly typed. The reason it is
necessary to show that the invariant and postcondition are of type B (a type with two
elements: {true, false}) is that VDM is based on logic for partial functions, where you
are only allowed to reason about terms that have a well-defined7 value (refer to [BCJ84]).

∀s:State · inv-WDstate(s):B

∀s:WDstate, ss:WDstate ·post-watch(s,ss):B

The following formula is the standard satisfiability proof obligation8:

∀s:WDstate · ∃ss:WDstate ·post-watch(s,ss)

Validation of the abstract specification
We now express formally the validation conditions stated informally at the beginning of
this section. Indicator, trip, and veto signals must, once they are on, stay on after an
execution of the watchdog. New indicators can be signalled by the watch operation:

∀s,ss:WDstate ·post-watch(s,ss) ⇒ ind(s)⊆ ind(ss) (10.1)

Nothing – neither the watchdog nor its environment – must change the trips or the vetoes
during the execution of watch:

∀s,ss:WDstate ·post-watch(s,ss) ⇒ tr(s) = tr(ss) (10.2)
∀s,ss:WDstate ·post-watch(s,ss) ⇒ vt(s) = vt(ss) (10.3)

A signal must never be indicated before it has been tripped, and a signal must never be
vetoed before it has been tripped:

∀s,ss:WDstate ·post-watch(s,ss) ⇒ ind(ss)⊆ tr(s) (10.4)
∀s,ss:WDstate ·post-watch(s,ss) ⇒ vt(ss)⊆ tr(s) (10.5)

The watchdog’s mode will ‘latch’ in TRIP-mode:

∀s,ss:WDstate ·
(post-watch(s,ss)∧md(s) = TRIP) ⇒ md(ss) = TRIP

(10.6)

7For example the proposition ‘ 1
0 = 3’ is considered undefined, and does not denote an element of the

type B.
8Note that we use s to denote the old state, and ss to denote the new. The reason for this is, that it is

easier to write in the PA, where it is not possible to write ↼−s .
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The watchdog will set the mode to TRIP if there is an un-vetoed trip:

∀s,ss:WDstate ·
(post-watch(s,ss)∧¬(tr(s)⊆ vt(s))) ⇒ md(ss) = TRIP

(10.7)

The watchdog must always set the indicators according to the present trips:

∀s,ss:WDstate ·post-watch(s,ss) ⇒ ind(ss) = tr(s) (10.8)

One can see that the validation conditions range from simple functionality require-
ments (the first three) to essential safety properties of the system (the last three).

Note (again) that two validation conditions, namely the one saying that no signal is
ever indicated before it has been tripped (10.4) and the one saying that no signal is ever
vetoed before it is tripped (10.5), have been built directly into the specification – they
are part of the invariant. Whatever updates the state of the watchdog in between the
executions of watch, it must leave the state as a valid object in the type WDstate. Thus,
through the definition of a subtype, we have imposed a number of requirements on the
external world. Finally, note that without stating these properties as part of the invariant on
states, we would not have been able to assure that they were fulfilled. From a higher level
view of the system (perhaps a specification of the entire reactor system) a variety of other
safety or validation properties may be stated (such as that watch is executed sufficiently
often). However since we are considering the watchdog more or less in isolation, such
higher-level properties and obligations can legitimately be ignored (and indeed are).

The validation conditions (10.2) and (10.3) could also have been build into the spec-
ification by splitting the state into four components tr, vt, md, and ind and assigning the
read only option (rd) to the components tr and vt in the watchdog specification. The rea-
son for not doing so is that we decided to consider the state as a whole instead of splitting
it into four parts. The possibility of splitting a state into its components is often used in
[Jon90c].

Validation and consistency of first design step
By undertaking the refinement proofs (i.e. showing that WDstate2 is an adequate repre-
sentation of WDstate and showing the domain and result obligations for watch/watch2),
all the validation conditions are inherited from the abstract specification to the concrete
specification, since these could easily be re-proved by application of the retrieve function.
All that remains is to prove the new consistency proof obligations, which arise automati-
cally for the concrete specification:

∀s:State2 · inv-WDstate2(s):B

∀l:B∗, m:B∗ ·ptwImpliedBy(l,m):B

∀s:WDstate2 · sigNotVetoed(s):B

∀s:WDstate2, ss:WDstate2 · indsCorrect(s,ss):B

∀s:WDstate2, ss:WDstate2 · restUnchanged(s,ss):B

∀s:WDstate2, ss:WDstate2 ·post-watch2(s,ss):B

∀s:WDstate2 · ∃ss:WDstate2 ·post-watch2(s,ss)



10.3 A watchdog for a reactor system 273

Refinement
The refinement is proved correct in the traditional way. First a well-defined retrieve func-
tion is found, and then the adequacy of the concrete state to represent the abstract state
is proved. The domain and result rules are proved for each operation. In this case the
domain rule is trivial, since neither the abstract watch nor the concrete watch2 operation
carries any precondition.

retr-WDstate :WDstate2→WDstate
retr-WDstate(mk-State2(tr,vt,md, ind)) 4

let tr′ = {i | tr[i]}
vt′ = {i | vt[i]}
ind′ = {i | ind[i]} in

mk-State(tr′,vt′,md, ind′)

Definedness of retrieve function

∀s:WDstate2 · retr-WDstate(s):WDstate

Adequacy of state

∀s1:WDstate · ∃s2:WDstate2 · s1 = retr-WDstate(s2)

Result rule

∀s:WDstate2, ss:WDstate2 · post-watch2(s,ss)
⇒ post-watch(retr-WDstate(s),retr-WDstate(ss))

10.3.3 Representation in mural

Instead of using the default translation mechanism we generated the definitions by hand9.
For types, operations, and functions introduced in the VDM specification, type symbols
and constant symbols are declared in a theory in the PA. Each part of the development
has its own theory. Translating composite types will result in constants for the VDM
‘make’ and ‘selector’ functions being added explicitly. In addition to a declaration (stat-
ing the expected number of arguments), each function symbol needs a definition. VDM
operations are translated to a pair of Boolean-valued constants to represent the pre and
postconditions. VDM functions are also translated to constants. The type information is
added as definedness proof obligations, as briefly described in Section 10.2.2.

Consistency properties (traditional proof obligations: definedness, satisfiability) are
generated automatically by the VST10. Validity properties cannot be automatically gener-
ated since in general they rely on the specifier’s understanding of what the system should
do and must therefore be entered by the mural user as unproven conjectures (yet-to-be-
proven rules) in the PA.

9As explained in the introduction of this chapter, the automatic translation mechanism was not available
at the time these case studies were carried out.

10At least they would have been generated automatically if we had been able to use the VST’s translation
tool.
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A ’print-out’ facility is included in mural which allows the generation of LATEX doc-
uments describing theories, rules, proofs, and so on. The following subsections contain
output generated by the PA from the theories for the abstract specification, the first design
step, and the reification from the abstract specification to the first design step. The LATEX
source files which are generated can easily be edited and directly included in other LATEX
documents.

Representation of the abstract specification

Types
Signal 7→ 〈 i : N1 . ( i ≤ max ) 〉,

WDstate 7→ 〈 n : State . ( inv-WDstate [ n ] ) 〉,

State 7→ [0,0],

Mode 7→ [0,0]

Signal and WDstate are subtypes of N1 and State respectively. Mode and State are primi-
tive types. That means that their ‘meaning’ will be introduced through axioms, as can be
seen below.

Constants
max 7→ [0,0],

OK 7→ [0,0],
TRIP 7→ [0,0],

s-tr 7→ [1,0],
s-vt 7→ [1,0],
s-md 7→ [1,0],
s-ind 7→ [1,0],
mk-State 7→ [4,0],

The above constants are all primitive with arity [0,0], [1,0], or [4,0], meaning that they
take 0, 1, or 4 expression arguments respectively, and that none of them take any types
as argument. The s- symbols are selectors for the composite type, and mk-State is the
corresponding make function. All these constants are defined by the axioms below.

inv-WDstate 7→ ( ( ( s-ind [[[e1]]] ) ⊆ ( s-tr [[[e1]]] ) ) ∧ ( ( s-vt [[[e1]]] ) ⊆ ( s-tr [[[e1]]] ) ) )

inv-WDstate is a defined constant, which takes one expression as its argument. The ‘ex-
pression hole’, [[e1]], serves as a placeholder for this argument.

post-watch 7→
( ( ( ( ( s-md [[[e2]]] ) = TRIP ) ⇔

( ( ¬ ( ( s-tr [[[e1]]] ) ⊆ ( s-vt [[[e1]]] ) ) ) ∨ ( ( s-md [[[e1]]] ) = TRIP ) ) ) ∧
( ( s-ind [[[e2]]] ) = ( ( s-ind [[[e1]]] ) ∪ ( s-tr [[[e1]]] ) ) ) ) ∧
( ( ( s-tr [[[e2]]] ) = ( s-tr [[[e1]]] ) ) ∧
( ( s-vt [[[e2]]] ) = ( s-vt [[[e1]]] ) ) ) )

post-watch is a defined constant, which takes two expression arguments (there are two
holes in the definition – [[e1]] and [[e2]]). For both of these defined constants a formation
rule (to ensure well-typedness and totality) will be added as a new unproven rule.

In order to make the proofs go through more easily, an auxiliary function watch has
been added to the theory (by hand11). This is a useful and fairly standard procedure
when doing constructive proofs of satisfiability (and – as we shall see in Section 10.3.4
– adequacy), which generally involve proving an existential statement, and proceed using

11Obviously, the function watch cannot usually be generated automatically, since it is effectively an
implementation of the specification.
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the ‘exists introduction’ rule (refer to Section 10.5) which requires the construction of a
‘witness’ element.

watch 7→
mk-State [ ( s-tr [[[e1]]] ),

( s-vt [[[e1]]] ),
( if ( ( ¬ ( ( s-tr [[[e1]]] ) ⊆ ( s-vt [[[e1]]] ) ) ) ∨ ( ( s-md [[[e1]]] ) = TRIP ) )

then TRIP
else OK ) ,

( ( s-ind [[[e1]]] ) ∪ ( s-tr [[[e1]]] ) ) ,

Axioms
max is an element of N1. Expressions
OK and TRIP are distinct elements of type
Mode. OK and TRIP are the only elements
of Mode, and they are not equal.

max form
{ }
{ }
—-
( max : N1 )

OK-formation
{ }
{ }
—-
( OK : Mode )

TRIP-formation
{ }
{ }
—-
( TRIP : Mode )

Mode closure
{ }
{ ( g : Mode ) }
————————
( ( g = TRIP ) ∨ ( g = OK ) )

Mode values unequal
{ }
{ }
—-
( ¬ ( TRIP = OK ) )

The record type State is defined next. By a number of axioms we give sense to the
constant symbols introduced earlier. It takes 10 axioms to define the type State, and we
show four of them below. The other six are the analogues of s-tr-defn and s-tr-formation
for the other selector functions and are left as an exercise for the reader.
s-tr-defn
{ }
{ ( ( mk-State [ e1 , e2 , e3 , e4 ] ) : State ) }
——————————————————
( ( s-tr [ ( mk-State [ e1 , e2 , e3 , e4 ] ) ] ) = e1 )

s-tr-formation
{ }
{ ( t : State ) }
——————–
( ( s-tr [ t ] ) : ( Signal -set ) )

State-formation
{ }
{ ( e1 : ( Signal -set ) ) , ( e2 : ( Signal -set ) ) , ( e3 : Mode ) ,
( e4 : ( Signal -set ) ) }

——————————————————————————–
( ( mk-State [ e1 , e2 , e3 , e4 ] ) : State )

State-introduction
{ }
{ ( t : State ) }
——————–
( ( mk-State [ ( s-tr [ t ] ) , ( s-vt [ t ] ) , ( s-md [ t ] ) , ( s-ind [ t ] ) ] ) = t )

Rules
The following three rules express the conditions that inv-WDstate and post-watch are total
and correctly typed for all arguments of the correct type, and that the watch operation is
satisfiable.
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inv-WDstate form
{ }
{ ( s : State ) }
——————–
( ( inv-WDstate [ s ] ) : B )

post-watch form
{ }
{ ( s : WDstate ) , ( ss : WDstate ) }
————————————–
( ( post-watch [ s , ss ] ) : B )

watch satisfiability
{ }
{ ( s : WDstate ) }
———————-
∃ ss : WDstate . ( post-watch [ s , ss ] )

Lemmas
As previously mentioned, the constant watch was introduced purely as a construction to
aid the proof process, and the following two lemmas about watch allow the satisfiability
proof to go through smoothly. The last lemma is just another one which turns out to be
convenient when doing the proofs.
watch form
{ }
{ ( s : WDstate ) }
——————
( ( watch [ s ] ) : WDstate )

lem watch is implementation
{ }
{ ( s : WDstate ) }
——————
( post-watch [ s , watch [ s ] ] )

lem (s:State if s:WDstate)
{ }
{ ( s : WDstate ) }
——————–
( s : State )

Validation of abstract level
The validation conditions (10.1) to (10.8) are easily transformed into mural . They are
transformed to 8 unproved theorems, of which you can see 2 below. Note – as remarked
in Footnote 8 – that we do not use the usual hook notation, but let ‘s’ denote the old state
and ‘ss’ the new.
val 5
{ }
{ ( s : WDstate ) , ( ss : WDstate ) }
———————————-
( ( post-watch[ s , ss ] ) ⇒ ( ( s-vt[ss] ) ⊆ ( s-tr[s] ) ) )

val 7
{ }
{ ( s : WDstate ) , ( ss : WDstate ) }
———————————-
( ( ( post-watch[ s , ss ] ) ∧ ( ¬ ( ( s-tr[s] ) ⊆ ( s-vt[s] ) ) ) ) ⇒ ( ( s-md[ss] ) = TRIP ) )

If you carefully study ‘val 5’ and ‘val 7’ you will see why the invariant of the state cannot
just require trips and vetoes to be equal.

Representation of the first design step

Here we only provide the bare translation of the specification, leaving out all the auxiliary
constants and lemmas. As the representation of the first design step is very similar to that
of the abstract specification no explanation should be required.
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Types
Mode 7→ [0,0],
State2 7→ [0,0], WDstate2 7→ 〈ss:State2 . (inv-WDstate2[ss])〉

Constants
max 7→ [0,0],

OK 7→ [0,0],
TRIP 7→ [0,0],

s-tr2 7→ [1,0],
s-vt2 7→ [1,0],
s-md2 7→ [1,0],
s-ind2 7→ [1,0],
mk-State2 7→ [4,0],

inv-WDstate2 7→
( ( ( ( len [ ( s-tr2 [[[e1]]] ) ] ) = max) ∧
( ( ( len [ ( s-vt2 [[[e1]]] ) ] ) = max )∧
( ( len [ ( s-ind2 [[[e1]]] ) ] ) = max ) )) ∧
( ( ptwImpliedBy [ ( s-tr2 [[[e1]]] ) , ( s-ind2 [[[e1]]] ) ] ) ∧
( ptwImpliedBy [ ( s-tr2 [[[e1]]] ) , ( s-vt2 [[[e1]]] ) ] ) ) ) ) ,

ptwImpliedBy 7→
∀ i : N1 . ( ( ( i ∈ ( inds [[[e1]]] ) ) ∧ ( i ∈ ( inds [[[e2]]] ) ) )
⇒ ( ( [[e2]]@ i ) ⇒ ( [[e1]]@ i ) ) ) ,

post-watch2 7→
( ( ( ( s-md2 [[[e2]]] ) = TRIP ) ⇔

( ( sigNotVetoed [[[e1]]] ) ∨ ( ( s-md2 [[[e1]]] ) = TRIP ) ) ) ∧
( ( indsCorrect [[[e1]] , [[e2]]] ) ∧
( restUnchanged [[[e1]] , [[e2]]] ) ) ) ,

sigNotVetoed 7→
∃ i : 〈 ii : N1 . ( ii ≤ max ) 〉 . ( ( ( s-tr2 [[[e1]]] ) @ i ) ∧ ( ¬ ( ( s-vt2 [[[e1]]] ) @ i ) ) ) ,

indsCorrect 7→
∀ k : 〈 ii : N1 . ( ii ≤ max ) 〉 .

( ( ( s-ind2 [[[e1]]] ) @ k ) = ( ( ( s-ind2 [[[e2]]] ) @ k ) ∨ ( ( s-tr2 [[[e2]]] ) @ k ) ) )

restUnchanged 7→
( ( ( s-tr2 [[[e1]]] ) = ( s-tr2 [[[e2]]] ) ) ∧ ( ( s-vt2 [[[e1]]] ) = ( s-vt2 [[[e2]]] ) ) )

Axioms
Most of these axioms are almost identical to those of the abstract specification, so we will
only show four of them. Try to create the 11 axioms that are not explicitly shown.
s-tr2 defn
{ }
{ ( ( mk-State2 [ e1 , e2 , e3 , e4 ] ) : State2 ) }
———————————————————-
( ( s-tr2 [ ( mk-State2 [ e1 , e2 , e3 , e4 ] ) ] ) = e1 )

s-tr2 form
{ }
{ ( t : State2 ) }
——————–
( ( s-tr2 [ t ] ) : ( B * ) )

mk-State2 defn
{ }
{ ( t : State2 ) }
——————–
( ( mk-State2 [ ( s-tr2 [ t ] ) , ( s-vt2 [ t ] ) , ( s-md2 [ t ] ) , ( s-ind2 [ t ] ) ] ) = t )
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mk-State2 form
{ }
{ ( e1 : ( B * ) ) , ( e2 : ( B * ) ) , ( e3 : Mode ) ,
( e4 : ( B * ) ) }

——————————————————————
( ( mk-State2 [ e1 , e2 , e3 , e4 ] ) : State2 )

Rules
inv-WDstate2 form
{ }
{ ( s : State2 ) }
——————–
( ( inv-WDstate2 [ s ] ) : B )

sigNotVetoed form
{ }
{ ( s : WDstate2 ) }
——————–
( ( sigNotVetoed [ s ] ) : B )

ptwImpliedBy form
{ }
{ ( l : ( B * ) ) , ( m : ( B * ) ) }
——————————————
( ( ptwImpliedBy [ l , m ] ) : B )

post-watch2 form
{ }
{ ( s : WDstate2 ) , ( ss : WDstate2 ) }
————————————–
( ( post-watch2 [ s , ss ] ) : B )

indsCorrect form
{ }
{ ( s : WDstate2 ) , ( ss : WDstate2 ) }
————————————–
( ( indsCorrect [ s , ss ] ) : B )

restUnchanged form
{ }
{ ( s : WDstate2 ) , ( ss : WDstate2 ) }
————————————–
( ( restUnchanged [ s , ss ] ) : B )

watch2 sat
{ }
{ ( s : WDstate2 ) }
——————–
∃ ss : WDstate2 . ( post-watch2 [ s , ss ] )

Refinement

Apart from giving the translation of the reification constructs, we emphasize also the con-
structs necessary to undertake the adequacy proof, thereby providing the (two) auxiliary
constructs and lemmas. In particular we have as one auxiliary construct introduced an
inject-function, which is in some sense the opposite of a retrieve-function, since such a
construct – which in general may not exist – tends to make the constructive adequacy
proof simpler. Like in the satisfiability proofs the problem is with the existential quanti-
fier, so the other auxiliary construct is a ‘witness’.

Constants
retr-WDstate 7→

( mk-State [ ( extr-Set [ ( s-tr2 [[[e1]]] ) ] ) ,
( extr-Set [ ( s-vt2 [[[e1]]] ) ] ) ,
( s-md2 [[[e1]]] ) ,
( extr-Set [ ( s-ind2 [[[e1]]] ) ] ) ] ) ,

inj-WDstate2 7→
( mk-State2 [ ( extr-List [ ( s-tr [[[e1]]] ) , max ] ) ,

( extr-List [ ( s-vt [[[e1]]] ) , max ] ) ,
( s-md [[[e1]]] ) ,
( extr-List [ ( s-ind [[[e1]]] ) , max ] ) ] ) ,
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extr-Set 7→
those i : N1 . ( ( i ∈ ( inds [[[e1]]] ) ) ∧ ( [[e1]]@ i ) ) ,

extr-List 7→
( if ( [[e2]]= 1 )

then ( [ ( 1 ∈[[e1]] ) ] )
else ( ( extr-List [[[e1]] , ( pred [[[e2]]] ) ] ) y ( [[e2]]∈[[e1]] ) ) )

Rules
retr-WDstate form
{ }
{ ( s : WDstate2 ) }
——————–
( ( retr-WDstate [ s ] ) : WDstate )

Adequacy
{ }
{ ( s : WDstate ) }
——————
∃ s2 : WDstate2 . ( s = ( retr-WDstate [ s2 ] ) )

Result Rule
{ }
{ ( s : WDstate2 ) , ( ss : WDstate2 ) }
————————————–
( ( post-watch2[ s , ss ] ) ⇒ ( post-watch[ ( retr-WDstate[s] ) , ( retr-WDstate[ss] ) ] ) )

Lemmas
To give you a feel for what kind of properties you have to proof for VDM developments,
we show a couple of lemmas ‘at length’.
These lemmas are all related to the adequacy proof
for the watchdog. One thing you will experience
when using mural is that you have to be careful
when you decide how to decompose your proofs
into suitable lemmas.

inj-WDstate2 form
{ }
{ ( s : WDstate ) }
——————
( (inj-WDstate2[s]) : WDstate2 )

extr-Set form
{ }
{ ( s : ( B * ) ) }
———————-
( ( extr-Set [ s ] ) : ( Signal -set ) )

extr-List form
{ }
{ ( n : N1 ) , ( s : ( Signal -set ) ) }
——————————————–
( ( extr-List [ s , n ] ) : ( B * ) )

lem (extr-Set[extr-List[s,max]]=s)
{ }
{ ( s : ( Signal -set ) ) }
——————————
( ( extr-Set[( extr-List[ s , max ] )] ) = s )

lem (length of list)
{ }
{ ( s : ( Signal -set ) ) , ( n : N1 ) }
——————————————–
( ( len [ ( extr-List [ s , n ] ) ] ) = n )

lem (ptwImpliedBy models ⊆)
{ }
{ ( ( len [ l ] ) = ( len [ m ] ) ) , ( l : ( B * ) ) , ( m : ( B * ) ) , ( ptwImpliedBy [ l , m ] ) }
———————————————————————————————————-
( ( extr-Set [ l ] ) ⊆ ( extr-Set [ m ] ) )

lem (retroinj = id-WDstate)
{ }
{ ( s : WDstate ) }
——————
( ( retr-WDstate [ ( inj-WDstate2 [ s ] ) ] ) = s )
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lem (s-md2[inj-WDstate2[...]]=...)
{ }
{ ( s : WDstate ) }
——————
( ( s-md2 [ ( inj-WDstate2 [ s ] ) ] ) = ( s-md [ s ] ) )

lem (s-ind2[inj-WDstate2[...]]=...)
{ }
{ ( s : WDstate ) }
——————
( ( s-ind2 [ ( inj-WDstate2 [ s ] ) ] ) = ( extr-List [ ( s-ind [ s ] ) , max ] ) )

lem (s-tr2[inj-WDstate2[...]]=...
{ }
{ ( s : WDstate ) }
——————
( ( s-tr2 [ ( inj-WDstate2 [ s ] ) ] ) = ( extr-List [ ( s-tr [ s ] ) , max ] ) )

lem (s-vt2[inj-WDstate2[...]]=...)
{ }
{ ( s : WDstate ) }
——————
( ( s-vt2 [ ( inj-WDstate2 [ s ] ) ] ) = ( extr-List [ ( s-vt [ s ] ) , max ] ) )

lem (⊆ is impl by ptwImpliedBy)
{ }
{ ( s : ( Signal -set ) ) , ( ss : ( Signal -set ) ) , ( s ⊆ ss ) }
———————————————————————-
( ptwImpliedBy [ ( extr-List [ ss , max ] ) , ( extr-List [ s , max ] ) ] )

10.3.4 Proofs
We do not include all the proofs, since these tend to be tedious and uninteresting to read.
In order to give a flavour, we show three of the more interesting examples. The first of
these proofs is a derivation of the formation rule (ensuring well-typedness and totality)
for the invariant (i.e. inv-WDstate form).

h1 ( s : State )
1 ( ( s-tr [ s ] ) : ( Signal -set ) ) by s-tr-formation on [h1]; []
2 ( ( s-ind [ s ] ) : ( Signal -set ) ) by s-ind-formation on [h1]; []
3 ( ( s-vt [ s ] ) : ( Signal -set ) ) by s-vt-formation on [h1]; []
4 ( δ ( ( s-ind [ s ] ) ⊆ ( s-tr [ s ] ) ) ) by δ -⊆ on [2, 1]; []
5 ( δ ( ( s-vt [ s ] ) ⊆ ( s-tr [ s ] ) ) ) by δ -⊆ on [3, 1]; []
6 ( δ ( ( ( s-ind [ s ] ) ⊆ ( s-tr [ s ] ) ) ∧ ( ( s-vt [ s ] ) ⊆ ( s-tr [ s ] ) ) ) )

by δ∧-inherit on [4, 5]; []
7 ( δ ( inv-WDstate [ s ] ) ) folding from 6
c ( ( inv-WDstate [ s ] ) : B ) by bool form on [7]; []

The rules to which this proof (and others in this chapter) appeals are collected in Sec-
tion 10.5, so that is the place to look for rules like δ -⊆ and ‘δ∧-inherit’. Note that folding
in Lines 6-7 indicates that an instance of a right-hand-side of a definition (in this case the
definition of inv-WDstate) has been replaced by the corresponding left-hand-side.

The second proof is of the satisfiability of watch. This proof goes through rather
easily by an application of the lemma ‘lem update is implementation’ which asserts that
the newly introduced constant watch (used as the ‘witness’ for an ‘∃-introduction’) is a
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correct implementation.

h1 ( s : WDstate )
1 ( ( watch [ s ] ) : WDstate ) by watch form on [h1]; []
2 ( post-watch [ s , ( watch [ s ] ) ] by lem watch is implementation on [h1]; []
c ∃ ss : WDstate . ( post-watch [ s , ss ] ) by ∃-I on [1, 2]; []

The more interesting proofs seem to be those establishing the correctness of the reifica-
tion. Here is the proof of adequacy. In order to undertake the proof we have defined an
inject function, which is part of the reification theory. The proof has been broken down
into a number of lemmas. These are all part of the reification theory and were given in the
previous subsection.

h1 ( s : WDstate )
1 ( ( inj-WDstate2 [ s ] ) : WDstate2 ) by inj-WDstate2 form on [h1]; []
2 ( ( retr-WDstate [ ( inj-WDstate2 [ s ] ) ] ) = s ) by lem (retroinj = id-WDstate) on [h1]; []
3 ( s = ( retr-WDstate [ ( inj-WDstate2 [ s ] ) ] ) ) by =-comm on [2]; []
c ∃ s2 : WDstate2 . ( s = ( retr-WDstate [ s2 ] ) ) by ∃-I on [1, 3]; []

Remark: When starting with the case studies, we expected to be able to concentrate on
the ‘interesting’ proofs concerning validation and refinement, but it turned out that the
consistency proof obligations required much more time than expected. The reason why
we needed to spend more time on the consistency proof obligations was twofold. The
first thing that one encounters is that if something is wrong in the specification that you
are reasoning about, you will have to do all the proofs again, since the specification acts
as a kind of assumption in your proof, and if the assumptions change the proof changes.
Caused by the first reason, you start by proving that your specification is consistent, be-
cause it is tedious to do almost the same proofs over and over again. This leads directly to
the second reason: even trivial proofs in mural take time, and since a lot of trivial proofs
need to be done in order to ensure consistency, the proof of consistency takes time.

10.4 An algorithm for topological sorting
Topological sorting is the act of transforming a (finite) partial order into a linear order.
This concept of topological sorting is formalized with a precise definition, which involves
the definitions of a partial order and a linear order. The definition of linear orders is only
needed to explain what a topological order is.

Definition 10.4.1 (Partial Order)
A partial order (S,�) is a set, S, and a binary relation, �, on S which is

1. reflexive ∀s ∈ S · s� s,

2. antisymmetric ∀s, t ∈ S · s� t ∧ t � s ⇒ s = t, and

3. transitive ∀s, t,u ∈ S · s� t ∧ t � u ⇒ s� u.

Definition 10.4.2 (Linear Order)
A linear order (S,�) is a partial order for which any two elements of S are related by �:

∀s, t ∈ S · s� t∨ t � s.
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Figure 10.2: A simple Partial Order.

Any finite linear order can be represented as a sequence, L, with indices in the set inds L.

Definition 10.4.3 (Topological order and Topological Sorting)
A topological order of a finite partial order (S,�) is a sequence L of all and only all the
members in S, so that no element li in the sequence L is preceded by an element lj (i > j)
for which li � lj, i, j ∈ inds L, where inds L is the index set of L. The act of transforming a
partial order into a topological order is called topological sorting.

It is easy to see that a topological order of a partial order is always a linear order. The
definition of topological sorting is best illustrated through an example.

Example 10.4.4 (Topological Sorting) Consider the partial order (S,�), where S is equal
to {a,b,c,d}, and � is defined by

(x� y) ⇒ ((x,y) ∈ {(a,a),(b,b),(c,c),(d,d),(a,b),(a,c),(a,d),(c,d)})

for all x,y ∈ S. For the partial order (S,�) three possible topological orders exist:
[a,b,c,d], [a,c,d,b], and [a,c,b,d].

In Figure 10.2 you can see a drawing of the partial order, ordered left-to-right.

10.4.1 Design guidelines
By modelling partial orders with directed acyclic graphs and linear orders with non-repe-
ating sequences we develop an algorithm for topological sorting. In the abstract specifica-
tion directed acyclic graphs are modelled as mappings from nodes to sets of immediate12

successors and non-repeating sequences are modelled as sequences.

Example 10.4.5 (Partial Orders in Abstract Specification) The representation as a map-
ping of the partial order (S,�) from Example 10.4.4 is:

{a 7→ {b,c}, b 7→ {}, c 7→ {d}, d 7→ {}}

In the first design step the representation of graphs is changed to support the act of sorting.
Selecting a node with no predecessors is the basis for the data structure refinement: each
node is represented by a triple (p,n,ns) where p denotes the number of immediate prede-
cessors, n is the node name, and ns is the set of immediate successors. Directed acyclic
graphs are modelled as sets of triples. The representation of non-repeating sequences is
not changed. The price paid for this change in the representation of graphs is that it will
become harder to update graph representations when nodes are either added or removed.

12The immediate successors (predecessors) are to be opposed to all successors (predecessors) of a given
node. For instance in Example 10.4.4 a has b and c as immediate successors, and b, c, and d as successors.
The analogy to predecessors is straightforward.
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Example 10.4.6 (Partial Orders in First Design Stage) The representation as a set of
triples of the partial order (S,�) from Example 10.4.4 is:

{(0,a,{b,c}), (1,b,{}), (1,c,{d}), (1,d,{})}

Note that for a partial order there might exist many sequences that are proper topolog-
ical orders. Thus the result of applying a topological sorting algorithm to a partial order
is in general non-deterministic. However, for each partial order we are only interested in
computing one topological order. This is a design decision. Thus, if we again consider
Example 10.4.4 the expected result of applying topological sorting to (S,�) could be any
of the three listed topological orders.

10.4.2 Formal development
Abstract specification

Directed acyclic graphs are mappings from nodes to their set of outgoing graph edges13.

G0 = Nd0 m−→ Nd0-set

Nd0 = TOKEN

where

inv-G0 :Nd0 m−→ Nd0-set→ B
inv-G0(g) 4 isClosed0(g)∧Acyclic0(g)

The graph is closed and acyclic. These properties are the obvious criteria for a mapping
modelling a directed acyclic graph since the basic data structure ensures that the graphs
are inherently directed14.

isClosed0 :Nd0 m−→ Nd0-set→ B
isClosed0(g) 4 ∀ns ∈ rng g ·ns⊂ dom g

For a graph to be closed, all outgoing edges must be nodes in the graph.

Acyclic0 :Nd0 m−→ Nd0-set→ B
Acyclic0(g) 4 ∀n ∈ dom g ·n /∈ successors0(n,g)
pre isClosed0(g)

For a graph to be acyclic, no node must be its own successor.

successors0 :Nd0×Nd0 m−→ Nd0-set→ Nd0-set
successors0(n,g) 4 if n ∈ dom g

then g(n)∪ (
⋃
{successors0(m,{n}−Cg) | m ∈ g(n)})

else {}

The successors of some node are all the nodes in the transitive closure of that node’s
immediate successors (i.e. outgoing edges).

Sequences are non-repeating sequences of node names.

S0 = Nd0∗

13In Example 10.4.4 the node c in the graph has {a} as its ingoing edge(s) and {d} as its outgoing edge(s).
14A way to model undirected graphs would be to choose a set of unordered pairs of nodes.
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where

inv-S0 :Nd0∗→ B
inv-S0(s) 4 ∀i, j ∈ inds s · (i 6= j) ⇒ (s(i) 6= s(j))

The sorting algorithm is specified by a relation between graphs and sequences, called
an implicit definition. The partial order represented by a graph is related to the sequences
that represents its topological orders. Note, as remarked in Section 10.4.1, that this rela-
tion in general will specify a non-deterministic sorting algorithm.

TopSort0 (g:G0) s:S0
post dom g = elems s∧

∀i, j ∈ inds s · i < j ⇒ s(i) /∈ successors0(s(j),g)

To show directly that the above relation is satisfiable, an explicit function definition is
given. The function works by ‘stripping off earlier nodes’. Essentially it would not have
been necessary to ‘strip off’ nodes in the recursive calls of TopSort0, since we know that
graphs are acyclic. But it will be difficult to prove anything about the function if you
cannot use ‘well-founded induction’ on the actual parameters of the recursive calls15.

TopSort0 :G0→ S0
TopSort0(g) 4 if g = {}

then [ ]
else let n ∈ {m ∈ dom g | imPred0(m,g) = {}} in

[n]yTopSort0({n}−Cg)

imPred0 :Nd0×G0→ Nd0-set
imPred0(n,g) 4 {m ∈ dom g | n ∈ g(m)}

The set of immediate predecessors for a node in a graph is the set of ingoing edges.

First design step

Now, directed acyclic graphs are sets of nodes represented as triples of the number of
ingoing edges, their name, and the set of outgoing edges.

G1 = Nodes1-set

Nodes1 :: p:N
nd:Nd1
ns:Nd1-set

Nd1 = TOKEN

inv-G1 :Nodes1-set→ B
inv-G1(g) 4

UniqueName1(g)∧
isClosed1(g)∧
Acyclic1(g)∧
ProperPred1(g)

Nodes are distinguished on their name, and graphs can only contain one node with the
same name. Still graphs must be closed and acyclic, and finally the predecessor count in
each node must have the right value. These properties are expressed through the predi-
cates and auxiliary functions listed below.

15This is one of the experiences gained in [Elv90], where we had to change the formulation of the explicit
definition from that given in [EB89].
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UniqueName1 :Nodes1-set→ B
UniqueName1(g) 4 ∀t,s ∈ g · (nd(t) = nd(s)) ⇒ (s = t)

isClosed1 :Nodes1-set→ B
isClosed1(g) 4 ∀mk-Nodes1(, ,ns) ∈ g ·ns⊆ allNodes1(g)

allNodes1 :Nodes1-set→ Nd1-set
allNodes1(g) 4 {nd(t) | t ∈ g}

Acyclic1 :Nodes1-set→ B
Acyclic1(g) 4 ∀mk-Nodes1(,n,) ∈ g ·n /∈ successors1(n,g)

successors1 :Nd1×Nodes1-set→ B
successors1(n,g) 4

if (,n,ns) ∈ g
then ns∪

⋃
{successors1(m,g−{mk-Nodes1(,n,ns)}) | m ∈ ns}

else {}

ProperPred1 :Nodes1-set→ B
ProperPred1(g) 4

∀(p,n,) ∈ g ·p = card {m | (mk-Nodes1(,m,ms) ∈ g)∧ (n ∈ ms)}

Sequences are modelled in the same way as in the abstract specification.

S1 = Nd1∗

where

inv-S1 :Nd1∗→ B
inv-S1(s) 4 ∀i, j ∈ inds s · (i 6= j) ⇒ (s(i) 6= s(j))

The specification of the sorting algorithm is very similar to the abstract one. First we
give an implicit definition.

TopSort1 (g:G1) s:Nd1∗

post allNodes1(g) = elems s∧
∀i, j ∈ inds s · i < j ⇒ s(i) /∈ successors1(s(j),g)

The explicit definition is still based on the principle of stripping off previous nodes.

TopSort1 :G1→ S1
TopSort1(g) 4

if g = {}
then [ ]
else let mk-Nodes1(0,n,ns) ∈ g in

[n]yTopSort1(upPC1(ns,g−{mk-Nodes1(0,n,ns)}))

After having stripped off a node, the counters on ingoing edges are readjusted for the
immediate successors to a just-removed node. This is specified through the auxiliary
functions defined below (upPC abbreviates ‘update predecessor counter’).
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upPC1 :Nd1-set×Nodes1-set→ G1
upPC1(ns,g) 4

{mk-Nodes1(decr1(q,m ∈ ns),m,ms) | mk-Nodes1(q,m,ms) ∈ g}
pre ∃n ∈ Nd1 · inv-G1(g∪{(0,n,ns)})

decr1 :N×B→ N
decr1(n,b) 4

if b
then n-1
else n

pre b ⇒ (n > 0)

Proof obligations

Validation of abstract specification
To validate the abstract specification we can show that directed acyclic graphs, as repre-
sented by the specified mappings, are proper representations of partial orders, and, simi-
larly, that non-repeating sequences are proper models of linear orders. The latter proof is
trivial, since a sequence is indexed by a subset of the natural numbers, which is a linear
order, and thus the sequence is also a linear order. The former proof is less trivial. To
prove that any graph g:G0 models a partial order we define a partial ordering relation on
nodes of graphs in G0.

(n1 ≤ n2 in g) ≡ (n2 ∈ {n1}∪ successors0(n1,g))

Based upon this order relation we can prove the properties of reflexivity, antisymmetry,
and transitivity.

Note, that neither of the above ‘proof obligations’ can arise automatically. They arise
from the informal requirements that we are specifying. They are sort of formal expres-
sions of the customers requirements. In general such requirements are not expressible
– consider for instance a requirement like ‘The program must execute sufficiently fast’;
there is no way in VDM to formalize such a requirement.

Consistency of abstract specification
The invariants, the implicit and explicit definition of the sorting algorithm, and the auxil-
iary functions must be well-defined, expressed formally by the following requirements:

∀g:Nd0 m−→ Nd0-set · inv-G0(g):B

∀g:Nd0 m−→ Nd0-set · isClosed0(g):B

∀g:Nd0 m−→ Nd0-set · isClosed0(g) ⇒ Acyclic0(g):B

∀n:Nd0, g:Nd0 m−→ Nd0-set · successors0(n,g):Nd0-set

∀s:Nd0∗ · inv-S0(s):B

∀g:G0, s:S0 ·post-TopSort0(g,s):B

∀g:g0 ·TopSort0(g):S0

∀g:G0, n:Nd0 · imPred0(n.g):Nd0-set
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To aid the proofs of these properties one can develop a theory for the data types included
in the specification. Such a theory would include induction rules for the data types. Such
induction rules can be developed as ‘generator induction’ schemes, and they will extend
the theory of the specification. In order for the induction schemes to be valid, one has
to define a set of generators of each data type and prove that all objects in this type are
finitely generated from some set of base values. One – primitive – method of doing so was
described in Section 10.2.1. Finally the implicitly defined functions must be satisfiable,
which is expressed as

∀g:G0 · ∃s:S0 ·post-TopSort0(g,s)

Validation of first design step
Again we need to justify that the (new) representation of graphs is also a model of partial
orders, but this will be implicit from the reification proof (see below), since sets of triples
are a proper implementation of the mappings from the abstract specification.

Consistency of first design step
The proof obligations that arise automatically from the first design step are very similar to
those in the abstract specification. Thus we shall take the opportunity to save some space.

Reification
Both the retrieve and the inject functions are easy to define. However in the case of
the inject function for the concrete graphs we need to compute some extra information,
namely the number of immediate predecessors for each node in the graph. For the non-
repeating sequences the inject and retrieve functions are simple identity functions.

retr-G0 :G1→ G0
retr-G0(g) 4 {n 7→ ns | mk-Nodes1(,n,ns) ∈ g}

inj-G1 :G0→ G1
inj-G1(g) 4 {mk-Nodes1(card imPred0(n,g),n,g(n)) | n ∈ dom g}

retr-S0 :S1→ S0
retr-S0(s) 4 s

inj-S1 :S0→ S1
inj-S1(s) 4 s

The inject function is not strictly part of the VDM specification model, but its presence
makes the discharging of the refinement proof obligations easier; however, in general it is
not possible to state the inject functions. Similarly to any other functions the inject and
retrieve functions must be well-defined. The refinement proof obligations that arise from
the first step of development for the topological sorting algorithm are listed below.

Adequacy Rules:
∀g0:G0 · ∃g1:G1 ·g0 = retr-G0(g1)

∀s0:S0 · ∃s1:S1 · s0 = retr-S0(s1)

Result Rule:

∀g:G1,s:S1 · post-TopSort1(g,s)
⇒ post-TopSort0(retr-G0(g),retr-S0(s))
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The result rule is most elegantly expressed through the implicit definitions of the sorting
algorithm, but it could as well have been expressed through the explicit definitions.

∀g:G1,s:S1 · TopSort1(g) = s
⇒ Topsort0(retr-G0(g)) = retr-S0(s)

The last requirement is much more strict than the previous one, due to the non-determinancy
of the implicit specification of the sorting algorithm. Thus we prefer the former to the lat-
ter.

10.4.3 Representation in mural

The transformation of VDM formulae into mural goes rather easily (even without the
translation tool). This subsection explains in detail the transformation of the abstract
specification for the TopSort development, together with the properties (rules and some
of the lemmas) that have been necessary to prove in order to establish the validity and
consistency of the algorithm. The transformation of the first design step is presented
without too many comments, and to give a feel of what mural is able to do, the print out
of the reification part is given in its raw form16.

Representation of abstract specification

G0 is a domain, which can be shown to be finitely generated. Thus we can state an
induction rule following the same principles as used in Example 10.2.1.

G0 7→ 〈 gg : ( map[ Nd0, ( Nd0 -set ) ] ) . ( inv-G0[ gg ] ) 〉,

Nd0 7→ TOKEN,

inv-G0 7→
( ( isClosed0[[[e1]]] ) ∧ ( Acyclic0[[[e1]]] ) ),

def inv-G0
{ }
{ ( g: (map[ Nd0, (Nd0-set)]) ) }
———————————————-
( ( inv-G0[ g ] ) : B )

The type information of inv-G0 is – as explained in Section 10.2.2 – expressed in the rule
‘def inv-G0’, which needs to be proved. The proof of ‘def inv-G0’ has been included as
one of the example proofs in Section 10.4.4.

isClosed0 7→ ∀ ns : 〈 ms : ( Nd0 -set ) . ( ms ∈ ( rng[[[e1]]] ) ) 〉 . ( ns ⊆ ( dom[[[e1]]] ) ),

def isClosed0
{ }
{ ( g : ( map[ Nd0, ( Nd0 -set ) ] ) ) }
———————————————-
( ( isClosed0[ g ] ) : B )

Acyclic0 7→ ∀ n : 〈 m : Nd0 . ( m ∈ ( dom[[[e1]]] ) ) 〉 . ( ¬ ( n ∈ ( successors0[ n, [[e1]]] ) ) ),

def Acyclic0
{ }
{ ( g : ( map[ Nd0, ( Nd0 -set ) ] ) ), ( isClosed0[ g ] ) }
———————————————————————-
( ( Acyclic0[ g ] ) : B )

16Recall that mural is able to generate LATEX.
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Note how the precondition to ‘Acyclic0’ is represented as an additional hypotheses in the
rule ‘def Acyclic0’.

successors0 7→
( if ( [[e1]]∈ ( dom[[[e2]]] ) )

then ( ( [[e2]] at [[e1]] ) ∪
(
⋃

those ns : ( Nd0 -set ) . ∃ m : Nd0 .
( ( ns = ( successors0[ m, ( ( add[[[e1]], {} ] ) −C[[e2]] ) ] ) )
∧ ( m ∈ ( [[e2]] at [[e1]] ) ) ) ) )

else {} ),

def successors0
{ }
{ ( g : ( map[ Nd0, ( Nd0 -set ) ] ) ), ( n : Nd0 ) }
————————————————————–
( ( successors0[ n, g ] ) : ( Nd0 -set ) )

For the story of the proof of the rule ‘def successors0’, refer to Section 10.4.4.
We also want an induction rule. This can be obtained as explained in Section 10.2.1.

The case is, however, a bit more complicated, so a few auxiliary constructs are applied.
The generator function is called gen-G0, and it can only be applied to certain arguments.
For this reason it has a precondition.

pre-gen-G0 7→
( (¬ ([[e1]]∈( dom[[[e3]]])) )
∧( [[e2]]⊆( dom[[[e3]]] ) ) ),

def pre-gen-G0
{ }
{ ( n : Nd0 ), ( ns : ( Nd0 -set ) ), ( g : G0 ) }
————————————————————
( ( pre-gen-G0[ n, ns, g ] ) : B )

gen-G0 7→
( addm[[[e1]], [[e2]], [[e3]]] ),

def gen-G0
{ }
{ ( n : Nd0 ), ( ns : ( Nd0 -set ) ), ( g : G0 ),
( pre-gen-G0[ n, ns, g ] ) }

———————————————————-
( ( gen-G0[ n, ns, g ] ) : G0 )

The base set of G0 only contains the empty mapping, {}m. Since there is only one
generator function, it can also serve as a partial ordering on G0. Thus we can formulate
an induction rule that is a little different from the one in Example 10.2.1. The difference
is caused by the precondition on gen-G0.
G0 ind
{ [ ig, in, ins ]

{ ( in : Nd0 ), ( ins : ( Nd0 -set ) ), ( ig : G0 ), ( pre-gen-G0[ in, ins, ig ] ), ( P[ ig ] ) }
` ( P[ ( gen-G0[ in, ins, ig ] ) ] ),

{ ( g : G0 ), ( P[ {}m ] )
————————————————————————
( P[ g ] )

Remark: Other induction rules can be formulated, and one should make an effort to for-
mulate a scheme that suits one’s needs best. The above induction scheme is the most
primitive, and therefore the most readable, that has been formulated for G0.

Transformation of sequences is straightforward:
S0 7→ 〈 ss : ( Nd0 * ) . ( inv-S0[ ss ] ) 〉}

inv-S0 7→
∀ i : 〈 h : N . ( h ∈ ( inds[[[e1]] ] ) ) 〉 . ∀ j : 〈 h : N . ( h ∈ ( inds[[[e1]]] ) ) 〉 .

( ( ¬ ( i = j ) ) ⇒ ( ¬ ( ( [[e1]]@ i ) = ( [[e1]]@ j ) ) ) ),
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def inv-S0
{ }
{ ( s : ( Nd0 * ) ) }
————————
( ( inv-S0[ s ] ) : B )

def post-TopSort0
{ }
{ ( g : G0 ), ( s : S0 ) }
————————————————
( ( post-TopSort0[ g, s ] ) : B )

post-TopSort0 7→
( ( ( dom[[[e1]]] ) = ( elems[[[e2]]] ) ) ∧
∀ i : 〈 ii : N . ( ii ∈ ( inds[[[e2]]] ) ) 〉 . ∀ j : 〈 jj : N . ( jj ∈ ( inds[[[e2]]] ) ) 〉 .

( ( i < j ) ⇒ ( ¬ ( ( [[e2]]@ i ) ∈ ( successors0[ ( [[e2]]@ j ), [[e1]]] ) ) ) ) ) ,

TopSort0 7→
( if ( [[e1]]= {}m )

then[]
else ( ([ ε n : Nd0 . ( ( n ∈ ( dom[[[e1]]] ) ) ∧ ( ( imPred0[ n, [[e1]]] ) = {} ) ) ] ) y

( TopSort0[ ( ( add[ ε n : Nd0 . ( ( n ∈ ( dom[[[e1]]] ) ) ∧
( ( imPred0[ n, [[e1]]] ) = {} ) ), {} ] ) −C[[e1]] ) ] ) ) ),

def TopSort0
{ }
{ ( g : G0 ) }
——————————————
( ( TopSort0[ g ] ) : S0 )

def imPred0
{ }
{ ( g : G0 ), ( n : Nd0 ) }
———————————-
( ( imPred0[ n, g ] ) : ( Nd0 -set ) )

imPred0 7→
those m : Nd0 . ( ( m ∈ ( dom[[[e2]]] ) )

∧ ( ( m ∈ ( dom[[[e2]]] ) ) ⇒ ( [[e1]]∈ ( [[e2]]at m ) ) ) )

Satisfiability of specification
sat TopSort0
{ }
{ ( g : G0 ) }
——————————————
∃ s : S0 . ( post-TopSort0[ g, s ] )

lem sat TopSort0
{ }
{ ( g : G0 ) }
——————————————
( post-TopSort0[ g, ( TopSort0[ g ] ) ] )

To prove the satisfiability proof obligation the lemma ‘lem sat TopSort0’ was stated. To
undertake the proof of satisfiability tends always to demand that you construct a function
and then prove that it is a correct implementation. This function acts as a ‘witness’ for the
existential quantifier in the satisfiability proof obligation.

A few more lemmas
It is of major importance to decompose larger proofs into smaller ones. One way to do so
is by stating a number of useful properties as lemmas. The above lemma is an example of
such lemmas, and below you can see a few more examples. The first looks very nice
lem successors0 (def & ⊆)
{ }
{ ( n : Nd0 ), ( g : ( map[ Nd0, ( Nd0 -set ) ] ) ) }
————————————————————–
( ( ( successors0[ n, g ] ) : ( Nd0 -set ) ) ∧ ( ( successors0[ n, g ] ) ⊆ (

⋃
( rng[ g ] ) ) ) )

whereas
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lem def TopSort0 inv-S0 (special case - ii/jj=1)
{ }
{ ( ¬ ( ( ([ n ] ) y TopSort0Smth ) =[] ) ),
( ( pred[ ii ] ) : 〈 6359 : N . ( 6359 ∈ ( inds[ TopSort0Smth ] ) ) 〉 ),
( jj ∈ ( inds[ ( ([ n ] ) y TopSort0Smth ) ] ) ), ( ¬ ( (TopSort0Smth@(pred[ ii ])) = n ) ),
( ii ∈ ( inds[ ( ([ n ] ) y TopSort0Smth ) ] ) ), ( ( ([ n ] ) y TopSort0Smth ) : ( Nd0 * ) ),
( ( hd[ ( ([ n ] ) y TopSort0Smth ) ] ) = n ), ( ¬ ( ii = 1 ) ),
( ( tl[ ( ([ n ] ) y TopSort0Smth ) ] ) = TopSort0Smth ), ( jj = 1 ),
( TopSort0Smth : ( Nd0 * ) ), ( n : Nd0 ) }
——————————————————————————
( ¬ ( ( ( ([ n ] ) y TopSort0Smth ) @ ii ) = ( ( ([ n ] ) y TopSort0Smth ) @ jj ) ) )

documents that lemmas can sometimes be huge and used solely as a way of limiting the
size of a proof by stating a very specialized lemma. The PA has a feature which allows you
to construct such lemmas automatically from within a proof. Besides, the latter lemma
makes little sense, and is meant only as an example. Also the name of the latter lemma
shows that it can be difficult to come up with meaningful names for new lemmas all the
time.

Validation of abstract specification
A way in which the specification can be validated is by proving that graphs as modelled
by G0 really are proper representations for partial orders. So that is what we will do.

The following constant can be defined, and proved to possess the properties of a partial
order.

NLEQ 7→
( ( [[e1]]=[[e2]] ) ∨
( [[e2]]∈ successors0[[[e1]] , [[e3]]] ) )

NLEQ anti sym{ }
{ ( ( n ≤ m in g ) ) , ( ( m ≤ n in g ) ) }
—————————————-
( n = m )

NLEQ refl
{ }
{ ( n : Nd0 ) , ( g : G0 ) }
———————————-
( ( n ≤ n in g ) )

NLEQ trans{ }
{ ( ( n ≤ m in g ) ) , ( ( m ≤ h in g ) ) }
—————————————-
( ( n ≤ h in g ) )

Here we have taken advantage of the possibility to define concrete syntax in mural . The
operator ‘NLEQ’ is defined as ([[e1]]≤ [[e2]] in [[e3]]).

Representation of the first design stage

The transformation of the concrete specification is very much like the abstract one. We
will not discuss the formulation of induction rules for G1.

G1 7→ 〈 gg : ( Nodes1 -set ) . ( inv-G1[gg] ) 〉

As explained previously, records cannot easily be modelled directly as defined types. To
model Nodes1 a number of constants and axioms must be added.

Nodes1 7→[0,0], mk-Nodes1 7→[3,0],
s-p 7→[1,0],
s-nd 7→[1,0],
s-ns 7→[1,0],

To give ‘life’ to these primitive constants, a number of axioms are added, just like for the
state(s) in the reactor example. Below we only show an equality rule, leaving out eight
other axioms.
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mk-Nodes1 =-I
{ }
{ ( t1 : Nodes1 ) , ( t2 : Nodes1 )
( ( s-p[ t1 ] ) = ( s-p[ t2 ] ) ) ,
( ( s-nd[ t1 ] ) = ( s-nd[ t2 ] ) ) , ( ( s-ns[ t1 ] ) = ( s-ns[ t2 ] ) ) }

—————————————————————————————
( t1 = t2 )

Nd1 7→ TOKEN ,

inv-G1 7→
( ( UniqueName1[[[e1]]] ) ∧
( ( isClosed1[[[e1]]] ) ∧
( ( Acyclic1[[[e1]]] ) ∧
( ProperPred1[[[e1]]] ) ) ) ) ,

UniqueName1 7→
∀ t : 〈 tt : Nodes1 . ( tt ∈[[e1]] ) 〉 . ∀ s : 〈 ss : Nodes1 . ( ss ∈[[e1]] ) 〉 .

( ( ( s-nd[t] ) = ( s-nd[s] ) ) ⇒ ( t = s ) ) ,

isClosed1 7→ ∀ t : 〈 tt : Nodes1 . ( tt ∈[[e1]] ) 〉 . ( ( s-ns[t] ) ⊆ ( Nodes1[[[e1]]] ) ) ,

As can be seen there is no support for pattern matching17 in mural . Instead one has to rely
on selector functions. This can be seen by comparing the above formulation of isClosed1
with the original one. In order to transform isClosed1 to a constant in mural , it had to be
slightly reformulated.

Nodes1 7→ those n : Nd1 . ∃ p : N . ∃ ns : ( Nd1 -set ) . ( ( mk-Nodes1[p , n , ns] ) ∈[[e1]] ) ,

Acyclic1 7→ ∀ t : 〈 tt : Nodes1 . ( tt ∈[[e1]] ) 〉 .
( ¬ ( ( s-nd[t] ) ∈ ( successors1[( s-nd[t] ) , [[e1]]] ) ) ) ,

successors1 7→
( if ∃ t : 〈 tt : Nodes1 . ( tt ∈[[e2]] ) 〉 . ( ( s-nd[t] ) =[[e1]] )
then ( ( s-ns[ε t : 〈 tt : Nodes1 . ( tt ∈[[e2]] ) 〉 . ( ( s-nd[t] ) =[[e1]] )] ) ∪

(
⋃

those ms : ( Nd1 -set ) . ∃ m : Nd1 .
( ( ms = ( successors1[m , ( [[e2]]- ( add[ε t : 〈 tt : Nodes1 . ( tt ∈[[e2]] ) 〉 .

( ( s-nd[t] ) =[[e1]] ) , {}] ) )] ) ) ∧
( m ∈ ( s-ns[ε t : 〈 tt : Nodes1 . ( tt ∈[[e2]] ) 〉 .

( ( s-nd[t] ) =[[e1]] )] ) ) ) ) )
else {} ) ,

ProperPred1 7→
∀ t : 〈 tt : Nodes1 . ( tt ∈[[e1]] ) 〉 .

( ( s-p[t] ) = ( card[those m : Nd1 . ∃ q : N . ∃ ms : ( Nd1 -set ) .
( ( t = ( mk-Nodes1[q , m , ms] ) ) ∧ ( ( s-nd[t] ) ∈ ms ) )] ) ) ,

S1 7→ 〈 ss : ( Nd1 * ) . ( inv-S1[ss] ) 〉,

inv-S1 7→
∀ i : 〈 ii : N . ( ii ∈ ( inds[[[e1]]] ) ) 〉 . ∀ j : 〈 jj : N . ( jj ∈ ( inds[[[e1]]] ) ) 〉 .

( ( ¬ ( i = j ) ) ⇒ ( ¬ ( ( [[e1]]@ i ) = ( [[e1]]@ j ) ) ) ) ,

post-TopSort1 7→
( ( ( Nodes1[[[e1]]] ) = ( elems[[[e2]]] ) ) ∧
∀ i : 〈 ii : N . ( ii ∈ ( inds[[[e2]]] ) ) 〉 . ∀ j : 〈 jj : N . ( jj ∈ ( inds[[[e2]]] ) ) 〉 .

( ( i < j ) ⇒ ( ¬ ( ( [[e2]]@ i ) ∈ ( successors1[( [[e2]]@ j ) , [[e1]]] ) ) ) ) ) ,

17Please do not confuse pattern matching in the PA with pattern matching in VDM.
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TopSort1 7→
( if ( [[e1]]= {} )

then[]
else ( ([( s-nd[ε t : Nodes1 . ( ( t ∈[[e1]] ) ∧ ( ( s-p[t] ) = 0 ) )] )] ) y
( TopSort1[( Remove1[( s-ns[ε t : Nodes1 . ( ( t ∈[[e1]] ) ∧ ( ( s-p[t] ) = 0 ) )] ) ,

( [[e1]]- ( add[ε t : Nodes1 . ( ( t ∈[[e1]] ) ∧
( ( s-p[t] ) = 0 ) ) , {}] ) )] )] ) ) ) ,

Remove1 7→
those t : Nodes1 . ∃ tt : Nodes1 . ( ( tt ∈[[e2]] ) ∧

( ( ( s-p[t] ) = ( decr1[( s-p[tt] ) , ( ( s-nd[tt] ) ∈[[e1]] )] ) ) ∧
( ( ( s-nd[t] ) = ( s-nd[tt] ) ) ∧ ( ( s-ns[t] ) = ( s-ns[tt] ) ) ) ) )

decr1 7→ ( if[[e2]]then ( [[e1]]- 1 ) else[[e1]] ) ,

Consistency of first design step
Thirteen rules ensuring the consistency of the first design step are added in a way similar
to the representation in the abstract specification. We do not show them here, but you
could try to create them yourself.

Correctness of reification

The last of the theories is printed exactly in the way mural has done it. The reason for this
is to give the reader an impression of which kind of output you can get from the mural
system. There is also a single example of a rule and a constant printed in the original
‘LATEX source code’.

TopSort Reif 0→1
a mural theory

Parents
TopSort Spec 0, TopSort Spec 1, TopSort Val 0

Signature
consts{ retr-G0 7→ m{ n : Nd0 . m} ns : ( Nd0 -set ) . ∃ p : N .
( ( mk-Nodes1 [ p , n , ns ] ) ∈[[e1]] ) , retr-S0 7→ [[e1]],
inj-G1 7→ those t : Nodes1 . ( ( ( s-nd [ t ] ) ∈ ( dom [[[e1]]] ) ) ∧ ( ( ( (
s-nd [ t ] ) ∈ ( dom [[[e1]]] ) ) ⇒
( ( s-ns [ t ] ) = ( [[e1]]at ( s-nd [ t ] ) ) ) ) ∧ ( ( s-p [ t ] ) = ( card [
those m : Nd0 . ( ( m ∈ ( dom [[[e1]]] ) ) ∧ ( ( m ∈ ( dom [[[e1]]] ) ) ⇒ (
( s-nd [ t ] ) ∈ ( [[e1]]at m ) ) ) ) ] ) ) ) ) , inj-S1 7→ [[e1]]}

types{}

binders{}

dep types{}

Axioms

Derived Rules
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adeq G1
{ }
{ ( g0 : G0 ) }
——————–
∃ g1 : G1 . ( g0 = ( retr-G0 [ g1 ] ) )

adeq S1
{ }
{ ( s0 : S0 ) }
——————
∃ s1 : S1 . ( s0 = ( retr-S0 [ s1 ] ) )

def inj-G1
{ }
{ ( g : G0 ) }
——————
( ( inj-G1 [ g ] ) : G1 )

def inj-S1
{ }
{ ( s : S0 ) }
——————
( ( inj-S1 [ s ] ) : S1 )

def retr-G0
{ }
{ ( g : G1 ) }
——————
( ( retr-G0 [ g ] ) : G0 )

def retr-S0
{ }
{ ( s : S1 ) }
——————
( ( retr-S0 [ s ] ) : S0 )

Result Rule TopSort1
{ }
{ ( g : G1 ) , ( s : S1 ) }
——————————–

( ( post-TopSort1 [ g , s ] ) ⇒ ( post-TopSort0
[ ( retr-G0 [ g ] ) , ( retr-S0 [ s ] ) ] ) )

Remark: The function retr-G0 involves an implicit map construction. To handle the im-
plicit map construction, the primitive binders m{ and m} have been defined, together with
the following axiom

map comprehension form

s:A-set,
∀x:A y,z:B · (P[x,y]∧P[x,z]) ⇒ (y = z),

∀x:A · (∃y:B ·P[x,y] ⇒ x ∈ s)
m{ x:A m} y:B · P[x,y]:map[A,B]

Notice that the relation denoted by the metavariable P must be a function. This is guaran-
teed by the second hypotheses. The first and third hypotheses together ensure the finite-
ness of the constructed map.
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LATEX source code
Below you can se the LATEX source code for the constant ‘retr-G0’ and the rule ‘adeq G1’

retr-G0\ $\mapsto$\ m\{\ n\ :\ Nd0\ .\ m\}\ ns\ :\ (\ Nd0\ -se\t\ )\
.\ $\Exists$\ p\ :\ $\Nat$\ .\ } \\
\mbox{\ (\ (\ mk-Nodes1\ [\ p\ ,\ n\ ,\ ns\ ]\ )\
$$\in$$[\mkern-\thinmuskip[$e1$\]\mkern-\thinmuskip]$\ )\

\noindent
\mbox{\Large adeq\ G1}
\noindent
\mbox{\{\ \}} \\
\mbox{\{\ (\ g0\ :\ G0\ )\ \}} \\
\mbox{--------------------} \\
\mbox{\ $\Exists$\ g1\ :\ G1\ .\ (\ g0\ =\ (\ retr-G0\ [\ g1\ ]\ )\ )\ }

10.4.4 A few proofs
In this subsection we give a description of some of the strategies that were applied to un-
dertake one of the proofs, together with a skeleton of it. A few more proofs are presented
– in the direct mural -syntax. All the rules from the VDM instantiation that have been
applied in the proofs below are shown in Section 10.5.

Definedness of ‘successors0’
The first proof is very simple, because we have asserted an appropriate lemma – the proof
of which would have been left as an exercise for the reader in any reasonable textbook18.
The proof is of the rule ‘def successors0’.

h1 (g: (map[Nd0, (Nd0 -set )]))
h2 (n: Nd0 )
1 (((successors0[n, g]): (Nd0 -set ))∧ (( successors0[n, g])⊆ (

⋃
(rng[g]))))

by lem successors0 (def & ⊆)on[h2, h1];[]
c ((successors0[n, g]): (Nd0 -set )) by ∧-E-right on[1];[]

Proof of lemma ‘lem successors0 (def & ⊆)’
As can be seen the proof of the lemma is an induction proof. The lemma is one of the
lemmas shown above. In order to finish the proof we needed a strong induction hypoth-
esis. The reason is that the set comprehension formation axiom (refer to Section 10.5)
requires that all sets are finite, i.e. that you point out a larger (finite) set. The place where
this was actually used has been left out of the proof as presented here, since the whole
proof takes up approximately four full pages and – partly for the same reason – is not very
readable19.

18In total the complete proof of the lemma takes up 10 to 15 tightly written A4 pages.
19To represent all the proofs for the TopSort development would have required more that 50 full pages.

This could be formulated as a ‘rule of thumb’, saying that the complete proof for consistency and validity
of a specification in general takes up ten times as much space as the specification itself.
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h1 (n: Nd0 )
h2 (g: (map[Nd0, (Nd0 -set )]))

1[y]
1.h1 (y: (map[Nd0, (Nd0 -set )]))
1.c ((card[(dom[y])]): N ) by card-form on[dom-form on [1.h1];[]];[]

2 ∀ ma: (map[Nd0, (Nd0 -set )]). ((card[(dom[ma])]): N ) by ∀-I on[];[1]

3[q]
3.h1 ∀ p: (map[Nd0, (Nd0 -set )]). (((card[(dom[p])])< (card[(dom[q])])) ⇒

∀ x: Nd0 . (((successors0[x, p]): (Nd0 -set ))∧
((successors0[x, p])⊆ (

⋃
(rng[p])))))

3.h2 (q: (map[Nd0, (Nd0 -set )]))

3.1[nd]
3.1.h1 (nd: Nd0 )
SOMETHING HAS INTENTIONALLY BEEN LEFT OUT (INCL. LINE 3.1.5)
3.1.c ((successors0[nd, q]): (Nd0 -set )) folding from 3.1.5

3.2 ∀ x: Nd0 . ((successors0[x, q]): (Nd0 -set )) by ∀-I on[];[3.1]
3.3 ∀ x: Nd0 . ((successors0[x, q])⊆ (

⋃
(rng[q])))

by lem successors0 ⊆ on[3.h2, 3.h1, 3.2];[]
3.c ∀ x: Nd0 . (((successors0[x, q]): (Nd0 -set ))∧ ((successors0[x, q])⊆ (

⋃
(rng[q]))))

by ∀∧-dist-contract on[∧-I on[3.2, 3.3];[]];[]

4 ∀ x: Nd0 . (((successors0[x, g]): (Nd0 -set ))∧ ((successors0[x, g])⊆ (
⋃

(rng[g]))))
by WF Induction on[h2, 2];[3]

c (((successors0[n, g]): (Nd0 -set ))∧ ((successors0[n, g])⊆ (
⋃

(rng[g])))) by ∀-E on[4, h1];[]

From the part of the proof that is presented above it can be seen that the strategy to un-
dertake it has been by well-founded induction (Line 4). The induction step itself has been
split up into two parts ending respectively in Lines 3.2 and 3.3. Line 3.3 has been proved
by a lemma, the proof of which is also of size approximately four full pages. Before start-
ing with the proofs of the TopSort example we had expected20 such proofs to be rather
simple, but they turned out to involve an incredible amount of symbol manipulations.

To motivate why we have not provided a full print-out of all the (completed) proofs,
we show one of the smaller ones in its full detail. Such proofs are unreadable. Just
imagine what it would be like when you have to unfold the definition of some constant
with a large definition.

h1 ( g : ( map [ Nd0 , ( Nd0 -set ) ] ) )
1 ( δ ( isClosed0 [ g ] ) ) by bool def on [def isClosed0 on [h1];
[]]; []

2 []
2.h1 ( isClosed0 [ g ] )
2.c ( δ ( Acyclic0 [ g ] ) ) by bool def on [def Acyclic0 on [h1, 2.h1];
[]]; []

3 ( ( ( isClosed0 [ g ] ) ∧ ( Acyclic0 [ g ] ) ) : B )
by bool form on [δ∧-inherit (weak) on [1, 2]; []]; []

c ( ( inv-G0 [ g ] ) : B ) folding from 3

20This observation is similar to the remark on Page 281.
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After all the above example is not that bad, but to give a feel for how unreadable things
can be, consider the few following lines that have been extracted from the above proof.
(The lines are not supposed to be readable, and the rules that have been applied in the
individual proof lines are not necessarily presented in Section 10.5).

3.1.3.c
( ( if ( nd ∈ ( dom [ q ] ) ) then ( ( q at nd ) ∪ (

⋃
those ns : ( Nd0 -set ) . ∃ m : Nd0 . ( ( ns = (
successors0 [ m , ( ( add [ nd , {} ] ) −C q ) ] ) )
∧ ( m ∈ ( q at nd ) ) ) ) ) else {} ) : ( Nd0 -set
) ) by ITE-true-form on [ 3.1.3.h1, ∪-formation on [ 3.1.3.2,⋃

-formation on [ 3.1.3.8]; []]; []]; []

3.1.4 []
3.1.4.h1 ( ¬ ( nd ∈ ( dom [ q ] ) ) )
3.1.4.c
( ( if ( nd ∈ ( dom [ q ] ) ) then ( ( q at nd ) ∪ (

⋃
those ns : ( Nd0 -set ) . ∃ m : Nd0 . ( ( ns = (
successors0 [ m , ( ( add [ nd , {} ] ) −C q ) ] ) )
∧ ( m ∈ ( q at nd ) ) ) ) ) else {} ) : ( Nd0 -set
) ) by ITE-false-form on [ 3.1.4.h1, {}-formation on []; []]; []

3.1.5 ( ( if ( nd ∈ ( dom [ q ] ) ) then ( ( q at nd )
∪ (

⋃
those ns : ( Nd0 -set ) . ∃ m : Nd0 . ( ( ns

= ( successors0 [ m , ( ( add [ nd , {} ] ) −C q ) ] ) )
∧ ( m ∈ ( q at nd ) ) ) ) ) else {} ) :
( Nd0 -set ) ) by ∨-E on [ 3.1.2]; [ 3.1.3, 3.1.4]

The above examples are not supposed to be a negative critique of mural . Rather they are
justifications for the need for tools like mural . It would be impossible to perform proofs
with such detail as described above without some tool to guard the correctness of each
proof step.

10.5 Theories for VDM in mural

The following constant definitions and rules are brought out of their context, and they
really do not give more than a feel for what the rules in the theory store are like. The
reason they are here is that they have been applied in the small proofs that we presented
earlier.

The symbol δ is the definedness operator from LPF [BCJ84].
δ 7→ ( ( [[e1]] ) ∨ ( ¬ ( [[e1]] ) ) ),

The next three rules are the well-known rules for ∧ elimination and introduction.
∧-E right
{ }
{ ( e1 ∧ e2 ) }
——————
e1

∧-E left
{ }
{ ( e1 ∧ e2 ) }
——————
e2

∧-I
{ }
{ e1 , e2 }
————–
( e1 ∧ e2 )

Then the rule for definedness of an expression with ⊆ as its main operator, and the rule
for commutativity of equality.
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δ -⊆
{ }
{ ( s1 : ( A -set ) ) , ( s2 : ( A -set ) ) }
————————————————–
( δ ( s1 ⊆ s2 ) )

=-comm
{ }
{ ( s1 = s2 ) }
——————
( s2 = s1 )

The next ten rules are all from the formalization of the predicate calculus. The rule ‘δ∧
(weak)’ has not been applied in any of the particular proofs in this chapter. It is however
important, because it makes clear how ‘conditional-and’ is implicitly part of the LPF
vocabulary. This question might have puzzled the reader, since it is a prerequisite for
stating most of the invariants in this chapter the way we did.
bool form
{ }
{ ( δ x ) }
————
( x : B )

bool def
{ }
{ ( x : B ) }
—————-
( δ x )

δ∧-inherit (weak)
{ [ ] { e1 } ` ( δ e2 ) }
{ ( δ e1 ) }
—————————-
( δ ( e1 ∧ e2 ) )

δ ⇒ -inherit (weak)
{ [ ] { e1 } ` ( δ e2 ) }
{ ( δ e1 ) }
—————————-
( δ ( e1 ⇒ e2 ) )

δ∧ (weak)
{ [ ] { e1 } ` e2 }
{ e1 }
—————————-
( e1 ∧ e2 )

δ∧-inherit
{ }
{ ( δ e1 ) , ( δ e2 ) }
————————–
( δ ( e1 ∧ e2 ) )

∀-I
{ [ y ] { ( y : X ) } ` ( P [ y ] ) }
{ }
—————————————-
∀ x : X . ( P [ x ] )

∀-E
{ }
{ ∀ x : X . ( P [ x ] ) , ( a : X ) }
——————————————
( P [ a ] )

∀∧-dist-contract
{ }
{ ( ∀ x:X . ( E1[x] ) ∧ ∀ x:X . ( E2[x] ) ) }
——————————————————–
∀ x : X . ( ( E1 [ x ] ) ∧ ( E2 [ x ] ) )

∃-I
{ }
{ ( a : A ) , ( P [ a ] ) }
——————————
∃ x : A . ( P [ x ] )

The next two rules tell the conditions under which the two standard operations card and
dom are well-defined.
card-form
{ }
{ ( s : ( A -set ) ) }
————————–
( ( card [ s ] ) : N )

dom-form
{ }
{ ( m1 : ( map [ A , B ] ) ) }
———————————-
( ( dom [ m1 ] ) : ( A -set ) )

This rule is the rule that was described in Section 10.2.2.
WF Induction
{ [ q ] { ( q : PAR ) , ∀ p : PAR .
( ( ( ord [ p ] ) < ( ord [ q ] ) ) ⇒ ( F [ p ] ) ) } ` ( F [ q ] ) }

{ ( par : PAR ) , ∀ pp : PAR . ( ( ord [ pp ] ) : N ) }
——————————————————————–
( F [ par ] )

Finally the rule for construction of implicitly defined sets. In order to ensure the finiteness,
you must be able to point at a set that is both finite and larger than the one you are
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constructing. In practice this is very troublesome.
comp-formation
{ }
{ ( s : ( A -set ) ) , ∀ x : A . ( ( P [ x ] ) ⇒ ( x ∈ s ) ) }
——————————————————————–
( those x : A . ( P [ x ] ) : ( A -set ) )
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Chapter 11

Conclusions

This chapter presents some of the reactions and reflections which resulted from experi-
mental use of mural . It covers both the sort of detailed observations which have been
made by the people who have used the system and indications of major developments
which the designers of mural hope to see pursued in subsequent projects. The first sec-
tion describes some of the experimental use.

The intention here is to be self-critical. This could result in a rather negative end to the
book and obscure the fact that a great deal has been achieved. The project was undertaken
as research and it was not intended to create an industrial product. In fact, rather more
has been achieved towards industrial usability than in most research projects. Moreover,
as researchers, there is greater interest in identifying the remaining research goals than in
writing adverts for a commercial system

11.1 Experimental use of mural

Even at the stage of the ‘Muffin’ prototype (see [JM88]), the developers were keen to get
feedback on the evolving systems by exposing them to users.1 Because of the emphasis
which was being put on achieving usability by offering a productive user interface, the
reactions of users were an essential check-and-balance to our design. It was therefore
natural for the group to endeavour to obtain appropriate users for mural as it existed in
the last six months of the Alvey project (i.e. October 1989 – March 1990).

The only attempt to use mural by the industrial collaborators of the IPSE 2.5 project
was undertaken by Geoff Scullard of ICL. His effort was limited but the exercise was of
particular interest because he had earlier run the same example through HOL. Therefore,
his favourable comments on the user interface (see [Scu90]) of mural were particularly
gratifying.

As can be seen from Chapter 10, Morten Elvang-Gøransson was one of the major users
who came from outside the project. In addition to the material in this book, [Elv90, FE91]
give comments on his reaction to versions of mural . Amongst users who were more-or-
less familiar with the project were Michel Sintzoff (who had consulted for IPSE 2.5 in
general, and the work of the Manchester group in particular, most of the way through the
project), Peter Lindsay (who had taken up a post in Sydney in July 1989 and flew back
to review a later version of the system) and John Fitzgerald (who significantly extended

1One such user was the then Alvey Software Engineering Director.
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Peter Lindsay’s work on populating the mural theory store and wrote [Fit89a, Fit89b,
Fit89c, Fit89d, Fit89e]).

Another sort of exposure of mural has arisen out of attempts to exploit it commer-
cially. ‘Adelard’2 have demonstrated the system to a significant number of groups – most
of whom are actively involved with safety critical systems (SCS). It was originally en-
visaged that revenue would be generated from use of mural on a consultancy basis; most
excitingly, it appears that groups involved in SCS are prepared to purchase mural for their
own use.

When reading reports of users, it is important to remember that many of the experi-
ments were made on relatively early versions of mural . The system has developed and
continues to do so. There has, however, been almost no use of the Symbolic Execution
work (cf. Chapter 9). Because the necessary code was added at a relatively late stage,
there has also been only limited use of tactics. Similarly, some early users were forced to
hand generate the theories corresponding to their specifications because the VST was not
available at the time of their experiments.

11.2 Detailed observations
The experiments conducted by members of the mural group and by outsiders gave rise to a
number of detailed observations about the system. These are, in many cases, by no means
trivial; but they are more specific and easier to resolve than the items discussed in the next
section. This section presents items which give a flavour of users’ reactions; the full lists
of observations can be found in the various references (see also Section 4.11 above). Of
particular importance are those items which militate against our stated objective of ‘proof
at the workstation’.

• Users have requested a variety of syntactic extensions. Some of these like the ability
to present multiple bindings with one quantifier (i.e. ∀i, j ∈ N · . . . for ∀i ∈ N ·∀j ∈ N ·
. . .) are relatively trivial to achieve. Some, like the ability to rename within theories
(cf. Section 3.5.5), would be straightforward and non-disruptive extensions. There
are, however, ideas whose implementation would require significant changes even
to the specification of mural . One example of this is that a proper treatment of
associative and commutative operators is probably best achieved on top of a model
for expressions where operators take a set of arguments. Such a change could have
a profound effect on the matching algorithms in mural .

• Structure editor input is intended to help the user with large and unfamiliar lan-
guages. It is well-known that this can become tedious, especially for the experi-
enced user. So far, mural does not have a consistent policy on providing an al-
ternative parser route whereby the user can type linear text. This is not merely an
oversight: achieving the goal of parsing is far easier with simple objects – whose
only structure is given by a context-free syntax – than with objects with a rich,
graph-like, structure. What must, however, count as an oversight is that the well-
understood ideas on natural two-dimensional presentation of large tree-like objects
(cf. [KS69]) were not properly implemented.

2Adelard, Coborn House Business Centre, Coborn Road, London, E3 2DA
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• It is worth reviewing a specific example where the ‘proof at the workstation’ ob-
jective was compromised by the lack of a specific option. Typical mural users fre-
quently search for inference rules and instantiations which match particular proof
situations. It must be emphasised that this is not a case of ‘thrashing about’: a well-
populated theory base is a rich quarry and few users are likely to aspire to knowing
every rule. This valuable feature can be made virtually unusable if the performance
is not acceptable. There have been many technical proposals for ways to speed such
searches. One which was not initially implemented was the ability to cut down the
search for instantiations by allowing the user to provide a partial instantiation. Al-
though this is now implemented, there is certainly a need for further ideas which
improve the performance of searches over the theory base.

• The ability to provide different sorts of views of proofs could also be added to
mural . Indeed, in view of the success of this idea in the prototype ‘Muffin’ system,
its omission is to be regretted.

• There are a number of limitations to the ‘logical frame’ underlying mural . As is ex-
plained in Section 3.3.3, the intention to cover VDM’s sub-typing via invariants by
recognising ‘inclusion polymorphism’ precluded taking over the ‘Edinburgh Logi-
cal Frame’ of [HHP87]. But neither of these logical frames would cope with non-
monotonic logics since, if the addition of new assumptions can invalidate existing
deductions, a Natural Deduction proof style is inappropriate. Perhaps even more
deeply, it is not easy to see how the logical frame of mural could cope with the
sort of meta-reasoning which is used in the standard justification of the Deduction
Theorem.

• The existing VST is by no means complete. But the combination of a full speci-
fication support tool and a corresponding population of a theory store would be a
complete codification of a development method. Like any other effort of formalisa-
tion, it requires great insight and care. Ideally, it should be accompanied by proofs
of its soundness.3

• The current mural proof assistant is very open in that most changes can be made at
any time. This, in fact, was seen as an objective whose achievement has disclosed
where the idea needs qualification. Users have pointed out that there are theories
such as ‘sets’, which they would rather know can not change other than – possibly
– by the addition of further derived rules. Such ‘frozen’ theories could also have all
of the proofs removed as a way of significantly reducing the size of the Smalltalk
image. The ability to freeze theories and – perhaps automatically – remove proofs
could easily be added to mural .

• The original paper [Lin87b] about the ‘Formal System for Inclusion Polymorphism’
discussed the idea of theory morphisms. Essentially, this was intended to provide a
way of placing generic results in general theories and then inheriting these general
results into more specific theories. An example – prompted by the ‘Larch Shared
Language Handbook’ – would be proving the associativity of a constructor in a
theory of ‘collectors’ and then interpreting this variously as the associativity of

3This is not so much a pointer to a potential change to mural as it is a realization whose full force only
became apparent after the system was in use.
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sequence concatenation and set union. Although the underlying concepts are clear,
many implementation problems can be identified and theory morphisms remain to
be implemented in mural .

• Perhaps the group building mural concentrated on User Interface questions too
exclusively. There is, of course, a wealth of algorithms related to theorem proving;
in many cases, their use could contribute significantly to the objective that users
should see mural as providing a better environment than pencil and paper. Too few
of these algorithms are currently available in mural . It should be straightforward to
code up more decision procedures, although there is an interesting issue about their
correctness (see next section). A more general extension would be to add facilities
for automatic use of rewrite rules. One of the authors (CBJ) experimented with the
‘Larch Prover’ (LP) at DEC-SRC and feels it might be possible to obtain a more
controlled interface to such a tool by employing a user interface like that of mural
to construct the outline of a proof and then drive constrained rewrites from this
overall structure. So far, not even the specification of mural has been extended to
define such features.

• (This, and the subsequent items relate solely to the implementation of mural and
need not affect its specification.) There are several respects in which the perfor-
mance of mural reduces its usability. The implementation strategy described in
Chapter 6 has made it possible to tune mural based on the experience of its use.
It remains true that unconstrained searches in well-populated theory stores are too
slow for the user to maintain a train of thought. Ways of cutting down the search
space are available to the user but a significant constant factor speed improvement
could probably be sought using ideas like those in [Mor88a, Mor88b] on auxiliary
representations of expressions.

• Even more worrying – because it is not possible for the user to circumvent – is the
machine resource needed to run the Smalltalk implementation of mural . To use
mural effectively, it must be run on a machine of at least the speed of a Sun 3/60
and with a minimum of 12MB of real store. Startup times can also be excessive
unless the workstation has a local disc. The justification for listing this difficulty
in the current section is the belief that it would not be too difficult to re-implement
mural , from its formal specification, in another object-oriented language.4 Clearly,
the effort involved would depend greatly on the platform of (shallow) user-interface
facilities available.

• Last, but by no means least, the current mural implementation is single-user be-
cause of its underlying implementation system (Smalltalk). Clearly, a system for
use on large projects would have to support multi-users. At the time of writing
(November 1990), Smalltalk’s planned upgrade from V2.5 to the V4 presents both
major worries about the cost of porting mural and potential gains from the fact that
V4 is X-based.

4Peter Lindsay has supported a project which has re-coded the kernel of mural in ‘Miranda’.
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11.3 Further developments
The ideas listed in this section have also become clearer during the experimental use of
mural . But, in many cases, the concern was already clear when [JLW86] was written. In
most cases, the worries have been identified by the mural team rather than its users. In all
cases, the resolution of these points requires more research and their eventual resolution
will probably result in new systems being specified and built.

• The reason for wanting to show that a design or implementation satisfies a speci-
fication is to increase the confidence which can justifiably be placed in a stage of
design. One aim in building mural has been to elevate confidence that purported
proofs do indeed discharge the required proof obligations. But proof assistants like
that in mural are themselves large pieces of software. Who is to say that the proof
assistant is correct? The designers of mural have, as explained elsewhere in this
book, worked from a VDM specification. But there is not a complete formal proof
of the design (steps towards what was done are mentioned in Chapters 4 and 6); nor
would the group recommend that such a massive proof be undertaken! There is,
fortunately, a much more cost-effective way of ensuring that a flaw in mural could
not camouflage an error in a proof: it would be straightforward to extend mural so
that it could generate an external form of any complete proof in its store. As is
pointed out in Chapter 1, it is also not difficult to write a program which checks a
completely formal proof. This program could be written in perhaps ten pages of
some high-level functional programming language and the proof of this could be
formalised and/or widely scrutinized. The theorem proving support would then be
split between, on the one hand, a large program with many modes of interaction
which was carefully constructed but not formally justified and, on the other hand,
a small program whose correctness is critical and treated accordingly. The former
offers a user-friendly environment in which it is realistic to create proofs of sig-
nificant systems; the latter requires as input excruciatingly detailed proofs which
would be unlikely to see the light of day without its overweight twin.

It would be highly desirable to create a single proof checker to cover a variety of
proof assistants.5 Unfortunately, such a plan has a pre-condition of agreement on
standardized proofs which is unlikely to be easy to achieve.

One final concern about correctness can be put into context at this point. Decision
procedures offer – in special circumstances – a way of greatly reducing the burden
on the user who is constructing a proof. Unfortunately, many decision procedures
do not produce (even as a by-product) a proof in a formal system. The reliance on
the correctness of the decision procedures would not be diminished by the construc-
tion of a slimline proof checker. Therefore, each such decision procedure should be
justified.

• It could be said that the mural proof assistant has been built around inference rules
as the fundamental unit. Steps in a proof are related by inference rules which state
that, if their premises are (have been proved to be) true, their conclusion is true.
There are, however, many proofs where it is useful to gather facts about other re-
lationships. For example, chains of equalities where each new step is generated

5Chris Wadsworth attributes this idea to Malcolm Newey.
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by substitution of equal subterms. Clearly, such proofs can be couched in terms
of deductions, but more perspicuous presentations of proofs could be created by a
system which recognised the role of equality. One reason for not adding such a fea-
ture as a simple extension of mural is that equality is clearly only one example of a
large class of other relations about which one might wish to reason. Other instances
which come to mind include many (irreflexive) ordering relations. There is also a
deep question about capitalizing on similarities in the properties of such relation-
ships, which is posed in [Jon90a]. It would be wise to think hard about these issues
rather than make some ad hoc extensions to mural .

• It should, by now at least, be clear to the reader that specifying and constructing
a proof assistant for a given family of formalisms is not a trivial task. However,
in at least one crucial technical sense the task is clear-cut: it is possible to state
precisely what is meant by a formal proof. In contrast, the aim to provide – in a
proof assistant – support for what might be called ‘rigorous proofs’ is altogether
more nebulous. In spite of the difficulty, this was a goal of [JLW86].

It could be claimed that some features of mural permit the creation of rigorous
proofs. It is, for example, possible to construct a proof in which some steps are not
formally proved. There is a clear distinction between steps which are (not) justified
by the application of an established inference rule from identified hypotheses. As
with many proof assistants, mural permits one proof to be completed although it
relies on a number of precisely stated – but unproved – inference rules. At the other
extreme, one might store a string of text as a justification. It is, alas, more difficult
to pin down something useful between these extremes. The sort of thing envisaged
at the beginning of the project was a facility for the user to record the claim that
a certain proof could be completed ‘by induction on set S’ and the program to
make certain minimal checks (at least that S is of type ‘set’!) and to record their
success or notify their failure. In a similar vein, the system should record facts
like the automatic generation of a formula by unfolding a function even if this link
does not constitute a full proof. In each case, the aim is to record formal links so
that the potential exists for its completion if the user subsequently decides to make
a rigorous proof (more) formal. During the project, it was realized that a stable
version of a formal-mural proof assistant had to be built and appreciated before
tools to assist with rigorous proofs could even be properly specified.

• The authors have reacted similarly to suggestions that AI or IKBS techniques could
have been used more widely in order to lighten the burden on the mural user. These
techniques appear to offer support in well-understood domains of knowledge. Ex-
tended use of mural and experience with structuring theory stores and defining
tactics, could give rise to a ‘knowledge base’ which subsequent systems could hope
to exploit.6

• The VST (cf. Chapter 8) supports a large enough subset of BSI-VDM to permit

6A reluctance to promise what could not be delivered in this area led to the name ‘IPSE 2.5 ’: the
Alvey Software Engineering Strategy document [TW83] had relatively conservative objectives for second
generation IPSE’s whereas their third generation successors were predicated on AI techniques. To express
the original commitment of the project to the support of formal methods, but to distance it from techniques
which were unlikely to pay off in the timescale of the Alvey programme, IPSE 2.5 was proposed as a
working title. For better or for worse the name stuck.
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major case studies and could be extended to support the whole of the standard. It
is also believed that the same model – and even some of the code – could be used
to support other formal development methods. There is however a feeling that this
is not the wisest course of development. The split between the VST and the proof
assistant has unfortunate consequences. It is, for example, possible to generate the
proof obligations from some specifications (even to then fully formally prove them)
and then to edit the specifications. The lack of warning when this is done must be
contrasted with the way in which the mural proof assistant would flag a theorem
which had been proved using a rule which is subsequently changed. The authors
would like to undertake research into what might be called (in analogy to ‘logical
frames’) ‘method frames’. In fact Michel Sintzoff and his colleagues have already
gone some way towards this [S+89, Laf90, Web90] and the main objective might
be said to be combining ‘Deva’ ideas with the user-interface work which has come
from mural . There is, however, a suspicion with at least one member of the group
that the frequent recurrence of problems which are expressed in terms of relations
points to a more general approach.

• One last area where it is clear that an idea from the mural team requires more work
before it comes to full fruition is the symbolic execution approach to the animation
of specifications. It is clear from even limited experience with an implementation
of the ideas exposed by [Kne89] that expressions are generated which become un-
wieldy. Here again, it looks as though some (semi-) automatic rewrite tool is an
essential component of a viable animation system. More particularly, rewriting
should be aimed at eliminating state expressions since the user is likely to be in-
terested in the relationship between visible (or input/output) values; the only state
relationship which should be requested in most cases is equality.

11.4 Summary
This chapter presents a frank evaluation of mural . In case this leaves a negative feel-
ing, it must be reiterated that the project produced many successful outputs. The final
report [Jon90b] lists a prodigious number of papers and talks; a working system is avail-
able and commercial exploitation looks viable. At the beginning of the project, a clear
research direction (greater usability for a proof assistant by serious attention to its deep
UI) was enunciated; a system has been specified, designed and built which must provide
a benchmark for future work in this area.

The ‘Kemmerer Report’ [Kem86] identifies two of the key goals for ‘next generation
verification systems’ as the use of graphics interfaces and the development of reusable
theories. We believe that our project has contributed to research in these, and other, areas.
Above all, the group would say ‘it was fun’. Given a good group of researchers, there is
probably no better measure of a successful research project.
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Summary of VDM Notation

Logic
B {true, false}
¬E negation (not)
E1∧E2 conjunction (and)
E1 ∨ E2 disjunction (or)
E1 ⇒ E2 implication
E1 ⇔ E2 equivalence
∀x ∈ S ·E universal quantifier 1

∃x ∈ S ·E existential quantifier
∃!x ∈ S ·E unique existence
Γ ` E sequent
Γ

E
inference rule

E1

E2
bi-directional inference rule

Numbers
N1 {1,2, . . .}
N {0,1,2, . . .}
Z {. . . ,−1,0,1, . . .}
Q rational numbers
R real numbers

Functions
f :D1×D2→ R signature
f (d) application
if . . . then . . . else . . . conditional
let x = . . . in . . . local definition

1With all of the quantifiers, the scope extends as far as possible to the right; no parentheses are required
but they can be used for extra grouping.
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Sets
T-set all finite subsets of T
{t1, t2, . . . , tn} set enumeration
{} empty set
{x ∈ S | p(x)} set comprehension
{i, . . . , j} subset of integers (from i to j inclusive)
t ∈ S set membership
t /∈ S ¬(t ∈ S)
S1 ⊆ S2 set containment (subset of)
S1 ⊂ S2 strict set containment
S1∩S2 set intersection 2

S1∪S2 set union
S1−S2 set difference⋃

SS distributed union
card S cardinality (size) of a set

Maps

D m−→ R finite maps
D m←→ R one-one map
{d1 7→ r1,d2 7→ r2, . . . ,dn 7→ rn} map enumeration
{} empty map
{d 7→ f (d) ∈ D×R | p(d)} map comprehension
dom m domain
rng m range
m(d) application
m1 † m2 overwriting
sCm domain restriction
s−Cm domain deletion
mB t range restriction

Sequences
T∗ finite sequences
T+ non-empty, finite sequences
[t1, t2, . . . , tn] sequence enumeration
[ ] empty sequence
len s length
s1
y s2 concatenation

dconc ss distributed concatenation
hd s head
tl s tail
inds s indices
elems s elements
s(i, . . . , j) sub-sequence

2Intersection is higher priority than union.
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Composite Objects
: : compose
mk-N(. . .) generator
nil omitted object
s1(o) selector

Function Specification

f (d:D) r:R
pre . . .d . . .
post . . .d . . .r . . .

Operation Specification

OP (d:D) r:R
ext rd e1 : T1,

wr e2 : T2
pre . . .d . . .e1 . . .e2 . . .

post . . .d . . .e1 . . .
↼−e2 . . .r . . .e2 . . .
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Glossary of terms

automatic theorem proving A style of seeking to establish theorems mechanically char-
acterized by large systematic searches, sometimes constrained by heuristics (see
below) or user advice (typically given in advance).

axiom An inference rule whose validity (in some context) is accepted without proof,
either because it is considered ‘self-evident’ or because its justification is considered
to belong to a ‘lower level’ (such as a more primitive logic).

Boyer-Moore theorem prover A computer system for proving theorems by induction,
mainly in the style of proofs in elementary number theory. The user supplies a
conjecture which the machine then tries to prove (using built-in heuristics) from
axioms and already-proven results, but without direct assistance from the user. It
has been used to prove many theorems, and its benchmark reaches a long way into
elementary number theory. See [BM79].

CLEAR A specification language permitting modular structuring of specifications, based
on Institutions (see below). See [BG81].

constructive logic A logic which accepts only direct constructions as proofs. This re-
sults, for example, in more subtle interpretations of the usual logical connectives
and the rejection of the law of excluded middle. See [Bee85].

correctness An implementation is said to be correct with respect to a specification if
it satisfies all of the properties required by the specification. Such a correctness
criterion is often defined by a proof obligation; it would normally be established by
a proof.

data reification A specification is likely to be written in terms of data objects which
are more abstract than those available in an implementation language. Steps of
design which introduce – and justify – (more) concrete representations for such
abstractions are steps of data reification. See Section 1.2.

equational reasoning Reasoning with systematic treatment of sets of (more or less arbi-
trary) equations, such as term rewriting.

FOPC First order predicate calculus: the classical logic of predicates with quantification
over individual elements. See Section 3.2.
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formal proof A formal proof is one in which the validity of every step can be checked
purely mechanically, without recourse to imagination or intuition. In its simplest
form, a formal proof is a structure of valid applications of inference rules, in one of
the following forms:

• a sequence of lines in which each line is either a hypothesis or follows from a
number of preceding lines by an inference rule; or

• a tree in which each leaf is a hypothesis expression and each non-leaf node
follows from its immediate subnodes by an inference rule.

For a discussion of other styles of formal proof, see Section 4.3. The mural proof
assistant uses Natural Deduction style proofs (see below).

FRIPSE A post-Muffin (see below) prototype of mural supporting first order logic.
See [JL88].

generic proof assistant One which can be configured for different logics.

goal-directed A goal-directed method of solving problems is one which proceeds by
successively breaking a problem (the goal) into sub-problems (subgoals) in such a
way that ‘achievements of the subgoals’ can be composed to form an ‘achievement
of the goal’. See [Mil84].

heuristics Techniques used to guide searches in automatic theorem proving. Such tech-
niques are not usually universally applicable, but can shorten searches considerably
when used on appropriate problem domains.

induction Mathematical induction is a method of proof used to establish properties of
recursively defined data types by an analysis of how their elements are built up.
Roughly stated, the method requires showing that an arbitrary element enjoys the
property, under the assumption that all elements built up ‘before’ it do so. Elements
without ‘predecessors’ give rise to base cases, and others to induction steps.

inference rules The basic building blocks of formal proofs. They generally consist of
a number of hypotheses and a conclusion, the idea being that the validity of the
conclusion can be inferred from the validity of all the hypotheses. In Natural De-
duction proofs, however, the validity of certain hypotheses (called sequents) may
sometimes depend on additional assumptions, which are said to be ‘discharged’
upon application of the rule.

Institutions Burstall and Goguen developed the notion of Institutions to provide an ab-
stract model theory for program specifications; they generalize the notion of many
logical systems by providing a uniform treatment of syntax and semantics, largely
in the terminology of category theory – see [GB83].

lambda calculus A calculus for reasoning about and evaluating lambda expressions.
See [Bar84].

lambda-expression An untyped lambda-expression λx ·E – where E is an expression
usually involving x – denotes that function whose value (on argument x) is E. The
typed lambda-expression λx:S ·E is defined similarly, except that x is restricted to
range over S.
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LCF Originally LCF stood for Logic for Computable Functions, which was a partic-
ular logic proposed by Scott. Early work on a proof checker for this logic was
done by Milner and colleagues at Stanford in the early 1970s [Mil72, New75].
Experience with the Stanford system provided the basis for the development of a
‘second generation’ LCF at Edinburgh in the late 1970s [GMW79]. (Besides the
original Edinburgh system, there are at least two other significant versions – at Cam-
bridge [Pau85a] and at Göteborg [Pet82] – the main difference being the logics they
support.) The Edinburgh work focussed on an interactive ‘guided system’ style for
proof construction and introduced the seminal ideas of

• using a programming meta-language, ML, in which the user can build derived
inference rules and tactics, and

• having ‘theorem’ as an abstract type (in ML) whose primitives are the axioms
and basic inference rules of a logic.

It is these aspects which now characterize a system as being ‘LCF-like’ or ‘de-
scended from LCF’; notable examples are the PRL and NuPRL systems of Con-
stable and colleagues at Cornell [PRL86], Veritas [HD86], HOL [Gor85] and Is-
abelle [Pau86]. (See also [Pau85b].)

logical frame A formal system in which logics can be defined. The fundamental no-
tions it should define are ‘term’, ‘well-formed formulae’ (wffs), ‘inference rule’,
‘proof’ and ‘theory’. To be suitably general, it must also define a substitution mech-
anism and ancillary notions, such as how capture of free variables is to be avoided.
See [Lin87c].

LPF Logic for Partial Functions is a logic introduced in [BCJ84] to handle undefined
terms in program proofs.

model-oriented A model-oriented specification of a system defines its operations in
terms of models built up from primitive data types such as integers, sets and se-
quences (cf. ‘property-oriented’ specifications).

Muffin A prototype proof-constructor developed at Manchester University to perform
experiments on user interface aspects of formal reasoning. It was not intended to
have the full generic capabilities of mural , being restricted to propositional calcu-
lus, for example. See [JM88].

Natural Deduction A style of proof developed by Gentzen in which the set of assump-
tions is determined by context; this has the great advantage of allowing very suc-
cinct inference rules. The examples of proof structures in the entry for formal proof
above must be changed to allow for assumptions to be ‘discharged’:

• in the linear form, ‘boxes’ are introduced for subcontexts;

• in the tree form, leaves can be sequents provided they are discharged further
down the branch.

See [Pra65, Pra71].
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NuPRL An LCF-like system for constructing proofs in a constructive theory of types
similar to Martin-Löf’s [Mar85, NPS90]. Besides the logical differences (such as
the ability to extract ‘programs’ from constructive proofs), NuPRL’s main non-LCF
feature is its user interface, which has user-introduced abbreviations, a proof-tree
manager, proof editing and a library module. See [PRL86].

operation decomposition Operation decomposition of a design entails the stepwise de-
velopment of operation specifications until all of the operation steps have been re-
fined to available primitives of the implementation language/system. Such decom-
positions arise because operation specifications given by pre- and post-conditions
cannot be executed.

oracle A hand-coded decision procedure which checks the validity of lines in a proof.

proof obligation A logical formula whose validity must be established as part of a for-
mal design method (such as justifying the correctness of a data reification or an
operation decomposition).

proof assistant Computer Aided Proof Engineering (to coin a phrase). A software sys-
tem which aids in the construction of formal proofs and checks their correctness.
A mural credo is that the best currently achievable synergy between human and
machine is to have the former guide proof creation using insight into the problem
domain, and the latter performing faultless clerical steps and (constrained) searches.

property-oriented A property-oriented specification characterizes its operations implic-
itly via statements of their inter-relationships (rather than defining each operation
over a model). Such specifications are frequently referred to as ‘algebraic specifi-
cations’ – see [EM85, EM90].

resolution rule A rule of inference usually of the form

a∨b,c∨¬d
(a∨ c)θ

where θ is the most general unifier of b and d. It is complete in the sense that a
formula A of FOPC is valid iff there is a proof using only resolution rules that (the
Skolemized form of) ¬A leads to a contradiction.

resolution theorem provers Theorem provers adopting various search strategies to find
a resolution proof – see [Lov78].

sequent A logical expression consisting of a set of premises and an upshot, usually sep-
arated by a ‘turnstile’ `. A sequent holds iff its upshot follows from its premises.
See Section 4.3.3.

sequent calculus A style of formal proof whereby sequents are manipulated directly:
thus for example its inference rules have sequents as ‘hypotheses’ and ‘conclusion’,
and the nodes of a proof tree (see the second example in the entry for formal proof
above) are sequents. See [Smu61]. (See Section 4.3 for a discussion of different
styles of formal proof.)
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simplification The process of reducing an expression ‘towards normal form’, often by
term rewriting.

Smalltalk An object-oriented programming language developed and supplied by Par-
cPlace Systems, 1550 Plymouth Street, Mountain View, California 94043, USA.
The implementation language of the mural system.

tactic The mural proof assistant provides a simple imperative language for expressing
certain commonly-used proof strategies, called tactics. The tactic language gives
the same access to basic mural operations as is available from the user interface, in
addition to imperative constructs such as sequencing, branching and backtracking.
Tactics can be parameterized, can call other tactics – including themselves – and
can even poll the user for additional information at runtime. Conceptually, tactics
are operations which extend the ‘state’ of a proof. See Chapter 5.

tactical A (possibly parameterized) operation for composing tactics, by analogy with
functionals as operations for composing functions.

target logic As remarked in the early project ‘concepts paper’ [JLW86], mural was in-
tended to be used in many different applications of formal reasoning. Perhaps the
main theoretical problem that mural faced arose from the fact that these different
applications call for different logics: e.g.

• extracting the computational content from proofs requires a constructive logic
(cf. [PRL86])

• algebraic-style specification languages (e.g. CLEAR [San82]) call for many-
sorted equational reasoning

• LARCH traits correspond to theories in FOPC (cf. [GHW85])

• VDM’s proof obligations are expressed in LPF [BCJ84]

• domain theoretic reasoning is probably best done in PPλ (cf. [GMW79])

• Hoare logic is often used for program verification

These (and other) logics were identified as the target logics mural should support.

term rewriting A method for reducing expressions (with respect to a set of equations)
by repeated replacement of instances of the left hand side of an equation by the
corresponding instance of the right hand side.

theory ‘Theory’ is a heavily overloaded word. Besides its normal meaning(s) in English,
there are two particular usages in the formal reasoning context. The first comes
from formal logic where it is customary to refer to the set of all theorems provable
in a logic as the (deductively closed) theory of a logic, or logical theory for short.

The second usage relates to ‘theories in practice’ as found in proof assistants such
as mural . A mural theory consists of:

• a signature, indicating which symbols are available,

• a set of inference rules, some of which are axioms, some of which are derived
from axioms using proofs, and some of which are merely conjectures which
the user may or may not prove at some later date,
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• a set of tactics, and

• a set of oracles,

with the set of mural theories being arranged in an inheritance hierarchy. A logic
is just a theory of special significance: logics and theories are not distinguished in
mural .

Further support for ‘theories in practice’ suggests adding a mechanism for creating
yet further additional components when expedient.

UI User interface. In this book the term is used to mean not simply the visual layout of
the system, but also the operations by which the user accesses and manipulates the
underlying data structures.

unification A substitution θ (i.e. an instantiation of variables by terms) is said to unify
two expressions if they become equal when θ is applied to them. The process of
finding a unifying substitution (or unifier) is called unification.

VDM The Vienna Development Method is an (evolving) attempt to apply formal methods
to the development of significant industrial computer systems. The current status
can be seen in [BJ82] and [Jon90c].

verification conditions Logical formulae generated from assertions and loop invariants
attached to a program which, when established, are sufficient to demonstrate that
the assertions and invariants are indeed satisfied each time execution passes the
points to which they are attached. Compare proof obligations.

vcg A verification condition generator is an automatic process for constructing verifica-
tion conditions.

Veritas An LCF-like system for constructing proofs; its meta-language is Miranda –
see [HD86].

VST The mural VDM Support Tool. See Chapter 7.



Appendix C

The Specification of the Proof Assistant

C.1 The Raw Syntax

C.1.1 Primitives
Apart from the standard VDM primitive types, the primitive types used in this spec are
the following:

• Object-level ‘atomic’ symbols: CESymb (for constants and functions), QESymb
(binders or quantifiers), CTSymb (types and type-constructors), QTSymb (depen-
dent type constructors)

• VSymb (for variables), MESymb (expression metavariable symbols), MTSymb (type
metavariable symbols)

• Null objects: NullExp, NullType

• Things in proofs (explained later): Box-ref , Hypline-ref , Ordline-ref , Sequent-ref

• Other names: Rule-ref , Theory-ref , ThMorph-ref

They are assumed to be mutually disjoint, infinite sets of structureless tokens.

Other tokens used are:

EXP,VSYMB,QEXP,OEXP,EPHOLE,NULLEXP,
TYPE,SUBTYPE,QTYPE,OTYPE,TPHOLE,NULLTYPE,
OESYMB,MESYMB,CESYMB,NULLOESYMB,QESYMB,
OTSYMB,MTSYMB,CTSYMB,NULLOTSYMB,QTSYMB,
BEXP,BTYPE,ELISTXTLIST,ELIST,TLIST

Here are some groupings which will come in useful later1:

NullThings = NullExp | NullType

Def = Exp | Type

NullSymbs = NullOESymb | NullOTSymb

1As an aside: all type unions (|) in this specification happen to be disjoint unions.
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OTerm = OExp | OType

CSymb = CESymb | CTSymb

OSymb = OESymb | OTSymb

QSymb = QESymb | QTSymb

Atom = CSymb | QSymb

Leaf = Atom | VSymb |MESymb |MTSymb | EPHole | TPHole

ArgList = EList | TList

Construct = Exp | Type | BTerm | EListXTList | ArgList

Term = Construct | OSymb | QSymb

BTerm = BExp | BType

They are introduced mainly for simplicity and to save writing their expansion multiply.
In general, they are not things that a user of the system should ever be aware of.

C.1.2 Expressions
The current preference for what an expression can be:

Exp = VSymb | QExp | OExp | EPHole | NullExp

All kinds of expression should be visible.2

Quantified expressions:

QExp :: SYMBOL : QESymb
BODY : BExp

See §C.1.4 for the definition of BExp.

Ordinary3 expressions:

OExp :: SYMBOL : OESymb
ARGS : EListXTList

Basically, this class provides a description of constant expressions (both primitive and
defined) and (parametrized) expression metavariables. The distinction between these two
subclasses is made at the level of the OESymb:

OESymb = MESymb | CESymb | NullOESymb

2These visibility comments in bold fount relate to the export status etc. of the implementation.
3or other, or oh, hell, I don’t know what to call them!, or . . .
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See §C.1.5 below for the definition of ElistXTList (basically pairs of Exp lists and Type
lists).

Expression placeholders:

EPHole :: INDEX : N1

Placeholders will normally appear only in certain classes of mural object: viz. as instan-
tiations of metavariable symbols, in definitions of constants, and as images of (primitive)
constants under signature morphisms. Just exactly how they are used will be explained in
the relevant later sections. (Basically, mk-EPHole(n) will be filled by the nth argument of
a EList.) In practice, with a carefully chosen concrete syntax we hope to shield the user
from placeholders altogether.

The subterms of an expression are given by:

subterms :Exp→ Term-set
subterms(e) 4 cases e of

mk-QExp(qet,be) →{e,qet}∪ subterms(be)
mk-OExp(oet,elxtl)→{e,oet}∪ subterms(elxtl)
others {e}
end

Not exported.

And its free variables are obtained via the following function:

freeVars :Exp→ VSymb-set
freeVars(e) 4 cases e of

VSymb →{e}
mk-QExp(qet,be) → freeVars(be)
mk-OExp(oet,elxtl)→ freeVars(elxtl)
others {}
end

Not exported.

Similar functions (with the same names) will be defined on each of the other subclasses
of Construct (see below).

C.1.3 Types
The various subclasses of type:

Type = SubType | QType | OType | TPHole | NullType

All kinds of type should be visible.

A subtype constructor:

SubType :: BODY : BExp
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A dependent type:

QType :: SYMBOL : QTSymb
BODY : BType

An ordinary type is much like an ordinary expression:

OType :: SYMBOL : OTSymb
ARGS : EListXTList

OTSymb = MTSymb | CTSymb | NullOTSymb

Type placeholders are analogous to EPHoles:

TPHole :: INDEX : N1

The subterms and free variables in a type are given respectively by:

subterms :Type→ Term-set
subterms(t) 4 cases t of

mk-SubType(be) →{t}∪ subterms(be)
mk-QType(qtt,bt) →{t,qtt}∪ subterms(bt)
mk-OType(ott,elxtl)→{t,ott}∪ subterms(elxtl)
others {t}
end

Not exported.

freeVars :Type→ VSymb-set
freeVars(t) 4 cases t of

mk-SubType(be) → freeVars(be)
mk-QType(qtt,bt) → freeVars(bt)
mk-OType(ott,elxtl)→ freeVars(elxtl)
others {}
end

Not exported.

C.1.4 BExps and BTypes
A BExp is used to help define both QExps and SubTypes. It consists of a bound variable,
the declared type of that variable (the universe), and an expression predicate (the body).
The universe should not reference the bound variable, neither should that variable be
already bound in the body. Any other variable bound in either the universe or the body
should not occur in the other of these components. A BType is analogous, but has a type
as its body instead of an expression. It is introduced only because the resulting symmetry
makes some of the later stuff easier to write.

BExps and BTypes should probably not be visible as separate objects.
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BExp :: VAR : VSymb
UNIVERSE : Type
BODY : Exp

where

inv-BExp(be) 4 is-OK-BTerm(be)

BType :: VAR : VSymb
UNIVERSE : Type
BODY : Type

where

inv-BType(bt) 4 is-OK-BTerm(bt)

is-OK-BTerm :BTerm→ B
is-OK-BTerm(bterm) 4

let vt = VAR(bterm),
t = UNIVERSE(bterm),
def = BODY(bterm) in

vt /∈ allVars(t)∪boundVars(def )∧
allVars(def )∩boundVars(t) = {}∧boundVars(def )∩allVars(t) = {}

Not exported.

The usual functions for finding the subterms and the free variables of either a BExp or a
BType:

subterms :BTerm→ Term-set
subterms(bterm) 4

{VAR(bterm)}∪ subterms(UNIVERSE(bterm))∪ subterms(BODY(bterm))

Not exported.

freeVars :BTerm→ VSymb-set
freeVars(bterm) 4

freeVars(UNIVERSE(bterm))∪ freeVars(BODY(bterm))−{VAR(bterm)}

Not exported.

C.1.5 EListXTLists
An EListXTList is really just a list of expressions and a list of types. No variable bound
in some expression or type in it can occur in any other of its expressions or types (part of
this invariant actually appears as invariants on EList and TList, defined below).

EListXTLists should probably be visible as a list of expressions and a list of types,
with the system maintaining the invariant automatically.

EListXTList :: ELIST : EList
TLIST : TList

where
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inv-EListXTList(mk-EListXTList(el, tl)) 4

∀e ∈ rng el ·
∀t ∈ rng tl ·

allVars(e)∩boundVars(t) = {}∧boundVars(e)∩allVars(t) = {}

Those boring old functions subterms and freeVars again:

subterms :EListXTList→ Term-set
subterms(elxtl) 4 subterms(ELIST(elxtl))∪ subterms(TLIST(elxtl))

Not exported.

freeVars :EListXTList→ VSymb-set
freeVars(elxtl) 4 freeVars(ELIST(elxtl))∪ freeVars(TLIST(elxtl))

Not exported.

Plus an exciting new function for finding the size of an EListXTList. This is just a pair of
integers, respectively the length of its two separate lists of arguments:

size :EListXTList→ N×N
size(elxtl) 4 (len ELIST(elxtl), len TLIST(elxtl))

Not exported.

C.1.6 ELists and TLists
An EList is a sequence of expressions such that no variable bound in some element of the
sequence can occur in any other element of the sequence. A EList may contain expres-
sions which are equivalent to each other, however. A TList is analogous, but is a sequence
of types rather than expressions.

ELists and TLists as such probably shouldn’t appear, only their constituent parts.
Their invariants should be maintained automatically.

EList = Exp∗

where

inv-EList(el) 4 is-OK-ArgList(el)

TList = Type∗

where

inv-TList(tl) 4 is-OK-ArgList(tl)

is-OK-ArgList :ArgList→ B
is-OK-ArgList(al) 4

∀m,n ∈ dom al ·m 6= n ⇒ boundVars(al(m))∩allVars(al(n)) = {}

Not exported.

The subterms and freeVars functions for ArgLists hold no surprises:
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subterms :ArgList→ Term-set
subterms(al) 4 ⋃

{subterms(def ) | def ∈ rng al}

Not exported.

freeVars :ArgList→ VSymb-set
freeVars(al) 4 ⋃

{freeVars(def ) | def ∈ rng al}

Not exported.

C.1.7 Other Accessing Functions
This section contains lots of really exciting functions for finding out what’s in things. With
the exception of the first, which just finds the size of the arguments of some ordinary term,
they all act on constructs in general rather than on each subclass thereof individually.

argSize :OTerm→ N×N
argSize(oterm) 4 size(ARGS(oterm))

Not exported.

The next function finds all variables in a construct, that is the set of subterms which are
variables (VSymbs):

allVars :Construct→ VSymb-set
allVars(c) 4 {v ∈ VSymb | v ∈ subterms(c)}

Not exported.

The bound variables in a construct are then simply those variables which are not free!

boundVars :Construct→ VSymb-set
boundVars(c) 4 allVars(c)− freeVars(c)

Not exported.

In §C.1.8 below it’s argued that the above agrees with the usual definition of bound vari-
ables.

The leaves of a construct are its symbols, variables and placeholders, and its atoms are its
constant (i.e. not variable or metavariable) symbols4:

leaves :Construct→ Leaf -set
leaves(c) 4 {leaf ∈ Leaf | leaf ∈ subterms(c)}

4For those of you whose memory’s completely shot or who just weren’t paying attention earlier

Leaf = Atom | VSymb |MESymb |MTSymb | EPHole | TPHole

and

Atom = CSymb | QSymb
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Not exported.

atoms :Construct→ Atom-set
atoms(c) 4 {atom ∈ Atom | atom ∈ subterms(c)}

Not exported.

Next, a brace of functions for finding the (expression and type) metavariable symbols in
a construct:

meSymbs :Construct→MESymb-set
meSymbs(c) 4 {met ∈MESymb | met ∈ subterms(c)}

Not exported.

mtSymbs :Construct→MTSymb-set
mtSymbs(c) 4 {mtt ∈MTSymb | mtt ∈ subterms(c)}

Not exported.

The ordinary terms in some construct are found in a depressingly similar way:

oTerms :Construct→ OTerm-set
oTerms(c) 4 {oterm ∈ OTerm | oterm ∈ subterms(c)}

Not exported.

An object’s expression arity is simply the largest of the set of the indices of its expression
placeholders:

eArity :Construct→ N
eArity(c) 4

let eps = {INDEX(ep) | ep ∈ subterms(c)∧ ep ∈ EPHole} in
if eps = {}
then 0
else maxeps

Not exported.

And the type arity is, of course, entirely analogous:

tArity :Construct→ N
tArity(c) 4

let tps = {INDEX(tp) | tp ∈ subterms(c)∧ tp ∈ TPHole} in
if tps = {}
then 0
else max tps

Not exported.

The arity of an object is then just the pair of its expression and type arities. This pair of
integers thus says how many expression and type arguments the object expects.

arity :Construct→ N×N
arity(c) 4 (eArity(c), tArity(c))
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Not exported.

C.1.8 Bound Variables and Free Variables
The invariants to do with nonclashing free and bound variables in the earlier sections
were introduced to make it easier to specify equivalence and operations which perform
substitution ‘without capture’. In this section we argue that our definition of the bound
variables of an expression or type agrees with the usual definition.

First, a function for extracting BTerms from some construct:

bTerms :Construct→ BTerm-set
bTerms(c) 4 {bterm ∈ BTerm | bterm ∈ subterms(c)}

Not exported.

Claim: For every c ∈ Construct, boundVars(c) is precisely the set

{VAR(bterm) | bterm ∈ bTerms(c)}

(The proof is by structural induction over Construct.) Hence our definition agrees with
the usual one. It’s also pretty clear that VAR(bterm) is different for each different bterm
in bTerms(c).

C.1.9 Consistency and Completeness Checks
We can now give consistency and completeness tests for syntactic objects:

A construct is complete if it has no null parts:

isComplete :Construct→ B
isComplete(c) 4 ∀x ∈ subterms(c) · x /∈ NullThings | NullSymbs

This shouldn’t be a function that the user has direct access to, though the interface
should make it clear that a construct is incomplete.

A construct is full if it has no placeholders:

isFull :Construct→ B
isFull(c) 4 ∀x ∈ subterms(c) · x /∈ EPHole | TPHole

Not exported.

C.2 Subterm Access and Editing

C.2.1 The Class of a Term
The class of some object is the name of the basic abstract data type to which the object
belongs. Introducing an enumerated collection of tokens:



328 C The Specification of the Proof Assistant

Class= {VSYMB,QEXP,OEXP,EPHOLE,NULLEXP,
SUBTYPE,QTYPE,OTYPE,TPHOLE,NULLTYPE,
MESYMB,CESYMB,NULLOESYMB,QESYMB,
MTSYMB,CTSYMB,NULLOTSYMB,QTSYMB,
BEXP,BTYPE,ELISTXTLIST,ELIST,TLIST}

the class of a term is given by:

classOf :Term→ Class
classOf (term) 4 cases term of

VSymb → VSYMB

QExp → QEXP

OExp → OEXP

EPHole → EPHOLE

NullExp → NULLEXP

SubType → SUBTYPE

QType → QTYPE

OType → OTYPE

TPHole → TPHOLE

NullType → NULLTYPE

MESymb →MESYMB

CESymb → CESYMB

NullOESymb→ NULLOESYMB

QESymb → QESYMB

MTSymb →MTSYMB

CTSymb → CTSYMB

NullOTSymb→ NULLOTSYMB

QTSymb → QTSYMB

BExp → BEXP

BType → BTYPE

EListXTList → ELISTXTLIST

EList → ELIST

TList → TLIST

end

Not exported.

The species of an object is the type of the most general object which can replace it (for
example in structure editing). Introducing another enumerated collection of tokens:

Species= {EXP,TYPE,VSYMB,OESYMB,QESYMB,OTSYMB,QTSYMB,
BEXP,BTYPE,ELISTXTLIST,ELIST,TLIST}
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species :Term→ Species
species(term) 4 cases term of

VSymb → EXP

QExp → EXP

OExp → EXP

EPHole → EXP

NullExp → EXP

SubType → TYPE

QType → TYPE

OType → TYPE

TPHole → TYPE

NullType → TYPE

MESymb → OESYMB

CESymb → OESYMB

NullOESymb→ OESYMB

QESymb → QESYMB

MTSymb → OTSYMB

CTSymb → OTSYMB

NullOTSymb→ OTSYMB

QTSymb → QTSYMB

BExp → BEXP

BType → BTYPE

EListXTList → ELISTXTLIST

EList → ELIST

TList → TLIST

end

Not exported.

C.2.2 Indices
In the next couple of sections we introduce some machinery which, despite looking quite
formidable at first sight, is actually conceptually very easy and makes ‘editing-like’ oper-
ations much easier to specify by letting us ‘get our hands on’ the subterms of objects. An
index will be a record of the path through the abstract syntax tree leading to the desired
subterm, simply described as a list of positive integers:

Index = N∗1
Index shouldn’t be visible.

Index is partially ordered by:

≺ : Index× Index→ B
≺(i, j) 4 len i < len j∧∀n ∈ dom i · i(n) = j(n)

That is, i is between j and the root.
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Not exported.

An index is ‘valid’ if it actually refers to some subterm of the object in question (note that
the subterm of some object at index the empty list is the object itself):

isValidIndex :Exp× Index→ B
isValidIndex(e, i) 4

if i = []
then true
else let n = hd i,

i′ = tl i in
cases e of
mk-QExp(qet,be) → i = [1] ∨ n = 2∧ isValidIndex(be, i′)
mk-OExp(oet,elxtl)→ i = [1] ∨ n = 2∧ isValidIndex(elxtl, i′)
others false
end

Not exported.

isValidIndex :Type× Index→ B
isValidIndex(t, i) 4

if i = []
then true
else let n = hd i,

i′ = tl i in
cases t of
mk-SubType(be) → n = 1∧ isValidIndex(be, i′)
mk-QType(qtt,bt) → i = [1] ∨ n = 2∧ isValidIndex(bt, i′)
mk-OType(ott,elxtl)→ i = [1] ∨ n = 2∧ isValidIndex(elxtl, i′)
others false
end

Not exported.

isValidIndex :BTerm× Index→ B
isValidIndex(bterm, i) 4

i = [] ∨ i = [1] ∨
hd i = 2∧ isValidIndex(UNIVERSE(bterm), tl i) ∨
hd i = 3∧ isValidIndex(BODY(bterm), tl i)

Not exported.

isValidIndex :EListXTList× Index→ B
isValidIndex(elxtl, i) 4

i = [] ∨ hd i = 1∧ isValidIndex(ELIST(elxtl), tl i) ∨
hd i = 2∧ isValidIndex(TLIST(elxtl), tl i)

Not exported.

isValidIndex :ArgList× Index→ B
isValidIndex(al, i) 4 i = [] ∨ hd i≤ len al∧ isValidIndex(al(hd i), tl i)
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Not exported.

The set of valid indices of any construct is then simply given by the following function:

indices :Construct→ Index-set
indices(c) 4 {i ∈ Index | isValidIndex(c, i)}

Not exported.

C.2.3 Subterm Access
The subterm situated at some (valid) index in some object is then obtained via the follow-
ing functions:

termAtIndex (e:Exp, i: Index) term:Term
pre isValidIndex(e, i)
post term = if i = []

then e
else cases e of

mk-QExp(qet,be) → if hd i = 1
then qet
else termAtIndex(be, tl i)

mk-OExp(oet,elxtl)→ if hd i = 1
then oet
else termAtIndex(elxtl, tl i)

end

termAtIndex (t:Type, i: Index) term:Term
pre isValidIndex(t, i)
post term = if i = []

then t
else cases t of

mk-SubType(be) → termAtIndex(be, tl i)
mk-QType(qtt,bt) → if hd i = 1

then qtt
else termAtIndex(bt, tl i)

mk-OType(ott,elxtl)→ if hd i = 1
then ott
else termAtIndex(elxtl, tl i)

end

termAtIndex (bterm:BTerm, i: Index) term:Term
pre isValidIndex(bterm, i)
post term = if i = []

then bterm
else cases hd i of

1→ VAR(bterm)
2→ termAtIndex(UNIVERSE(bterm), tl i)
3→ termAtIndex(BODY(bterm), tl i)
end
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termAtIndex (elxtl:EListXTList, i: Index) term:Term
pre isValidIndex(elxtl, i)
post term = if i = []

then elxtl
else if hd i = 1

then termAtIndex(ELIST(elxtl), tl i)
else termAtIndex(TLIST(elxtl), tl i)

termAtIndex (al:ArgList, i: Index) term:Term
pre isValidIndex(al, i)
post term = if i = []

then al
else termAtIndex(al(hd i), tl i)

None of the above functions should be exported, though some means of accessing
subterms is clearly necessary and the user interface should provide such.

The binding points of some construct are the indices, if any, corresponding to the VAR
fields of the construct’s BTerms:

bindingPoints :Construct→ Index-set
bindingPoints(c) 4

{i | i 6= []∧ isValidIndex(c, i)∧
termAtIndex(c, truncate(i)) ∈ BTerm∧ last(i) = 1}

Not exported.

The two functions last and truncate return respectively the last element of some index and
an index consisting of all but the last element of some index:

last (i: Index) n:N1
pre i 6= []
post n = i(len i)

Not exported.

truncate (i: Index) i′: Index
pre i 6= []
post i′ = [i(n) | 1≤ n≤ len i−1]

Not exported.

The species at some index is given by:

speciesAtIndex (c:Construct, i: Index) spec:Species
pre isValidIndex(c, i)
post spec = if i ∈ bindingPoints(c)

then VSYMB

else species(termAtIndex(c, i))

Not exported.
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C.2.4 Equivalence Testing
Constructs will be considered equivalent up to holes (i.e. NullThings and NullSymbs) and
renaming of bound variables (α-conversion). Basically, two constructs are equivalent if
they are of the same class and if their component parts are equivalent. Symbols (other
than VSymbs) are equivalent iff they’re equal. A hole is equivalent to any other hole of
the same class.

isEquivalentTo :Construct×Construct→ B
isEquivalentTo(c,c′) 4

let is = indices(c),
is′ = indices(c′) in

is = is′∧
∃m ∈ VSymb m←→ VSymb ·

dom m = boundVars(c)∧ rng m = boundVars(c′)∧
∀i ∈ is ·

let term = termAtIndex(c, i),
term′ = termAtIndex(c′, i) in

classOf (term) = classOf (term′)∧
(term ∈ boundVars(c) ⇒ m(term) = term′)∧
(term ∈ leaves(c)−boundVars(c) ⇒ term = term′)

Exported.

C.2.5 Building
Some renaming of bound variables may be necessary when creating new objects of those
syntactic classes having invariants. For example, the invariant on BExp is unlikely to be
satisfied by an arbitrary variable/type/expression triple. This means that you can’t just
create an object with an invariant out of the requisite arbitrary components. A build-
function provides a means of doing so, however, by converting all the components to
equivalent components such that the equivalent components do satisfy the invariant, then
creating the desired object out of these new components. There is thus a build-function
for each syntactic class which has an invariant.
All functions in this section should be used by the system whenever creating new
objects of the relevant type. They don’t need to be accessible to the user otherwise,
though.

An EListXTList is therefore built out of an EList and a TList equivalent to the ones you
first thought of:

build-EListXTList (el:EList, tl:TList) elxtl:EListXTList
post isEquivalentTo(ELIST(elxtl),el)∧ isEquivalentTo(TLIST(elxtl), tl)

And similarly for an EList . . .

build-EList (el:Exp∗) el′:EList
post len el = len el′∧∀i ∈ dom el · isEquivalentTo(el(i),el′(i))

. . . and a TList.
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build-TList (tl:Type∗) tl′:TList
post len tl = len tl′∧∀i ∈ dom tl · isEquivalentTo(tl(i), tl′(i))

The situation for both BExp and BType is somewhat different, however, due to the pres-
ence of the extra clause in the invariant forbidding the object’s bound variable from oc-
curring free in the object’s universe. The current thinking here is that the bound variable
and all its occurrences in the prospective body get renamed in order to avoid this clash5.

build-BExp (vt:VSymb, t:Type,e:Exp) be:BExp
post isEquivalentTo(UNIVERSE(be), t)∧

isEquivalentTo(renameFreeVars(BODY(be),{VAR(be) 7→ vt}),e)

build-BType (vt:VSymb, t:Type, t′:Type) bt:BType
post isEquivalentTo(UNIVERSE(bt), t)∧

isEquivalentTo(renameFreeVars(BODY(bt),{VAR(bt) 7→ vt}), t′)

It is perhaps worth noting at this point that, although these operations (and indeed many
others appearing later) look (and are!) decidedly non-deterministic, all possible results
are mutually equivalent. When it comes to implementing such operations, however, we
would hope that renaming should only be carried out when it’s absolutely unavoidable,
and even then should be kept to the minimum necessary to ensure soundness.

C.2.6 Editing Subterms
This section contains functions for general editing of expressions, types and assertions.
The basic idea is that of structure editing: any subterm of any object can be replaced by
an object of the correct species; an index designates the subterm to be edited.

The first set of operations simply replaces the subterm at some given index by a given
term. A subterm can be so replaced if the replacement is of the correct species, though
if the subterm being replaced is actually a variable at a binding point the replacement
variable should not occur free in the associated universe6.
The structure-editing operations described by the functions in this section should be
available to the user as part of the general user interface.

5Contrast this with the previous treatment in which a pre-condition on the build-functions effectively
forbade creation of the object at all if the bound variable occurred free in the prospective universe

6This is the only case we can think of where it’s not clear how to preserve the invariants by simple
renaming of bound variables, courtesy of the build-functions of the previous section. Disallowing such
replacements is not a problem in any of the places later in this specification where these term-replacing
functions are used , however (e.g. in the treatment of unfolding definitions), though if these operations were
to be thought of as simple operations for single-step structure editing it is clear that certain editing actions
would have to be ruled out.
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isValidTermReplace :Construct× Index×Term→ B
isValidTermReplace(c, i, term) 4

let spec = speciesAtIndex(c, i),
spec′= if spec = VSYMB

then classOf (term)
else species(term)

in
isValidIndex(c, i)∧ spec = spec′∧
(i ∈ bindingPoints(c) ⇒

term /∈ freeVars(UNIVERSE(termAtIndex(c, truncate(i)))))

Variables free in the replacement term may get captured by binders in c and variables
bound in it may need to be renamed so that they don’t clash with variables bound in
c. In addition, variables bound in c but whose scope does not include the replacement
term may need to be renamed to avoid clashes with free variables being introduced in the
replacement term7.

replaceTermAt (e:Exp, i: Index, term:Term) e′:Exp
pre isValidTermReplace(e, i, term)
post e′ = if i = []

then term
else let j = hd i,

i′ = tl i in
cases e of
mk-QExp(qet,be) → if j = 1

then mk-QExp(term,be)
else let be′ = replaceTermAt(be, i′, term) in

mk-QExp(qet,be′)
mk-OExp(oet,elxtl)→ if j = 1

then mk-OExp(term,elxtl)
else let elxtl′ = replaceTermAt(elxtl, i′, term) in

mk-OExp(oet,elxtl′)
end

replaceTermAt (t:Type, i: Index, term:Term) t′:Type
pre isValidTermReplace(t, i, term)

7These contorted conditions on what needs to be renamed are the main reason behind our return to the
rather more concrete -description of the term-replacement operations. It was felt that, although a treatment
analogous to that used in the renaming of free variables (see later in this section) would be perfectly possible,
a series of auxiliary functions would be needed to define the scope of the renaming. In the more concrete
description this is all taken care of automatically by the build-functions.
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post t′ = if i = []
then term
else let j = hd i,

i′ = tl i in
cases t of
mk-SubType(be) → let be′ = replaceTermAt(be, i′, term) in

mk-SubType(be′)
mk-QType(qtt,bt) → if j = 1

then mk-QType(term,bt)
else let bt′ = replaceTermAt(bt, i′, term) in

mk-QType(qtt,bt′)
mk-OType(ott,elxtl)→ if j = 1

then mk-OType(term,elxtl)
else let elxtl′ = replaceTermAt(elxtl, i′, term) in

mk-OType(ott,elxtl′)
end

replaceTermAt (be:BExp, i: Index, term:Term) be′:BExp
pre isValidTermReplace(be, i, term)
post be′ = if i = []

then term
else let j = hd i,

i′ = tl i,
vt= if j = 1

then term
else VAR(be),

t= if j = 2
then replaceTermAt(UNIVERSE(be), i′, term)
else UNIVERSE(be),

e= if j = 3
then replaceTermAt(BODY(be), i′, term)
else BODY(be)

in
build-BExp(vt, t,e)

replaceTermAt (bt:BType, i: Index, term:Term) bt′:BType
pre isValidTermReplace(bt, i, term)
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post bt′ = if i = []
then term
else let j = hd i,

i′ = tl i,
vt= if j = 1

then term
else VAR(bt),

t= if j = 2
then replaceTermAt(UNIVERSE(bt), i′, term)
else UNIVERSE(bt),

t′= if j = 3
then replaceTermAt(BODY(bt), i′, term)
else BODY(bt)

in
build-BType(vt, t, t′)

replaceTermAt (elxtl:EListXTList, i: Index, term:Term) elxtl′:EListXTList
pre isValidTermReplace(elxtl, i, term)
post elxtl′ = if i = []

then term
else let j = hd i,

i′ = tl i,
el= if j = 1

then replaceTermAt(ELIST(elxtl), i′, term)
else ELIST(elxtl),

tl= if j = 2
then replaceTermAt(TLIST(elxtl), i′, term)
else TLIST(elxtl)

in
build-EListXTList(el, tl)

replaceTermAt (el:EList, i: Index, term:Term) el′:EList
pre isValidTermReplace(el, i, term)
post el′ = if i = []

then term
else let j = hd i,

i′ = tl i,
e = replaceTermAt(el(j), i′, term) in

build-EList(el †{j 7→ e})

replaceTermAt (tl:TList, i: Index, term:Term) tl′:TList
pre isValidTermReplace(tl, i, term)
post tl′ = if i = []

then term
else let j = hd i,

i′ = tl i,
t = replaceTermAt(tl(j), i′, term) in

build-TList(tl †{j 7→ t})
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This next function renames metavariable symbols in some construct. Note that metavari-
able symbols may get ‘collapsed together’ in an inconsistent way as part of this process
(e.g. if m1 7→ m and m2 7→ m where m1 and m2 expect different numbers of arguments).

renameMSymbs (c:Contruct,mem:MESymb m−→MESymb,
mtm:MTSymb m−→MTSymb) c′:Construct

post let is = indices(c) in
indices(c′) = is∧
∀i ∈ is ·

let term = termAtIndex(c, i),
mm = mem∪mtm in

classOf (termAtIndex(c′, i)) = classOf (term)∧
(term ∈ leaves(c)−dom mm ⇒ termAtIndex(c′, i) = term)∧
(term ∈ dom mm ⇒ termAtIndex(c′, i) = mm(term))

This one’s probably not very useful on its own. After all, it can be mimicked by
instantiate.

Finally, there’s a similar operation for renaming free variables (note that it is perfectly
possible to rename two different free variables to the same thing with this operation.
The result of renaming the free variables in some construct yields a construct which is
therefore not necessarily equivalent to the original one):

renameFreeVars (c:Construct,m:VSymb m−→ VSymb) c′:Construct
post let is = indices(c) in

indices(c′) = is∧
∃c′′ ∈ Construct ·

isEquivalentTo(c,c′′)∧
boundVars(c′′)∩dom m = {}∧boundVars(c′′)∩ rng m = {}∧
∀i ∈ is ·

let term = termAtIndex(c′′, i) in
classOf (termAtIndex(c′, i)) = classOf (term)∧
(term ∈ leaves(c′′)−dom m ⇒ termAtIndex(c′, i) = term)∧
(term ∈ dom m ⇒ termAtIndex(c′, i) = m(term))

Might be useful.

C.3 Sequents and Rules

C.3.1 Sequents

Sequent :: NFV : VSymb-set
PREMISES : Exp-set
UPSHOT : Exp

Sequents should be visible.

The exps in a sequent are its premises plus its upshot:
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exps :Sequent→ Exp-set
exps(s) 4 PREMISES(s)∪{UPSHOT(s)}

Not exported.

Its (apparent8) free variables are simply those of its exps:

freeVars :Sequent→ VSymb-set
freeVars(s) 4 ⋃

{freeVars(e) | e ∈ exps(s)}

Not exported.

A sequent is proper if its actual free variables and its apparent free variables are the same:

isProper :Sequent→ B
isProper(s) 4 NFV(s) = freeVars(s)

Not exported.

And a sequent can be converted into a proper sequent by making its NFV field the same
as its apparent free variables:

properSequent :Sequent→ Sequent
properSequent(s) 4 mk-Sequent(freeVars(s),PREMISES(s),UPSHOT(s))

Not exported.

A sequent is trivially true if its upshot is amongst its premises (strictly if something equiv-
alent to its upshot is amongst its premises):

isTriviallyTrue :Sequent→ B
isTriviallyTrue(s) 4 ∃e ∈ PREMISES(s) · isEquivalentTo(e,UPSHOT(s))

Not exported.

Renaming metavariable symbols in a sequent is achieved simply by doing the renaming
on each of its component expressions:

renameMSymbs :Sequent×MESymb m−→MESymb×MTSymb m−→MTSymb
→ Sequent

renameMSymbs(s,mem,mtm) 4

let mk-Sequent(vts,prems,up) = s,
prems′ = {renameMSymbs(e,mem,mtm) | e ∈ prems} in

mk-Sequent(vts,prems′,renameMSymbs(up,mem,mtm))

Should be possible, but covered by instantiation of sequents.

Renaming of free variables is pretty similar, but ‘variable capture’ (i.e. renaming some
actual free variable to some variable which is apparently, but not actually, free in the
sequent) is ruled out:

renameFreeVars (s:Sequent,vm:VSymb m−→ VSymb) s′:Sequent
pre let vm′ = NFV(s)C vm in

rng vm′∩ (freeVars(s)−NFV(s)) = {}
8As distinct from actual i.e. the ones stated as being free in the NFV field
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post let mk-Sequent(vts,es,e) = s,
vm′ = vtsC vm,
es′ = {renameFreeVars(ê,vm′) | ê ∈ es},
e′ = renameFreeVars(e,vm′),
vts′ = (vts−dom vm)∪ rng vm′ in

s′ = mk-Sequent(vts′,es′,e′)

Exported.

Note that the precondition on the above function is trivially true for proper sequents.

A sequent can be weakened by adding hypotheses and/or collapsing free variables. A
sequent establishes a second sequent if the second sequent is weaker than it:

establishesSequent :Sequent×Sequent→ B
establishesSequent(s,s′) 4

∃m ∈ VSymb m−→ VSymb ·
dom m = NFV(s)∧ rng m⊆ NFV(s′)
∧ (freeVars(s)−NFV(s))∩NFV(s′) = {}
∧ isEquivalentTo(renameFreeVars(UPSHOT(s),m),UPSHOT(s′))
∧∀e ∈ PREMISES(s) · ∃e′ ∈ PREMISES(s′) ·

isEquivalentTo(renameFreeVars(e,m),e′)

Not exported.

An expression can also establish a sequent if its free variables are disjoint from the se-
quent’s new free variables and if it’s equivalent to the sequent’s upshot.

establishesSequent :Exp×Sequent→ B
establishesSequent(e,s) 4

NFV(s)∩ freeVars(e) = {}∧ isEquivalentTo(e,UPSHOT(s))

Not exported.

Claim: ∀e ∈ Exp,s ∈ Sequent ·
establishesSequent(e,s) ⇔ establishesSequent(mk-Sequent({},{},e),s)

The following definition of equivalence of sequents is something of a cheat – it’s not really
a definition of equivalence of sequents at all, except in a very limited sense. As it stands,
it says that sequents can only be equivalent if they’re proper, which is clearly nonsense.
However, this function is only used in the function properRuleStmt below, and its sole
purpose in life is to rename the free variables in the sequent hypotheses of a rule statement
in such a way that no two sequent hypotheses have (actual) free variables in common.
Coupled with the fact that sequent hypotheses appearing in proper rule statements have to
be proper, this means that, at least until someone comes up with a real need for a function
testing for general equivalence of sequents, this one is quite adequate for all purposes for
which it was designed!

isEquivalentTo (s:Sequent,s′:Sequent) r:B
pre isProper(s)∧ isProper(s′)
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post r ⇔
∃m ∈ VSymb m←→ VSymb,m′ ∈ Exp m−→ Exp ·

dom m = NFV(s)∧ rng m = NFV(s′)∧
dom m′ = PREMISES(s)∧ rng m′ = PREMISES(s′)∧
isEquivalentTo(UPSHOT(s′),renameFreeVars(UPSHOT(s),m))∧
∀e ∈ dom m′ ·

isEquivalentTo(m′(e),renameFreeVars(e,m))

Not exported.

C.3.2 Rules

Rulemap = Rule-ref m−→ Rule

Rule :: STMT : RuleStmt
THEORY : Theory-ref
PROOF : [Proof ]

where

inv-Rule(r) 4 isProper(STMT(r))∧ is-OK-RuleStmt(STMT(r))

Rules should be visible.

Note that rules now have an invariant to the effect that their statement should be proper
(i.e. its sequent hypotheses should be proper and shouldn’t share free variables9) and OK
(i.e. it should contain no placeholders, its ordinary hypotheses and conclusion should
contain no free variables, and OTerms appear consistently) (see below).

Rules with a null PROOF field are called axioms; the rest are called derived rules – it’s
important not to confuse an axiom with a derived rule having an ‘empty’ proof. In this
treatment, a rule has a single Proof but a Proof can contain multiple proof attempts.
One of these proof attempts is designated as the actual (or currently favoured) proof by
the ROOT field of Proof (see §C.8.9). Of course, different rules may have equivalent
statements. This makes the circularity check on consistency of the collection of derived
rules simple.

RuleStmt :: SEQHYPS : Sequent-set
ORDHYPS : Exp-set
CONCL : Exp

A rule statement is proper if its sequent hypotheses are proper and don’t share free vari-
ables.

9This latter condition arose out of the recent UI discussions where it was decided that these free variables
will be treated in much the same way as metavariable symbols, e.g. in the rule instantiator or whatever its
fancy name was. Any ‘instantiation’ thereof by the user should be restricted to a single sequent, hence the
invariant.
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isProper :RuleStmt→ B
isProper(rs) 4

∀s1 ∈ SEQHYPS(rs) ·
isProper(s1)∧∀s2 ∈ SEQHYPS(rs) · s1 6= s2
⇒ NFV(s1)∩NFV(s2) = {}

Not exported.

The expressions in a rule statement are naturally those in all its bits:

exps :RuleStmt→ Exp-set
exps(rs) 4

let es =
⋃
{exps(s) | s ∈ SEQHYPS(rs)} in

es∪ORDHYPS(rs)∪{CONCL(rs)}

Not exported.

The oTerms in a rule statement or a sequent are naturally those in all its exps:

oTerms :(Sequent | RuleStmt)→ OTerm-set
oTerms(sr) 4 ⋃

{oTerms(e) | e ∈ exps(sr)}

Not exported.

The meSymbs in a rule statement are likewise those in all its exps:

meSymbs :RuleStmt→MESymb-set
meSymbs(rs) 4 ⋃

{meSymbs(e) | e ∈ exps(rs)}

Not exported.

As are the meSymbs.

mtSymbs :RuleStmt→MTSymb-set
mtSymbs(rs) 4 ⋃

{mtSymbs(e) | e ∈ exps(rs)}

Not exported.

The next function tests that the OTerms in a construct or a rule statement have consistent
argument sizes:

hasConsisArgSizes :(Construct | RuleStmt)→ B
hasConsisArgSizes(cr) 4

let ots = oTerms(cr) in
∀oterm,oterm′ ∈ ots ·

let symb = SYMBOL(oterm) in
symb /∈ NullSymbs∧ symb = SYMBOL(oterm′)
⇒ argSize(oterm) = argSize(oterm′)

Not exported.

A construct/sequent/rule statement (CSR) is consistent with some rule statement if it only
contains metavariable symbols which occur in that rule statement and if they have the
same argument sizes as those in the rule statement. Note that this function should probably
strictly have a pre-condition to ensure that both the CSR and the rule statement themselves
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have consistent argument sizes. In the cases where this function is used, however, (see
§C.8.7) this is automatically the case.

isConsisWithRuleStmt :CSR×RuleStmt→ B
isConsisWithRuleStmt(csr,rs) 4

∀oterm ∈ oTerms(csr) ·
SYMBOL(oterm) ∈ (MESymb |MTSymb) ⇒
∃oterm′ ∈ oTerms(rs) ·

SYMBOL(oterm) = SYMBOL(oterm′)
∧argSize(oterm) = argSize(oterm′)

A rule statement is OK if all its expressions are full, its ordinary hypotheses and conclu-
sion are closed, and OTerms appear consistently throughout (although it might still have
null parts):

is-OK-RuleStmt :RuleStmt→ B
is-OK-RuleStmt(rs) 4

hasConsisArgSizes(rs)∧ freeVars(CONCL(rs)) = {}∧
∀e ∈ exps(rs) · isFull(e)∧∀e ∈ ORDHYPS(rs) · freeVars(e) = {}

Not exported.

A rule statement can be made proper by making its sequent hypotheses proper and renam-
ing free variables therein so as to avoid clashes.

properRuleStmt (rs:RuleStmt) rs′:RuleStmt
post isProper(rs′)∧CONCL(rs′) = CONCL(rs)∧

ORDHYPS(rs′) = ORDHYPS(rs)∧
let ss = {properSequent(s) | s ∈ SEQHYPS(rs)} in
∃m ∈ Sequent m−→ Sequent ·

dom m = ss∧ rng m = SEQHYPS(rs′)∧
∀s ∈ ss · isEquivalentTo(s,m(s))

Not exported.

Proper rule statements are equivalent (in the sense required above) if all their components
are equivalent:

isEquivalentTo (rs:RuleStmt,rs′:RuleStmt) r:B
pre isProper(rs)∧ isProper(rs′)
post let mk-RuleStmt(ss,es,e) = rs,

mk-RuleStmt(ss′,es′,e′) = rs′ in
isEquivalentTo(e,e′)
∧∃em ∈ Exp m−→ Exp ·

dom em = es∧ rng em = es′∧∀ê ∈ es · isEquivalentTo(ê,em(ê))
∧∃sm ∈ Sequent m−→ Sequent ·

dom sm = ss∧ rng sm = ss′∧∀ŝ ∈ ss · isEquivalentTo(ŝ,sm(ŝ))

A rule is OK if its statement is equivalent to the rule statement of its proof (if any):
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is-OK-Rule :Rule→ B
is-OK-Rule(mk-Rule(rs, th,p)) 4

p 6= nil ⇒ isEquivalentTo(rs,properRuleStmt(ruleStmt(p)))

Background. Warning when violated.

For later convenience, we’ll define a function for renaming the free variables in the se-
quent hypotheses of a proper rule statement according to some 1–1 map:

renameFreeVars (rs:RuleStmt,vm:VSymb m←→ VSymb) rs′:RuleStmt
pre isProper(rs)
post let ss = {renameFreeVars(s,vm) | s ∈ SEQHYPS(rs)} in

rs′ = mk-RuleStmt(ss,ORDHYPS(rs),CONCL(rs))

Not exported.

A rule statement can be weakened by collapsing metavariable symbols, adding hypothe-
ses, strengthening sequent hypotheses, converting sequent hypotheses to ordinary hy-
potheses which establish them, or any combination thereof. A rule statement establishes
a weaker rule statement:

establishesRuleStmt :RuleStmt×RuleStmt→ B
establishesRuleStmt(rs,rs′) 4

let mk-RuleStmt(shs,es,e) = rs,
mk-RuleStmt(shs′,es′,e′) = rs′ in

∃mem:MESymb m−→MESymb,mtm:MTSymb m−→MTSymb ·
isEquivalentTo(e′,renameMSymbs(e,mem,mtm))
∧∀h ∈ es · ∃h′ ∈ es′ · isEquivalentTo(h′,renameMSymbs(h,mem,mtm))
∧∀s ∈ shs ·

∃s′ ∈ shs′ · establishesSequent(s′,renameMSymbs(s,mem,mtm))
∨ ∃h′ ∈ es′ · establishesSequent(h′,renameMSymbs(s,mem,mtm))
∨ isTriviallyTrue(s)

Not exported.

Intuitively, any use of rs′ in a proof can be replaced by a use of rs (with metavariable
symbols renamed appropriately). A more sophisticated test might involve instantiating
the metavariable symbols of rs instead of merely renaming them; the main point about
the test given here, however, is that rules should be considered equivalent up to renam-
ing of metavariable symbols. This function will be used to check validations of theory
morphisms (cf. §C.7.5 below), so it probably doesn’t matter very much if it can’t be im-
plemented very efficiently. On the other hand, if it is found to be too impractical a less
sophisticated test should perhaps be substituted.

C.4 Instantiation and Pattern-matching
Instantiation consists of replacing expression metavariable symbols with expressions and
type metavariable symbols with types.

Instantiation :: MEMAP : MESymb m−→ Exp
MTMAP : MTSymb m−→ Type
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Should be visible.

When the expressions or types introduced by the instantiation have placeholders these are
filled in with the appropriate elements of the arguments of the metavariables. For this to be
possible, the metavariables must have at least as many arguments as the arity of the object
replacing the metavariable symbol. In order to help test that this condition is satisfied, a
function testing whether an object is ‘fillable’ by some EListXTList (the expression arity
of the object must be at most the number of elements in the ELIST of the EListXTList
and the type arity at most the number of elements in its TLIST) is needed.

isFillableBy :Construct×EListXTList→ B
isFillableBy(c,elxtl) 4

eArity(c)≤ len ELIST(elxtl)∧ tArity(c)≤ len TLIST(elxtl)

Not exported.

isInstantiableBy :Construct× Instantiation→ B
isInstantiableBy(c, inst) 4

let im = MEMAP(inst)∪MTMAP(inst) in
∀oterm ∈ oTerms(c) ·

SYMBOL(oterm) ∈ dom im
⇒ isFillableBy(im(SYMBOL(oterm)),ARGS(oterm))

Not exported.

To avoid capture we’ll need to know what free variables can be introduced by an instanti-
ation:

freeVars : Instantiation→ VSymb-set
freeVars(inst) 4⋃

{freeVars(def ) | def ∈ rng MEMAP(inst)∪ rng MTMAP(inst)}

Not exported.

Instantiation of objects is now straightforward. Metavariable symbols occurring in the
domain of the instantiation are replaced by their image under the instantiation, and any
placeholders in this image are filled in with the arguments of the metavariable so instanti-
ated. Other metavariable symbols are left unchanged. As part of the process, some bound
variables might need to be renamed in order to avoid clashes with and capture of free
variables introduced by the instantiation.

There follows a suite of functions for doing simple instantiation without capture of free
variables (assuming, of course, that said object is in fact instantiable!):

instantiate (e:Exp, inst: Instantiation) e′:Exp
pre isInstantiableBy(e, inst)
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post ∃e′′ ∈ Exp ·
isEquivalentTo(e,e′′)∧boundVars(e′′)∩ freeVars(inst) = {}∧
e′ = cases e′′ of

mk-QExp(qet,be) → mk-QExp(qet, instantiate(be, inst))
mk-OExp(oet,elxtl)→ let elxtl′ = instantiate(elxtl, inst) in

if oet ∈ dom MEMAP(inst)
then fillPHoles(MEMAP(inst)(oet),elxtl′)
else mk-OExp(oet,elxtl′)

others e′′

end

Exported.

The fillPHoles operations are specified below.

instantiate (t:Type, inst: Instantiation) t′:Type
pre isInstantiableBy(t, inst)
post ∃t′′ ∈ Type ·

isEquivalentTo(t, t′′)∧boundVars(t′′)∩ freeVars(inst) = {}∧
t′ = cases t′′ of

mk-SubType(be) → mk-SubType(instantiate(be, inst))
mk-QType(qtt,bt) → mk-QType(qtt, instantiate(bt, inst))
mk-OType(ott,elxtl)→ let elxtl′ = instantiate(elxtl, inst) in

if ott ∈ dom MTMAP(inst)
then fillPHoles(MTMAP(inst)(ott),elxtl′)
else mk-OType(ott,elxtl′)

others t′′

end

Exported.

instantiate (be:BExp, inst: Instantiation) be′:BExp
pre isInstantiableBy(be, inst)
post ∃be′′ ∈ BExp ·

isEquivalentTo(be,be′′)∧VAR(be′′) /∈ freeVars(inst)∧
let t = instantiate(UNIVERSE(be′′), inst),

e = instantiate(BODY(be′′), inst) in
be′ = build-BExp(VAR(be′′), t,e)

Not exported.

instantiate (bt:BType, inst: Instantiation) bt′:BType
pre isInstantiableBy(bt, inst)
post ∃bt′′ ∈ BType ·

isEquivalentTo(bt,bt′′)∧VAR(bt′′) /∈ freeVars(inst)∧
let t = instantiate(UNIVERSE(bt′′), inst),

t′ = instantiate(BODY(bt′′), inst) in
bt′ = build-BType(VAR(bt′′), t, t′)

Not exported.

instantiate (elxtl:EListXTList, inst: Instantiation) elxtl′:EListXTList
pre isInstantiableBy(elxtl, inst)
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post let el = instantiate(ELIST(elxtl), inst),
tl = instantiate(TLIST(elxtl), inst) in

elxtl′ = build-EListXTList(el, tl)

Not exported.

instantiate (tl:TList, inst: Instantiation) tl′:TList
pre isInstantiableBy(tl, inst)
post tl′ = build-TList([instantiate(tl(i), inst) | i ∈ dom tl])

Not exported.

instantiate (el:EList, inst: Instantiation) el′:EList
pre isInstantiableBy(el, inst)
post el′ = build-EList([instantiate(el(i), inst) | i ∈ dom el])

Not exported.

The auxiliary functions for filling placeholders follow. They sometimes need to rename
bound variables to avoid variable capture.

fillPHoles (e:Exp,elxtl:EListXTList) e′:Exp
pre isFillableBy(e,elxtl)
post e′ = cases e of

mk-EPHole(n) → ELIST(elxtl)(n)
mk-QExp(qet,be) → mk-QExp(qet,fillPHoles(be,elxtl))
mk-OExp(oet,elxtl′)→ mk-OExp(oet,fillPHoles(elxtl′,elxtl))
others e
end

Not exported.

fillPHoles (t:Type,elxtl:EListXTList) t′:Type
pre isFillableBy(t,elxtl)
post t′ = cases t of

mk-TPHole(n) → TLIST(elxtl)(n)
mk-SubType(be) → mk-SubType(fillPHoles(be,elxtl))
mk-QType(qtt,bt) → mk-QType(qtt,fillPHoles(bt,elxtl))
mk-OType(ott,elxtl′)→ mk-OType(ott,fillPHoles(elxtl′,elxtl))
others t
end

Not exported.

fillPHoles (be:BExp,elxtl:EListXTList) be′:BExp
pre isFillableBy(be,elxtl)
post ∃be′′ ∈ BExp ·

isEquivalentTo(be,be′′)∧VAR(be′′) /∈ freeVars(elxtl)∧
let t = fillPHoles(UNIVERSE(be′′),elxtl),

e = fillPHoles(BODY(be′′),elxtl) in
be′ = build-BExp(VAR(be′′), t,e)

Not exported.

fillPHoles (bt:BType,elxtl:EListXTList) bt′:BType
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pre isFillableBy(bt,elxtl)
post ∃bt′′ ∈ BType ·

isEquivalentTo(bt,bt′′)∧VAR(bt′′) /∈ freeVars(elxtl)∧
let t = fillPHoles(UNIVERSE(bt′′),elxtl),

e = fillPHoles(BODY(bt′′),elxtl) in
bt′ = build-BType(VAR(bt′′), t,e)

Not exported.

fillPHoles (elxtl:EListXTList,elxtl′:EListXTList) elxtl′′:EListXTList
pre isFillableBy(elxtl,elxtl′)
post let el = fillPHoles(ELIST(elxtl),elxtl′),

tl = fillPHoles(TLIST(elxtl),elxtl′) in
elxtl′′ = build-EListXTList(el, tl)

Not exported.

fillPHoles (tl:TList,elxtl:EListXTList) tl′:TList
pre isFillableBy(tl,elxtl)
post tl′ = build-TList([fillPHoles(tl(i),elxtl) | i ∈ dom tl])

Not exported.

fillPHoles (el:EList,elxtl:EListXTList) el′:EList
pre isFillableBy(el,elxtl)
post el′ = build-EList([fillPHoles(el(i),elxtl) | i ∈ dom el])

Not exported.

A sequent or a rule statement is instantiable if each of its component expressions is sepa-
rately instantiable:

isInstantiableBy :(Sequent | RuleStmt)× Instantiation→ B
isInstantiableBy(sr, inst) 4 ∀e ∈ exps(sr) · isInstantiableBy(e, inst)

Not exported.

An instance of a sequent is built by instantiating its component expressions:

instantiate (s:Sequent, inst: Instantiation) s′:Sequent
pre isInstantiableBy(s, inst)
post let es = {instantiate(e, inst) | e ∈ PREMISES(s)},

e′ = instantiate(UPSHOT(s), inst) in
s′ = mk-Sequent(NFV(s),es,e′)

Exported.

And a rule statement is instantiated by instantiating each of its constituent parts separately:

instantiate (rs:RuleStmt, inst: Instantiation) rs′:RuleStmt
pre isInstantiableBy(rs, inst)
post let ss = {instantiate(s, inst) | s ∈ SEQHYPS(rs)},

es = {instantiate(e, inst) | e ∈ ORDHYPS(rs)},
e′ = instantiate(CONCL(rs), inst) in

rs′ = mk-RuleStmt(ss,es,e′)
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Exported.

Pattern-matching is now easy to specify:

matchAgainst (e:Exp,e′:Exp) insts: Instantiation-set
pre isFull(e)∧ isFull(e′)
post ∀inst ∈ insts·isInstantiableBy(e, inst)∧isEquivalentTo(instantiate(e, inst),e′)

Exported.

It has been shown elsewhere (cf. ‘The return of the son of FSIP’ PAL021/1.2) that –
given the precondition above – this operation is fully implementable, in that all possible
‘relevant’ instantiations can be returned. The precondition should not bother the user
since, as noted earlier, placeholders only occur in a very limited class of mural objects,
and such objects would not usually be subject to pattern matching.

C.5 Signatures
Atoms are declared or defined in a signature:

Signature :: CONSTS : CESymb m−→ CEDecl
TYPES : CTSymb m−→ CTDecl
BINDERS : QESymb m−→ QEDecl
DTYPES : QTSymb m−→ QTDecl

where

inv-Signature(Σ) 4

∀odef ∈ oDefs(Σ) · is-OK-ODef (odef )∧
∀qedef ∈ qeDefs(Σ) · is-OK-QEDef (qedef )

Should be visible.

In the present treatment, the distinction between primitive and defined objects resides at
the level of the signature rather than at the level of expressions and types, as it was felt that
this was more natural (cf. ‘Proposed Unification of Primitive and Defined Fripse Things’,
rm010). A symbol is thus designated as being either primitive, defined, or ‘not sure which
yet’ according to whether its declaration is

• an arity (constants and types) or ZILCH (binders)

• an expression or a type

• a null declaration

CEDecl = Exp | N×N | NullCEDecl

CTDecl = Type | N×N | NullCTDecl

QEDecl = Exp | ZILCH | NullQEDecl
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QTDecl = ZILCH

Decl = CEDecl | CTDecl | QEDecl | QTDecl

The declarations of all the defined constants and types in a signature is given by:

oDefs :Signature→ Def -set
oDefs(Σ) 4 {d ∈ rng CONSTS(Σ)∪ rng TYPES(Σ) | d ∈ Def}

Not exported.

And the declarations of all the defined binders are:

qeDefs :Signature→ Exp-set
qeDefs(Σ) 4 {e ∈ rng BINDERS(Σ) | e ∈ Exp}

Not exported.

The declaration of a defined constant or type should contain no free variables, no metavari-
ables and should have no missing placeholders10.

is-OK-ODef :Def → B
is-OK-ODef (odef ) 4

freeVars(odef ) = {}∧meSymbs(odef ) = {}∧
mtSymbs(odef ) = {}∧hasNoMissingPHoles(odef )

Not exported.

The declaration of a defined binder should contain no free variables, no placeholders,
a single expression metavariable of arity (1,0), and a single type metavariable of arity
(0,0).

is-OK-QEDef :Exp→ B
is-OK-QEDef (e) 4

freeVars(e) = {}∧ isFull(e)
∧ card meSymbs(e) = card mtSymbs(e) = 1
∧∀oterm ∈ oTerms(e) ·

(SYMBOL(oterm) ∈MESymb ⇒ argSize(oterm) = (1,0))
∧ (SYMBOL(oterm) ∈MTSymb ⇒ argSize(oterm) = (0,0))

Not exported.

The auxiliary function for checking that all placeholders are used:

hasNoMissingPHoles :Construct→ B
hasNoMissingPHoles(c) 4

∀m ∈ N1 ·m≤ eArity(c) ⇒ mk-EPHole(m) ∈ subterms(c)
∧∀n ∈ N1 ·n≤ tArity(c) ⇒ mk-TPHole(n) ∈ subterms(c)

10This last condition is to ensure preservation of information, i.e. that the operations of folding and
unfolding definitions are mutually inverse. It might be possible to relax it, but there doesn’t actually seem
to be much to gain by doing so, apart from some additional potential for doing something idiotic (e.g.
defining a constant to take 42 arguments, and only ever using the one at position 42).
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Not exported.

C.5.1 Accessing Functions
A function to collect all the atoms in a signature:

atoms :Signature→ Atom-set
atoms(Σ) 4

dom CONSTS(Σ)∪dom TYPES(Σ)∪dom BINDERS(Σ)∪dom DTYPES(Σ)

Not exported.

Next, a function to collect all the primitive CSymbs declared in some signature (recall:
these are the ones whose CEDecl or CTDecl is of type N×N).

primitiveCSymbs :Signature→ CSymb-set
primitiveCSymbs(Σ) 4

let cm = CONSTS(Σ)∪TYPES(Σ) in
{ct ∈ dom cm | cm(ct) ∈ N×N}

Not exported.

The defined CSymbs are obtained similarly, being those whose CEDecl/CTDecl is an
Exp/Type:

definedCSymbs :Signature→ CSymb-set
definedCSymbs(Σ) 4

let cm = CONSTS(Σ)∪TYPES(Σ) in
{ct ∈ dom cm | cm(ct) ∈ Def}

Not exported.

Nothing much new in the case of the primitive QSymbs either; they have declaration
ZILCH:

primitiveQSymbs :Signature→ QSymb-set
primitiveQSymbs(Σ) 4

let qm = BINDERS(Σ)∪DTYPES(Σ) in
{qt ∈ dom qm | qm(qt) = ZILCH}

Not exported.

Finally in this exciting mini-series of functions, the defined QSymbs are those with an Exp
or a Type as their declaration11.

definedQSymbs :Signature→ QSymb-set
definedQSymbs(Σ) 4

let qm = BINDERS(Σ) in
{qt ∈ dom qm | qm(qt) ∈ Exp}

11As yet, we’ve not managed to summon up sufficient strength to allow for defined dependent types (on
the grounds that we can’t actually think of any!) so there are only defined QESymbs so far. These actually
have an Exp as their declaration. It’s pretty clear how defined QTSymbs could be incorporated, though, and
if we suddenly become one with the Force we might add them at some later stage.
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Not exported.

The set of declared (i.e. having non-null declaration) ordinary symbols in some signature
is then simply the union of the primitive and the defined CSymbs:

declaredCSymbs :Signature→ CSymb-set
declaredCSymbs(Σ) 4 primitiveCSymbs(Σ)∪definedCSymbs(Σ)

Not exported.

Similarly for the declared QSymbs:

declaredQSymbs :Signature→ QSymb-set
declaredQSymbs(Σ) 4 primitiveQSymbs(Σ)∪definedQSymbs(Σ)

Not exported.

The particular declaration of some symbol can be found using the following function:

declAt (Σ:Signature,atom:Atom) decl:Decl
pre atom ∈ atoms(Σ)
post decl = (CONSTS(Σ)∪TYPES(Σ)∪BINDERS(Σ)∪DTYPES(Σ))(atom)

Not exported.

C.5.2 Consistency and Completeness Checks
A construct or a rule statement is consistent with a signature if any OTerms in it have the
correct number of arguments as far as the signature is concerned:

isConsisWithSig :(Construct | RuleStmt)×Signature→ B
isConsisWithSig(cr,Σ) 4

let mk-Signature(cem,ctm,qem,qtm) = Σ in
hasConsisArgSizes(cr)
∧∀oterm ∈ oTerms(cr) ·

SYMBOL(oterm) ∈ declaredCSymbs(Σ)
⇒ size(ARGS(oterm)) = declaredCSymbSize(Σ,SYMBOL(oterm))

Not exported.

The auxiliary function for finding the size of some declared CSymb is:

declaredCSymbSize (Σ:Signature,ct:CSymb) nn:N×N
pre ct ∈ declaredCSymbs(Σ)
post let decl = declAt(Σ,ct) in

nn = cases decl of
N×N→ decl
Def → arity(decl)
end

Not exported.

A signature is OK if all its declarations are consistent with it:
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is-OK-Sig :Signature→ B
is-OK-Sig(Σ) 4 ∀def ∈ oDefs(Σ)∪qeDefs(Σ) · isConsisWithSig(def ,Σ)

Not exported.

A construct is reasonable in the context of a signature if it is complete, consistent with the
signature, and all its atoms are declared in the signature:

isReasonableWRTSig :Construct×Signature→ B
isReasonableWRTSig(c,Σ) 4

isComplete(c)∧ isConsisWithSig(c,Σ)
∧atoms(c)⊆ declaredCSymbs(Σ)∪declaredQSymbs(Σ)

Not exported.

A signature is reasonable if all its declarations are reasonable constructs with respect to
itself:

isReasonableSig :Signature→ B
isReasonableSig(Σ) 4

∀def ∈ oDefs(Σ)∪qeDefs(Σ) · isReasonableWRTSig(def ,Σ)

Not exported.

C.5.3 Equivalence Testing
Binder definitions are equivalent up to renaming of bound variables and metavariable
symbols:

areEquivalentQEDefs :Exp×Exp→ B
areEquivalentQEDefs(e1,e2) 4

is-OK-QEDef (e1)∧ is-OK-QEDef (e2)
∧∃mem:MESymb m−→MESymb,mtm:MTSymb m−→MTSymb ·

isEquivalentTo(renameMSymbs(e1,mem,mtm),e2)

Not exported.

The problem of collapse of metavariable symbols does not come in here because of course
e1 has only one of each kind.

So binder declarations are equivalent if they’re both null, both ZILCH, or equivalent binder
definitions:

areEquivalentQEDecls :QEDecl×QEDecl→ B
areEquivalentQEDecls(qed,qed′) 4

cases qed of
Exp → qed′ ∈ Exp∧areEquivalentQEDefs(qed,qed′)
NullQEDecl→ qed′ ∈ NullQEDecl
ZILCH → qed′ = ZILCH

end
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Not exported.

Constant and type declarations are equivalent if they’re both null, equal arities, or equiv-
alent expressions or types:

areEquivalentCEDecls :CEDecl×CEDecl→ B
areEquivalentCEDecls(ced,ced′) 4

cases ced of
Exp → ced′ ∈ Exp∧ isEquivalentTo(ced,ced′)
N×N → ced′ ∈ N×N∧ ced = ced′

NullCEDecl→ ced′ ∈ NullCEDecl
end

Not exported.

areEquivalentCTDecls :CTDecl×CTDecl→ B
areEquivalentCTDecls(ctd,ctd′) 4

cases ctd of
Type → ctd′ ∈ Type∧ isEquivalentTo(ctd,ctd′)
N×N → ctd′ ∈ N×N∧ ctd = ctd′

NullCTDecl→ ctd′ ∈ NullCTDecl
end

Not exported.

C.5.4 New Signatures for Old
Signatures are nonclashing if common declarations are equivalent:

areNonclashingSigs :Signature×Signature→ B
areNonclashingSigs(Σ,Σ′) 4

let mk-Signature(cem,ctm,qem,qtm) = Σ,
mk-Signature(cem′,ctm′,qem′,qtm′) = Σ′ in

∀cet ∈ dom cem∩dom cem′ ·areEquivalentCEDecls(cem(cet),cem′(cet))∧
∀ctt ∈ dom ctm∩dom ctm′ ·areEquivalentCTDecls(ctm(ctt),ctm′(ctt))∧
∀qet ∈ dom qem∩dom qem′ ·areEquivalentQEDecls(qem(qet),qem′(qet))

Not exported.

Nonclashing signatures can be merged to form a single signature12:

mergeSigs (S:Signature-set) Σ:Signature
pre ∀Σ′,Σ′′ ∈ S ·areNonclashingSigs(Σ′,Σ′′)
post let cem = †{CONSTS(Σ0) | Σ0 ∈ S},

ctm = †{TYPES(Σ0) | Σ0 ∈ S},
qem = †{BINDERS(Σ0) | Σ0 ∈ S},
qtm = †{DTYPES(Σ0) | Σ0 ∈ S} in

Σ = mk-Signature(cem,ctm,qem,qtm)

12The use of the generalised map overwrite function is valid here because the pre-condition ensures that
any common declarations are equivalent. Its use does mean that this is another of those operations which is
in general underdetermined, of course, though again all possible results are clearly mutually equivalent.
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Not exported.

C.5.5 Unfolding Definitions
In this section we present functions for unfolding definitions. First, a check that a term is
unfoldable (the term should be an OTerm or a QExp and its symbol should be a defined
symbol. If the symbol is a CSymb the size of the arguments expected by its declaration
should be the same as the size of the term’s arguments):

isUnfoldable :Term×Signature→ B
isUnfoldable(term,Σ) 4

let symb = SYMBOL(term) in
term ∈ OTerm∧

symb ∈ definedCSymbs(Σ)∧argSize(term) = declaredCSymbSize(Σ,symb)
∨ term ∈ QExp∧ symb ∈ definedQSymbs(Σ)

Not exported.

The following function unfolds an occurrence of a definition inside a construct:

unfoldDefAt (c:Construct,Σ:Signature, i: Index) c′:Construct
pre isValidIndex(c, i)∧ isUnfoldable(termAtIndex(c, i),Σ)
post let term = termAtIndex(c, i),

term′= if term ∈ OTerm
then unfoldOTerm(term,Σ)
else unfoldQExp(term,Σ)

in
c′ = replaceTermAt(c, i, term′)

Exported.

OTerms are unfolded simply by filling the placeholders in the corresponding defienda with
the relevant arguments:

unfoldOTerm (oterm:OTerm,Σ:Signature) def :Def
pre isUnfoldable(oterm,Σ)
post let decl = declAt(Σ,SYMBOL(oterm)) in

def = fillPHoles(decl,ARGS(oterm))

Not exported.

Unfortunately the same trick can’t be used for defined binders; instead we perform a
few contortions with EPHoles and ELists to ensure that EPHoles in the expression being
unfolded are preserved, then instantiate their metavariable symbols appropriately:

unfoldQExp (qe:QExp,Σ:Signature) e:Exp
pre isUnfoldable(qe,Σ)



356 C The Specification of the Proof Assistant

post let decl = declAt(Σ,SYMBOL(qe)),
{θ}= meSymbs(decl),
{φ}= mtSymbs(decl),
be = BODY(qe),
e′ = bumpEPHoles((BODY(be),VAR(be)),
decl′ = growELists(decl,eArity(BODY(be))),
inst = mk-Instantiation({θ 7→ e′},{φ 7→ UNIVERSE(be)}) in

e = instantiate(decl′, inst)

Not exported.

The auxiliary functions used in the above are:

bumpEPHoles (e:Exp,vt:VSymb) e′:Exp
pre vt /∈ boundVars(e)
post let is = indices(e),

js = {i ∈ is | termAtIndex(e, i) = vt},
ks = {i ∈ is | termAtIndex(e, i) ∈ EPHole},
ls = {i ∈ is | termAtIndex(e, i) ∈ Leaf},
is′ = is− js,
ls′ = ls− ks in

indices(e′) = is∧
∀i ∈ js · termAtIndex(e′, i) = mk-EPHole(1)∧
∀i ∈ is′ ·

let term = termAtIndex(e, i) in
classOf (termAtIndex(e′, i)) = classOf (term)∧
(i ∈ ls′ ⇒ termAtIndex(e′, i) = term)∧
(i ∈ ks ⇒ termAtIndex(e′, i) = mk-EPHole(INDEX(term)+1))

Not exported.

growELists (e:Exp,n:N) e′:Exp
post let is = indices(e),

js = {i ∈ is | len i≥ 2∧ termAtIndex(e, i) ∈ EList∧
SYMBOL(termAtIndex(e, truncate(truncate(i)))) ∈MESymb},
ks= {iy [k] | i∈ js∧len termAtIndex(e, i)+1≤ k≤ len termAtIndex(e, i)+n} in

indices(e′) = is∪ ks∧
∀i ∈ ks ·

termAtIndex(e′, i)=mk-EPHole(last(i)−len termAtIndex(e, truncate(i)))∧
∀i ∈ is ·

let term = termAtIndex(e, i) in
classOf (termAtIndex(e′, i)) = classOf (term)∧
(term ∈ leaves(e) ⇒ termAtIndex(e′, i) = term)

Not exported.

Claim: ∀e ∈ Exp ·growELists(e,0) = e

Finally, a function which tests whether a construct c′ is equivalent to the construct ob-
tained as a result of unfolding a definition at some given index in c:
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isValidUnfold :Construct×Construct×Signature× Index→ B
isValidUnfold(c,c′,Σ, i) 4

pre-unfoldDefAt(c,Σ, i)∧ isEquivalentTo(unfoldDefAt(c,Σ, i),c′)

Not exported.

C.6 Theories

Theory :: PARENTS : Theory-ref -set
EXSIG : Signature

Visible.

Theorymap = Theory-ref m−→ Theory

where

inv-Theorymap(m) 4 hasNoClashingAncestors(m)∧ isNoncircular(m)

inheritsFromTheory :Theory-ref ×Theory-ref ×Theory-ref m−→ Theory→ B
inheritsFromTheory(th1, th2,m) 4

let ths = PARENTS(m(th1)) in
th1 ∈ dom m∧ (th2 ∈ ths ∨ ∃th ∈ ths · inheritsFromTheory(th, th2,m))

Not exported.

isNoncircular :Theory-ref m−→ Theory→ B
isNoncircular(m) 4 ∀th ∈ dom m ·¬ inheritsFromTheory(th, th,m)

Not exported.

ancestors :Theory-ref ×Theory-ref m−→ Theory→ Theory-ref -set
ancestors(th,m) 4 {th}∪{th′ ∈ Theory-ref | inheritsFromTheory(th, th′,m)}

Exported.

definedAncestors :Theory-ref ×Theory-ref m−→ Theory→ Theory-ref -set
definedAncestors(th,m) 4 ancestors(th,m)∩dom m

Not exported.

hasNoClashingAncestors :Theory-ref m−→ Theory→ B
hasNoClashingAncestors(m) 4

∀th ∈ dom m · ∀th1, th2 ∈ definedAncestors(th,m) ·
areNonclashingSigs(EXSIG(m(th1)),EXSIG(m(th2)))

Not exported.
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C.6.1 Accessing functions
The full signature of a theory is obtained by merging the signatures of all the defined an-
cestors of the theory. This is well-defined because the invariant on the theorymap ensures
that the ancestors are non-clashing.

fullSig :Theory-ref ×Theorymap→ Signature
fullSig(th, thm) 4

let S = {EXSIG(thm(th′)) | th′ ∈ definedAncestors(th, thm)} in
mergeSigs(S)

Not sure.

The atoms available in a theory are those of its full signature:

atoms :Theory-ref ×Theorymap→ Atom-set
atoms(th, thm) 4 atoms(fullSig(th, thm))

Not exported.

The rules in a theory are all those whose THEORY field is that theory:

rules :Theory-ref ×Rulemap×Theorymap→ Rule-ref -set
rules(th,rm, thm) 4 {r ∈ dom rm | THEORY(rm(r)) ∈ ancestors(th, thm)}

Exported.

Claim: rules(th,rm, thm)⊆ dom rm

And the axioms in a theory are those of its rules which have a null proof:

axioms :Theory-ref ×Rulemap×Theorymap→ Rule-ref -set
axioms(th,rm, thm) 4 {r ∈ rules(th,rm, thm) | PROOF(rm(r)) = nil}

Not exported.

C.6.2 Consistency and completeness checks

A rule statement is reasonable with respect to a theory if it’s OK as a rule statement and
all its component expressions are reasonable with respect to the theory’s full signature:

isReasonableWRTTheory :RuleStmt×Theory-ref ×Theorymap→ B
isReasonableWRTTheory(rs, th, thm) 4

let Σ = fullSig(th, thm) in
is-OK-RuleStmt(rs)∧∀e ∈ exps(rs) · isReasonableWRTSig(e,Σ)

Background. System should warn if violated.

A theory is reasonable if its full signature is reasonable and all its rules have reasonable
statements:
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isReasonableTheory :Theory-ref ×Rulemap×Theorymap→ B
isReasonableTheory(th,rm, thm) 4

th ∈ dom thm∧ isReasonableSig(fullSig(th, thm))∧
∀r ∈ rules(th,rm, thm) · isReasonableWRTTheory(STMT(rm(r)), th, thm)

Background. System should warn if violated.

C.7 Morphisms and Theory Morphisms

C.7.1 Morphisms

SigMorph :: CEMAP : CESymb m−→ CEMDecl
CTMAP : CTSymb m−→ CTMDecl
QEMAP : QESymb m−→ QESymb
QTMAP : QTSymb m−→ QTSymb

where

inv-SigMorph(σ) 4

∀omdef ∈ oMDefs(σ) ·
freeVars(omdef )= {}∧meSymbs(omdef )= {}∧mtSymbs(omdef )= {}

Probably only need to be visible as a part of theory morphisms.

CEMDecl = Exp | CESymb | NullCEMDecl

CTMDecl = Type | CTSymb | NullCTMDecl

MDecl = CEMDecl | CTMDecl

Here, primitive constants and types will be mapped respectively to Exps and Types whilst
defined ones will be mapped to defined ones. The possibility that a user hasn’t yet decided
which category a particular CSymb falls into is catered for in the usual way by the two
null declarations.

The auxiliary function oMDefs which extracts all objects of class Exp or class Type
from the ranges of the signature morphism’s mappings is given by:

oMDefs :SigMorph→ Def -set
oMDefs(σ) 4

let cm = CEMAP(σ)∪CTMAP(σ) in
{d ∈ rng cm | d ∈ Def}

Not exported.
C.7.2 Accessing Functions
First, a function for finding the set of CSymbs for which morphisms are actually defined
(that is the ones that don’t map to null declarations).
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morphedCSymbs :SigMorph→ CSymb-set
morphedCSymbs(σ) 4

let cm = CEMAP(σ)∪CTMAP(σ) in
{ct ∈ dom cm | cm(ct) /∈ (NullCEMDecl | NullCTMDecl)}

Not exported.

Hotly pursued by one for finding the QSymbs for which morphisms are defined, though
this one’s pretty unexciting as there aren’t any null declarations in this case. Thus, these
are just the domains of the relevant two maps:

morphedQSymbs :SigMorph→ QSymb-set
morphedQSymbs(σ) 4 dom QEMAP(σ)∪dom QTMAP(σ)

Not exported.

The defined CSymbs of a signature morphism are those which map to CSymbs under the
mappings in its first two fields:

definedCSymbs :SigMorph→ CSymb-set
definedCSymbs(σ) 4

let cm = CEMAP(σ)∪CTMAP(σ) in
{ct ∈ dom cm | cm(ct) ∈ CSymb}

Not exported.

And the primitive CSymbs are those which are mapped to an Exp or a Type:

primitiveCSymbs :SigMorph→ CSymb-set
primitiveCSymbs(σ) 4

let cm = CEMAP(σ)∪CTMAP(σ) in
{ct ∈ dom cm | cm(ct) ∈ Def}

Not exported.

All atoms translated by a signature morphism are simply given by the union of the do-
mains of all its fields:

translatedAtoms :SigMorph→ Atom-set
translatedAtoms(σ) 4

dom CEMAP(σ)∪dom CTMAP(σ)∪dom QEMAP(σ)∪dom QTMAP(σ)

Not exported.

Finally, the thing that some translated atom translates to under a signature morphism is
given by its image under the relevant mapping:

mDeclAt (σ :SigMorph,atom:Atom) mdecl:MDecl
pre atom ∈ translatedAtoms(σ)
post mdecl = (CEMAP(σ)∪CTMAP(σ)∪QEMAP(σ)∪QTMAP(σ))(atom)

Not exported.



C.7 Morphisms and Theory Morphisms 361

C.7.3 Translations

Generally speaking, an object is translatable across a signature morphism if the transla-
tions of all its atoms are defined, though the situation is somewhat more complicated in
the case of OTerms, however — when its SYMBOL is translated to an expression or a type,
that expression or type should in addition be fillable by the translated ARGS. Note that
free variables, placeholders and metavariable symbols do not change under translation,
though bound variables may change in order to avoid clashes and variable capture.

isTranslatableOTerm :OTerm×SigMorph→ B
isTranslatableOTerm(oterm,σ) 4

let ot = SYMBOL(oterm),
elxtl = ARGS(oterm) in

isTranslatable(elxtl,σ)∧
(ot ∈ CSymb ⇒
ot ∈ morphedCSymbs(σ)∧
(mDeclAt(σ ,ot) ∈ Def
⇒ isFillableBy(mDeclAt(σ ,ot), translate(elxtl,σ))))

Not exported.

isTranslatable :Exp×SigMorph→ B
isTranslatable(e,σ) 4

cases e of
mk-QExp(qet,be)→ qet ∈ dom QEMAP(σ)∧ isTranslatable(be,σ)
OExp → isTranslatableOTerm(e,σ)
others true
end

Not exported.

isTranslatable :Type×SigMorph→ B
isTranslatable(t,σ) 4

cases t of
mk-SubType(be) → isTranslatable(be,σ)
mk-QType(qtt,bt)→ qtt ∈ dom QTMAP(σ)∧ isTranslatable(bt,σ)
OType → isTranslatableOTerm(t,σ)
others true
end

Not exported.

isTranslatable :BTerm×SigMorph→ B
isTranslatable(bterm,σ) 4

isTranslatable(UNIVERSE(bterm),σ)∧ isTranslatable(BODY(bterm),σ)

Not exported.
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isTranslatable :EListXTList×SigMorph→ B
isTranslatable(elxtl,σ) 4

isTranslatable(ELIST(elxtl),σ)∧ isTranslatable(TLIST(elxtl),σ)

Not exported.

isTranslatable :ArgList×SigMorph→ B
isTranslatable(al,σ) 4 ∀def ∈ rng al · isTranslatable(def ,σ)

Not exported.

Now the functions for translation. Each naturally has a precondition that the object to be
translated actually be translatable.

translate (e:Exp,σ :SigMorph) e′:Exp
pre isTranslatable(e,σ)
post e′ = cases e of

mk-QExp(qet,be) → let qet′ = mDeclAt(σ ,qet),
be′ = translate(be,σ) in

mk-QExp(qet′,be′)
mk-OExp(oet,elxtl)→ let elxtl′ = translate(elxtl,σ) in

if oet ∈ CESymb
then let md = mDeclAt(σ ,oet) in

if md ∈ Exp
then fillPHoles(md,elxtl′)
else mk-OExp(md,elxtl′)

else mk-OExp(oet,elxtl′)
others e
end

Not exported.

translate (t:Type,σ :SigMorph) t′:Type
pre isTranslatable(t,σ)
post t′ = cases t of

mk-SubType(be) → mk-Subtype(translate(be,σ))
mk-QType(qtt,bt) → let bt′ = translate(bt,σ),

qtt′ = mDeclAt(σ ,qtt) in
mk-QType(qtt′,bt′)

mk-OType(ott,elxtl)→ let elxtl′ = translate(elxtl,σ) in
if ott ∈ CTSymb
then let md = mDeclAt(σ ,ott) in

if md ∈ Type
then fillPHoles(md,elxtl′)
else mk-OType(md,elxtl′)

else mk-OType(ott,elxtl′)
others t
end
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Not exported.

translate (be:BExp,σ :SigMorph) be′:BExp
pre isTranslatable(be,σ)
post let vt = VAR(be),

t = translate(UNIVERSE(be),σ),
e = translate(BODY(be),σ) in

be′ = build-BExp(vt, t,e)

Not exported.

translate (bt:BType,σ :SigMorph) bt′:BType
pre isTranslatable(bt,σ)
post let vt = VAR(bt),

t = translate(UNIVERSE(bt),σ),
t′ = translate(BODY(bt),σ) in

bt′ = build-BType(vt, t, t′)

Not exported.

translate (elxtl:EListXTList,σ :SigMorph) elxtl′:EListXTList
pre isTranslatable(elxtl,σ)
post let el = translate(ELIST(elxtl),σ),

tl = translate(TLIST(elxtl),σ) in
elxtl′ = build-EListXTList(el, tl)

Not exported.

translate (el:EList,σ :SigMorph) el′:EList
pre isTranslatable(el,σ)
post el′ = build-EList([translate(el(i),σ) | i ∈ dom el])

Not exported.

translate (tl:TList,σ :SigMorph) tl′:TList
pre isTranslatable(tl,σ)
post tl′ = build-TList([translate(tl(i),σ) | i ∈ dom tl])

Not exported.

Similar functions for translating sequents and rule statements:

isTranslatable :(Sequent | RuleStmt)×SigMorph→ B
isTranslatable(srs,σ) 4 ∀e ∈ exps(srs) · isTranslatable(e,σ)

Not exported.

translate (s:Sequent,σ :SigMorph) s′:Sequent
pre isTranslatable(s,σ)
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post let prems = {translate(e,σ) | e ∈ PREMISES(s)},
upshot = translate(UPSHOT(s),σ) in

s′ = mk-Sequent(NFV(s),prems,upshot)

Not exported.

translate (rs:RuleStmt,σ :SigMorph) rs′:RuleStmt
pre isTranslatable(rs,σ)
post let shyps = {translate(s,σ) | s ∈ SEQHYPS(rs)},

ohyps = {translate(e,σ) | e ∈ ORDHYPS(rs)},
con = translate(CONCL(rs),σ) in

rs′ = mk-RuleStmt(shyps,ohyps,con)

Not exported.

Next, we need to be able to translate a construct over a sequence of signature morphisms.
In order to save writing Construct | Sequent | RuleStmt more than twice, we’ll introduce a
shorthand for it:

CSR = Construct | Sequent | RuleStmt

The first function checks that it is actually possible to translate something over a sequence
of signature morphisms:

isTranslatable∗ :CRS×SigMorph∗→ B
isTranslatable∗(crs,sml) 4

if sml = []
then true
else let σ = hd sml,

sml′ = tl sml in
isTranslatable(crs,σ)∧ isTranslatable∗ (translate(crs,σ),sml′)

Not exported.

The next group do the translation:

translate∗ (c:Construct,sml:SigMorph∗) c′:Construct
pre isTranslatable∗ (c,sml)
post c′ = if sml = []

then c
else let σ = hd sml,

sml′ = tl sml in
translate∗ (translate(c,σ),sml′)

Not exported.

translate∗ (s:Sequent,sml:SigMorph∗) s′:Sequent
pre isTranslatable∗ (s,sml)
post let prems = {translate∗ (e,sml) | e ∈ PREMISES(s)},

upshot = translate∗ (UPSHOT(s),sml) in
s′ = mk-Sequent(NFV(s),prems,upshot)
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Not exported.

translate∗ (rs:RuleStmt,sml:SigMorph∗) rs′:RuleStmt
pre isTranslatable∗ (rs,sml)
post let shyps = {translate∗ (s,sml) | s ∈ SEQHYPS(rs)},

ohyps = {translate∗ (e,sml) | e ∈ ORDHYPS(rs)},
con = translate∗ (CONCL(rs),sml) in

rs′ = mk-RuleStmt(shyps,ohyps,con)

Not exported.

C.7.4 Consistency and Completeness Checks

A signature morphism is consistent with two signatures if it translates things that are
consistent with the first to things that are consistent with the second:

isConsisWithSigs :SigMorph×Signature×Signature→ B
isConsisWithSigs(σ ,Σ,Σ′) 4

let pcs = primitiveCSymbs(Σ),
dcs = definedCSymbs(Σ),
dqs = definedQSymbs(Σ),
pcm = primitiveCSymbs(σ),
dcm = definedCSymbs(σ),
qm = morphedQSymbs(σ),
pqs′ = primitiveQSymbs(Σ′),
dcs′ = definedCSymbs(Σ′),
dqs′ = definedQSymbs(Σ′) in

dcs∩pcm = {}∧pcs∩dcm = {}∧
∀ct ∈ pcs∩pcm ·

isConsisWithSig(mDeclAt(σ ,ct),Σ′)
∧declAt(Σ,ct) = arity(mDeclAt(σ ,ct))

∧∀ct ∈ dcs∩dcm ·
mDeclAt(σ ,ct) ∈ dcs′ ⇒
arity(declAt(Σ′,mDeclAt(σ ,ct))) = arity(declAt(Σ,ct))∧
(isTranslatable(declAt(Σ,ct),σ)
⇒ isEquivalentTo(translate(declAt(Σ,ct),σ),

declAt(Σ′,mDeclAt(σ ,ct))))
∧∀qt ∈ dqs∩qm ·

mDeclAt(σ ,qt) /∈ pqs′∧
(isTranslatable(declAt(Σ,qt),σ)∧mDeclAt(σ ,qt) ∈ dqs′

⇒ areEquivalentQEDefs(translate(declAt(Σ,qt),σ),
declAt(Σ′,mDeclAt(σ ,qt))))

Not exported.

Claim:
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∀c ∈ Construct ·
isConsisWithSigs(σ ,Σ,Σ′)∧ isConsisWithSig(c,Σ)∧ isTranslatable(c,σ)
⇒ isConsisWithSig(translate(c,σ),Σ′)

A signature morphism is reasonable with respect to two signatures if it translates things
which are reasonable with respect to the first signature to things which are reasonable
with respect to the second, and it preserves definitions:

isReasonableWRTSigs :SigMorph×Signature×Signature→ B
isReasonableWRTSigs(σ ,Σ,Σ′) 4

atoms(Σ)⊆ morphedCSymbs(σ)∪morphedQSymbs(σ)∧
isConsisWithSigs(σ ,Σ,Σ′)∧
∀ct ∈ primitiveCSymbs(Σ) ·

isReasonableWRTSig(mDeclAt(σ ,ct),Σ′)
∧∀ct ∈ definedCSymbs(Σ) ·

isTranslatable(declAt(Σ,ct),σ)∧mDeclAt(σ ,ct) ∈ definedCSymbs(Σ′)
∧∀qt ∈ primitiveQSymbs(Σ) ·

mDeclAt(σ ,qt) ∈ definedQSymbs(Σ′)∪primitiveQSymbs(Σ′)
∧∀qt ∈ definedQSymbs(Σ) ·

isTranslatable(declAt(Σ,qt),σ)∧mDeclAt(σ ,qt)∈ definedQSymbs(Σ′)

Not exported.

Claim:

∀c ∈ Construct ·
isReasonableWRTSigs(σ ,Σ,Σ′)∧

isReasonableWRTSig(c,Σ)∧ isTranslatable(c,σ) ⇒
isReasonableWRTSig(translate(c,σ),Σ′)

C.7.5 Theory Morphisms

ThMorph :: FROM : Theory-ref
TO : Theory-ref
VIA : SigMorph
JUSTIF : Rule-ref m−→ Rule-ref

Should be visible.

ThMorphmap = ThMorph-ref m−→ ThMorph

Some accessing functions:
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rulesUsed :ThMorph-ref ×Rulemap×Theorymap×ThMorphmap
→ Rule-ref -set

rulesUsed(τ,rm, thm, tmm) 4

let mk-ThMorph(th1, th2,σ , jm) = tmm(τ) in
if τ ∈ dom tmm
then {jm(ax) | ax ∈ axioms(th1,rm, thm)∩dom jm}
else {}

Not exported.

rulesYetToBeJustified (τ:ThMorph-ref ,rm:Rulemap, thm:Theorymap,
tmm:ThMorphmap) rs:Rule-ref -set

pre τ ∈ dom tmm
post let mk-ThMorph(th1, th2,σ , jm) = tmm(τ) in

rs = axioms(th1,rm, thm)−dom jm

Exported.

A theory morphism is consistent if its signature morphism is consistent and translates
axioms from the source theory to rules in the target theory:

isConsisThMorph :ThMorph-ref ×Rulemap×Theorymap×ThMorphmap→ B
isConsisThMorph(τ,rm, thm, tmm) 4

let mk-ThMorph(th1, th2,σ , jm) = tmm(τ) in
τ ∈ dom tmm ⇒
isConsisWithSigs(σ , fullSig(th1, thm), fullSig(th2, thm))
∧∀ax ∈ axioms(th1,rm, thm)∩dom jm ·

jm(ax) ∈ dom rm ⇒
jm(ax) ∈ rules(th2,rm, thm)
∧ (isTranslatable(STMT(rm(ax)),σ) ⇒
establishesRuleStmt(STMT(rm(jm(ax))), translate(STMT(rm(ax)),σ)))

Background. Warning when violated.

A theory morphism is reasonable if its signature morphism is reasonable and translates
all axioms of the source theory to defined rules in the target theory:

isReasonableThMorph :ThMorph-ref ×Rulemap×Theorymap×ThMorphmap
→ B

isReasonableThMorph(τ,rm, thm, tmm) 4

let mk-ThMorph(th1, th2,σ , jm) = tmm(τ) in
τ ∈ dom tmm∧
isReasonableWRTSigs(σ , fullSig(th1, thm), fullSig(th2, thm))
∧axioms(th1,rm, thm)⊆ dom jm
∧ rulesUsed(τ,rm, thm, tmm)⊆ dom rm
∧ isConsisThMorph(τ,rm, thm, tmm)

Exported, or maybe background.

Claim:
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isReasonableThMorph(τ,rm, thm, tmm)∧ τ ∈ dom tmm
⇒ rulesUsed(τ,rm, thm, tmm)⊆ rules(TO(tmm(τ)),rm, thm)

Note: A reasonable theory morphism translates derived rules from the source theory into
derivable rules in the target theory, provided axioms translate to valid rules. This is the
metarule about our system which justifies the use of theory morphisms in RuleJustif in
§C.8.9.

A sequence of theory morphisms links up correctly if the TO field of an element in the
sequence is in the ancestors of the FROM field of the next element for every element but
the last:

linkUp :(ThMorph-ref ∗)×Theorymap×ThMorphmap→ B
linkUp(tml, thm, tmm) 4

∀n ∈ inds tml · tml(n) ∈ dom tmm∧
∀n ∈ inds tml ·TO(tmm(tml(n)))∈ ancestors(FROM(tmm(tml(n+1))), thm)

Not exported.
C.7.6 More Translations
Translations over a sequence of theory morphisms:

isTranslatable∗∗ :CSR×ThMorph-ref ∗×ThMorphmap→ B
isTranslatable∗∗(csr, tml, tmm) 4

rng tml⊆ dom tmm∧ isTranslatable∗(csr, [VIA(tmm(tml(i))) | i∈ dom tml])

Not exported.

translate∗∗ (csr:CSR, tml:ThMorph-ref ∗, tmm:ThMorphmap) csr′:CSR
pre isTranslatable∗∗(csr, tml, tmm)
post let sml = [VIA(tmm(tml(i))) | i ∈ dom tml] in

csr′ = translate∗ (csr,sml)

Exported.

C.8 Proofs

Proof :: SEQHYPS : Sequent-ref m−→ Sequent
BOXMAP : Boxmap
ROOT : Box-ref
NFV : VSymb m−→ Box-ref

where

inv-Proof (p) 4

let mk-Proof (sm,bm,b,vm) = p in
b ∈ roots(p)∧hasClosedJustifs(p)
∧∀s ∈ rng sm · isProper(s)∧NFV(s)∩dom vm = {}
∧∀b′ ∈ roots(p) ·newFreeVarsOfBox(p,b′) = {}
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The invariant insists that the root of a proof should actually be one of the proof’s roots
(see below), that all sequent hypotheses should be proper, that lines, boxes and sequents
used in justifications in the proof should themselves be in the same proof attempt as the
line they’re justifying, and that no root box should introduce new free variables.

C.8.1 Boxes

Box :: HYPS : Hypline-ref m−→ Exp
LINES : Ordline-ref m−→ Ordline
BOXES : Box-ref -set
CON : Ordline-ref

where

inv-Box(b) 4 CON(b) ∈ dom LINES(b)

The invariant on boxes forces the conclusion of a box to be one of the lines of that box.

Ordline :: BODY : Exp
JUST : Justification

Boxmap = Box-ref m−→ Box

where

inv-Boxmap(m) 4

isNoncircular(m)∧ isClosed(m)∧hasNoOverlappingBoxes(m)

The invariant says that no box should be a subbox of itself, all subboxes of any box in the
boxmap are themselves in the boxmap, and no boxes are overlapping.

A box is a subbox of another box if it is one of its BOXES or is a subbox of one of its
BOXES:

isSubbox :Box-ref ×Box-ref ×Box-ref m−→ Box→ B
isSubbox(b1,b2,m) 4

b2 ∈ dom m∧
let bs = BOXES(m(b2)) in
(b1 ∈ bs ∨ ∃b ∈ bs · isSubbox(b1,b,m))

Not exported.

A boxmap is noncircular if no box in it is a subbox of itself:

isNoncircular :Box-ref m−→ Box→ B
isNoncircular(m) 4 ∀b ∈ dom m ·¬ isSubbox(b,b,m)

Not exported.

A boxmap is closed if it contains the BOXES of any box in it:
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isClosed :Box-ref m−→ Box→ B
isClosed(m) 4 ∀b ∈ rng m ·BOXES(b)⊆ dom m

Not exported.

A boxmap has no overlapping boxes if distinct boxes don’t have hypotheses, lines or
boxes in common:

hasNoOverlappingBoxes :Box-ref m−→ Box→ B
hasNoOverlappingBoxes(m) 4

∀b1,b2 ∈ dom m ·
b1 6= b2 ⇒
dom HYPS(m(b1))∩dom HYPS(m(b2)) = {}
∧dom LINES(m(b1))∩dom LINES(m(b2)) = {}
∧BOXES(m(b1))∩BOXES(m(b2)) = {}

Not exported.

The Boxmap is roughly a forest of trees representing potentially different attempts at a
single proof. The ROOT field of the proof records the outermost proof box of that proof
attempt currently of interest. Switching between proof attempts can be achieved simply by
changing the proof’s root. Unused trees, as well as unused lines in the relevant tree could
be removed from a completed proof by means of some sort of proof ‘garbage collector’.

C.8.2 Accessing Functions (Proofs and Boxes)

The roots of a proof are those boxes which are not subboxes of any box in the proof’s
boxmap, that is they are the root boxes of all the separate attempts at the proof. Note that
the invariant on proof implies that the roots must have at least one member.

roots :Proof → Box-ref -set
roots(p) 4

let bm = BOXMAP(p) in
dom bm−

⋃
{BOXES(b) | b ∈ rng bm}

The hypotheses of a box in some proof are precisely the hypotheses of that box!

hypsOfBox (p:Proof ,b:Box-ref ) es:Exp-set
pre b ∈ dom BOXMAP(p)
post let bm = BOXMAP(p) in

es = rng HYPS(bm(b))

Clear from user interface.

The function to find the conclusion of a box holds equally few surprises:

conOfBox (p:Proof ,b:Box-ref ) e:Exp
pre b ∈ dom BOXMAP(p)
post let bm = BOXMAP(p),

lm = LINES(bm(b)) in
e = BODY(lm(CON(bm(b))))
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Clear from user interface.

The rule statement (not necessarily proper) implicit in a proof has the proof’s sequent
hypotheses as its sequent hypotheses and the hypotheses and conclusion of the root box
as its ordinary hypotheses and conclusion:

ruleStmt :Proof → RuleStmt
ruleStmt(p) 4

let ss = rng SEQHYPS(p),
es = hypsOfBox(p,ROOT(p)),
e = conOfBox(p,ROOT(p)) in

mk-RuleStmt(ss,es,e)

Clear from user interface.

The new free variables introduced by a box are the ones which map to that box under the
NFV field of the proof:

newFreeVarsOfBox :Proof ×Box-ref → VSymb-set
newFreeVarsOfBox(p,b) 4

let vm = NFV(p) in
{v ∈ dom vm | vm(v) = b}

Clear from user interface.

The subboxes of a box are the box itself plus all those which are a subbox of it:

subboxesOfBox (p:Proof ,b:Box-ref ) bs:Box-ref -set
pre b ∈ dom BOXMAP(p)
post bs = {b′ ∈ Box-ref | b′ = b ∨ isSubbox(b′,b,BOXMAP(p))}

Not exported.

All the ordinary lines in a proof are given by the union of the domains of the LINES fields
of all the proof’s boxes:

ordlines :Proof → Ordline-ref -set
ordlines(p) 4

let bm = BOXMAP(p) in⋃
{dom LINES(bm(b)) | b ∈ dom bm}

Not exported.

For convenience, we’ll call ordinary lines and (ordinary) hypothesis lines lines:

Line-ref = Ordline-ref | Hypline-ref

The lines in a box (not including its subboxes) are its hypotheses plus its ordinary lines:

lines :Box→ Line-ref -set
lines(b) 4 dom HYPS(b)∪dom LINES(b)

Not exported.

The lines in a box plus all its subboxes are precisely that:
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linesOfBox (p:Proof ,b:Box-ref ) ls:Line-ref -set
pre b ∈ dom BOXMAP(p)
post let bm = BOXMAP(p) in

ls =
⋃
{lines(bm(b′)) | b′ ∈ subboxesOfBox(p,b)}

Not exported.

Note that this is a disjoint union since boxes are non-overlapping.

The lines in a proof are simply the lines in all its boxes:

lines :Proof → Line-ref -set
lines(p) 4

let bm = BOXMAP(p) in⋃
{lines(bm(b)) | b ∈ dom bm}

Not exported.

Claim: ordlines(p) = lines(p)∩Ordline-ref

The innermost box in which a line lies is that box whose lines includes the desired line:

boxOfLine (p:Proof , l:Line-ref ) b:Box-ref
pre l ∈ lines(p)
post b ∈ dom BOXMAP(p)∧ l ∈ lines(BOXMAP(p)(b))

Not exported.

Of course, for each l and p satifying the precondition, boxOfLine(p, l) is uniquely deter-
mined.

Claim: l ∈ linesOfBox(p,b) ⇔ boxOfLine(p, l) ∈ subboxesOfBox(p,b)

The expression labelling of a box is a map from lines to their bodies:

expLabelling :Box→ Line-ref m−→ Exp
expLabelling(b) 4

HYPS(b)†{ol 7→ BODY(LINES(b)(ol)) | ol ∈ dom LINES(b)}

Not exported.

Whilst that of a proof is just the overwrite of those of all the proof’s boxes. Note that
the use of the distributive map overwrite function is valid here because the invariant on
Boxmap says that boxes do not overlap.

expLabelling :Proof → Line-ref m−→ Exp
expLabelling(p) 4

†{expLabelling(BOXMAP(p)(b)) | b ∈ dom BOXMAP(p)}

Not exported.

Claim: dom expLabelling(p) = lines(p)

The justification labelling of a proof is similar to its expression labelling but is instead
a mapping from lines to the justifications appearing thereon. The other slight difference
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is that there is no contribution from any ordinary hypothesis lines as they don’t have
justifications.

justifLabelling :Proof → Ordline-ref m−→ Justification
justifLabelling(p) 4

let bm = BOXMAP(p) in
†{{ol 7→ JUST(LINES(bm(b))(ol)) | ol∈dom LINES(bm(b))} | b∈dom bm}

Not exported.

Claim: dom justifLabelling(p) = ordlines(p)

A proof has closed justifications if, for each possible root of the proof, the lines, boxes
and sequents (see below) of the justifications in the tree starting from that root are all in
that tree:

hasClosedJustifs :Proof → B
hasClosedJustifs(p) 4

∀b ∈ roots(p) ·
let ls = linesOfBox(p,b),

bs = subboxesOfBox(p,b),
ss = dom SEQHYPS(p),
jlab = lsC justifLabelling(p)
in

∀j ∈ rng jlab ·
lines(j)⊆ ls
∧boxes(j)⊆ bs
∧ sequents(j)⊆ ss

C.8.3 Justifications
The (as yet incomplete) collection of justification kinds13:

Justification = RuleJustif | SeqHypJustif | UnfoldDefJustif |
FoldDefJustif | NullJustif | . . .

Each of the basic kinds of justification will be dealt with in turn below. But first, some
general support functions which will be needed later.

General Support Functions for Justifications

In general, the justification of some line in a proof will consist of some particular kind of
justification together with a set of dependents. These dependents will point off to (other)

13As has become common practice, functions acting on Justification in general will be written as
identically-named functions on each of the different kinds of justification separately in order to avoid partic-
ularly horrendous case statements (Isn’t VDM wonderful?). It should be clear to those few not yet suffering
from a complete mental breakdown what is meant! It is claimed that the modularity of (this version of) the
specification is such that, in order to add a new kind of justification, all that is necessary is to define both
it and the functions establishesExp, establishesSequent, isReasonableAtLine, relevantJustif , justifs, lines,
boxes, sequents, rules, and thMorphs on it.
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lines, boxes, or sequent hypotheses in the proof, or may themselves be justifications. In
general, expression dependents can be justified by appeal to either lines in the proof or to
other justifications (ordinary dependents), whilst sequent dependents can be justified by
appeal either to lines, boxes or sequent hypotheses in the proof or to other justifications
(sequent dependents):

OrdDependent = Line-ref | Justification

SeqDependent = Line-ref | Box-ref | Sequent-ref | Justification

The functions below state the conditions that an expression be established by an ordinary
dependent and that a sequent be established by a sequent dependent except for the case
Justification. This is dealt with below for each kind of justification in turn.

An easy one for starters – a line l establishes an expression at line ol if the expression on
line l is equivalent to it.

establishesExp (l:Line-ref ,e:Exp,ol:Ordline-ref ,p:Proof , th:Theory-ref ,
rm:Rulemap, thm:Theorymap, tmm:ThMorphmap) a:B

pre ol ∈ ordlines(p)
post let elab = expLabelling(p) in

a ⇔ l ∈ dom elab∧ isEquivalentTo(elab(l),e)

Not exported.

Similarly, a line l establishes a sequent at line ol if the expression on it establishes the
sequent.

establishesSequent (l:Line-ref ,s:Sequent,ol:Ordline-ref ,p:Proof , th:Theory-ref ,
rm:Rulemap, thm:Theorymap, tmm:ThMorphmap) a:B

pre ol ∈ ordlines(p)
post let elab = expLabelling(p) in

a ⇔ l ∈ dom elab∧ establishesSequent(elab(l),s)

Not exported.

A box b establishes a sequent at line ol if the sequent made out of the free variables, the
hypotheses and the conclusion of the box establishes that sequent.

establishesSequent (b:Box-ref ,s:Sequent,ol:Ordline-ref ,p:Proof , th:Theory-ref ,
rm:Rulemap, thm:Theorymap, tmm:ThMorphmap) a:B

pre ol ∈ ordlines(p)
post b ∈ dom BOXMAP(p)∧

let vsb = newFreeVarsOfBox(p,b),
con = conOfBox(p,b),
hyps = hypsOfBox(p,b),
s′ = mk-Sequent(vsb,hyps,con) in

a ⇔ establishesSequent(s′,s)

Not exported.

Lastly, a sequent hypothesis establishes a sequent at line ol if it does!
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establishesSequent (s:Sequent-ref ,s′:Sequent,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)
post a ⇔ s ∈ dom SEQHYPS(p)∧ establishesSequent(SEQHYPS(p)(s),s′)

Not exported.

Rule Justifications

RuleJustif :: RULE : Rule-ref
VIA : ThMorph-ref ∗

INST : Instantiation
VMAP : VSymb m←→ VSymb
ORDDEPS : Exp m−→ OrdDependent
SEQDEPS : Sequent m−→ SeqDependent

Roughly, a rule justification translates the statement of a given rule across some sequence
of theory morphisms and instantiates the metavariable symbols and the free variables in
the sequent hypotheses of the translated rule statement according to the INST and VMAP
fields respectively. The remaining fields link hypotheses of the instantiated, translated
rule statement to dependents which should establish them.

A rule justification’s rule statement is instantiable if it’s translatable over its VIA field and
if the result of the translation is instantiable by its INST field:

hasInstantiableRule :RuleJustif ×Rulemap×ThMorphmap→ B
hasInstantiableRule(j,rm, tmm) 4

RULE(j) ∈ dom rm
∧
let rs = STMT(rm(RULE(j))) in
isTranslatable∗∗(rs,VIA(j), tmm)
∧
let rs′ = translate∗∗(rs,VIA(j), tmm) in
isInstantiableBy(rs′, INST(j))

Not exported.

A rule justification is OK if:
1. The rule is in the correct theory;

2. The theory morphisms link up properly;

3. It has an instantiable rule (as defined above).
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isOK :RuleJustif ×Proof ×Theory-ref ×Rulemap×Theorymap×ThMorphmap
→ B

isOK(j,p, th,rm, thm, tmm) 4

let r = RULE(j),
tml = VIA(j),
n = len tml,
th0 = if n = 0 then th else FROM(tmm(tml(1)))
in

r ∈ rules(th0,rm, thm)
∧ (n 6= 0 ⇒ TO(tmm(tml(n))) ∈ ancestors(th, thm))
∧ linkUp(tml, tmm, thm)∧hasInstantiableRule(j,rm, tmm)

Not exported.

A rule justification establishes an expression at some (ordinary) line ol if:

1. The rule justification is OK;

2. The conclusion of the instantiated, translated rule statement is equivalent to the
given expression;

3. Each ordinary hypothesis of the instantiated, translated rule statement is established
by its dependent in ORDDEPS;

4. Each sequent hypothesis of the instantiated, translated rule statement is either triv-
ially true or is established by its dependent in SEQDEPS.

establishesExp (j:RuleJustif ,e:Exp,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)
post a ⇔

isOK(j,p, th,rm, thm, tmm)
∧
let rs = ruleInstance(j,rm, tmm),

mk-RuleJustif (r, tml, inst,vm,odm,sdm) = j in
isEquivalentTo(e,CONCL(rs))
∧∀ê ∈ ORDHYPS(rs) ·

ê ∈ dom odm∧ establishesExp(odm(ê), ê,ol,p, th,rm, thm, tmm)
∧∀ŝ ∈ SEQHYPS(rs) ·

isTriviallyTrue(ŝ)
∨ ŝ ∈ dom sdm∧ establishesSequent(sdm(ŝ), ŝ,ol,p, th,rm, thm, tmm)

Not exported.

A rule justification establishes a sequent at some (ordinary) line ol if:

1. The rule justification is OK;

2. Each sequent hypothesis of the instantiated, translated rule statement is either triv-
ially true or is established by its dependent in SEQDEPS.
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3. Each ordinary hypothesis of the instantiated, translated rule statement which has a
dependent in ORDDEPS is established by that dependent;

4. The sequent to be established is established by the sequent whose upshot and premises
are respectively the conclusion and the ordinary hypotheses with no dependent of
the instantiated, translated rule statement, and whose new free variables are those
which are apparently free in its premises and upshot but which are not free in either
the proof at line ol or the established (ordinary and sequent) hypotheses.

establishesSequent (j:RuleJustif ,s:Sequent,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)
post a ⇔

isOK(j,p, th,rm, thm, tmm)
∧
let rs = ruleInstance(j,rm, tmm),

odm = ORDDEPS(j),
sdm = SEQDEPS(j),
es = ORDHYPS(rs)−dom odm,
es′ = ORDHYPS(rs)∩dom odm in

∀ŝ ∈ SEQHYPS(rs) ·
isTriviallyTrue(ŝ)
∨ ŝ ∈ dom sdm∧ establishesSequent(sdm(ŝ), ŝ,ol,p, th,rm, thm, tmm)

∧∀ê ∈ es′ ·
establishesExp(odm(ê), ê,ol,p, th,rm, thm, tmm)

∧
let svs =

⋃
{freeVars(s)−NFV(s) | s ∈ SEQHYPS(rs)},

pvs = freeVarsAtLine(p,ol),
evs =

⋃
{freeVars(e′) | e′ ∈ es′},

vs =
⋃
{freeVars(e) | e ∈ es ∨ e = CONCL(rs)}− (svs∪pvs∪ evs),

s′ = mk-Sequent(vs,es,CONCL(rs)) in
establishesSequent(s′,s)

Not exported.

The auxiliary function ruleInstance used in both of the above returns the relevant instan-
tiation of the RuleJustif ′s translated rule statement (assuming, of course, that such a thing
actually exists!):

ruleInstance (j:RuleJustif ,rm:Rulemap, tmm:ThMorphmap) rs:RuleStmt
pre hasInstantiableRule(j,rm, tmm)
post let rs′ = STMT(rm(RULE(j))),

rs′′ = translate∗∗(rs′,VIA(j), tmm),
rs′′′ = renameFreeVars(rs′′,VMAP(j)) in

rs = instantiate(rs′′′, INST(j))

Not exported.

The justifs of a rule justification are those dependents which are justifications:
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justifs :RuleJustif → Justification-set
justifs(j) 4

let dm = SEQDEPS(j)∪ORDDEPS(j) in
{j′ ∈ rng dm | j′ ∈ Justification}

Not exported.

The lines of a rule justification are those dependents which are lines plus the lines of all
of its justifs:

lines :RuleJustif → Line-ref -set
lines(j) 4

let dm = SEQDEPS(j)∪ORDDEPS(j) in⋃
{lines(j′) | j′ ∈ justifs(j)}∪{l ∈ rng dm | l ∈ Line-ref}

Not exported.

The boxes of a rule justification are those (sequent) dependents which are boxes plus the
boxes of all of its justifs:

boxes :RuleJustif → Box-ref -set
boxes(j) 4⋃

{boxes(j′) | j′ ∈ justifs(j)}∪{b ∈ rng SEQDEPS(j) | b ∈ Box-ref}

Not exported.

The sequents of a rule justification are those (sequent) dependents which are sequents plus
the sequents of all of its justifs:

sequents :RuleJustif → Sequent-ref -set
sequents(j) 4⋃

{sequents(j′) | j′ ∈ justifs(j)}∪{s ∈ rng SEQDEPS(j) | s ∈ Sequent-ref}

Not exported.

The rules of a rule justification are its RULE field plus the rules of each of its justifs.

rules :RuleJustif → Rule-ref -set
rules(j) 4 ⋃

{rules(j′) | j′ ∈ justifs(j)}∪{RULE(j)}

Not exported.

The theory morphisms of a rule justification are the range of its VIA field plus the theory
morphisms of each of its justifs.

thMorphs :RuleJustif → ThMorph-ref -set
thMorphs(j) 4 ⋃

{thMorphs(j′) | j′ ∈ justifs(j)}∪ rng VIA(j)

Not exported.

The relevant part of a rule justification is obtained by removing unused parts from the
INST , VMAP, ORDDEPS and SEQDEPS fields (e.g. instantiations of metavariable sym-
bols which don’t appear in the translated rule, or dependents of expressions or sequents
which aren’t in the hypotheses of the instantiated, translated rule) and replacing all justi-
fication dependents in the resulting rule justification with their relevant part. If the justi-
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fication doesn’t have an instantiable rule, it’s all considered to be relevant (in the absence
of any evidence to the contrary!).

relevantJustif :RuleJustif ×Proof ×Rulemap×ThMorphmap→ RuleJustif
relevantJustif (j,p,rm, tmm) 4

if hasInstantiableRule(j,rm, tmm)
then

let rs = ruleInstance(j,rm, tmm),
mk-RuleJustif (r, tml, inst,vm,odm,sdm) = j,
rs′ = STMT(rm(r)),
vm′ =

⋃
{NFV(s) | s ∈ SEQHYPS(rs′)}C vm,

inst′ = mk-Instantiation(meSymbs(rs′)CMEMAP(inst),
mtSymbs(rs′)CMTMAP(inst)),

odm′ = {ê 7→ relevantJustif (odm(ê),p,rm, tmm) |
ê ∈ dom odm∧odm(ê) ∈ Justification},

sdm′ = {ŝ 7→ relevantJustif (sdm(ŝ),p,rm, tmm) |
ŝ ∈ dom sdm∧ sdm(ŝ) ∈ Justification},

odm′′ = ORDHYPS(rs)C (odm † odm′),
sdm′′ = SEQHYPS(rs)C (sdm † sdm′) in

mk-RuleJustif (r, tml, inst′,vm′,odm′′,sdm′′)
else j

Not exported.

A rule justification is reasonable at some ordinary line of a proof if it’s OK, if its rule
instance is reasonable at that line, and if all the justifications used (see §C.8.4 below) in it
are reasonable at that line:

isReasonableAtLine (j:RuleJustif ,ol:Ordline-ref ,p:Proof , th:Theory-ref ,
rm:Rulemap, thm:Theorymap, tmm:ThMorphmap) a:B

pre ol ∈ ordlines(p)∧ isConsisWithSig(ruleStmt(p), fullSig(th, thm))
post a ⇔

isOK(j,p, th,rm, thm, tmm)
∧ isReasonableAtLine(ruleInstance(j,rm, tmm),ol,p, th, thm)
∧∀ĵ ∈ justifsUsed(j,p,rm, tmm) ·

isReasonableAtLine(ĵ,ol,p, th,rm, thm, tmm)

Not exported.

Sequent Hypothesis Justifications

SeqHypJustif :: SEQUENT : Sequent-ref
VMAP : VSymb m−→ VSymb
ORDDEPS : Exp m−→ OrdDependent

Roughly, the sequent hypothesis SEQUENT has its free variables renamed according to
VMAP. The remaining field links premises of the resulting sequent to dependents which
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should establish them.

A sequent hypothesis justification is OK if its SEQUENT is among the proof’s sequent
hypotheses.

isOK :SeqHypJustif ×Proof ×Theory-ref ×Rulemap×
Theorymap×ThMorphmap→ B

isOK(j,p, th,rm, thm, tmm) 4 SEQUENT(j) ∈ dom SEQHYPS(p)

A sequent hypothesis justification establishes an expression if:
1. The justification is OK;

2. The upshot of the sequent obtained by renaming free variables in its SEQUENT
field according to the (free) variable instantiation map in its VMAP field is equiva-
lent to the expression;

3. Each premise of that sequent is established by its dependent in ORDDEPS.

establishesExp (j:SeqHypJustif ,e:Exp,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)
post a ⇔

isOK(j,p, th,rm, thm, tmm)
∧
let mk-SeqHypJustif (s,vm,odm) = j,

ŝ = renameFreeVars(SEQHYPS(p)(s),vm) in
isEquivalentTo(e,UPSHOT(ŝ))
∧∀ê ∈ PREMISES(ŝ) ·

ê ∈ dom odm∧ establishesExp(odm(ê), ê,ol,p, th,rm, thm, tmm)

Not exported.

Claim As a proof’s sequent hypotheses are proper, the precondition of renameFreeVars
as used in the above (and, by an amazing coincidence, in the below!) is automatically
satisfied.

A sequent hypothesis justification establishes a sequent if:

1. The justification is OK;

2. Each premise of the renamed sequent which has a dependent in ORDDEPS is es-
tablished by that dependent;

3. The sequent to be established is established by the sequent whose upshot and premises
are respectively the upshot and the premises with no dependent of the renamed
sequent, and whose new free variables are those which are apparently free in its
premises and upshot but which are not free in either the proof at line ol or the
established premises.
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establishesSequent (j:SeqHypJustif ,s:Sequent,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)
post a ⇔

isOK(j,p, th,rm, thm, tmm)
∧
let mk-SeqHypJustif (s′,vm,odm) = j,

s′′ = renameFreeVars(SEQHYPS(p)(s′),vm),
es = PREMISES(s′′)−dom odm,
es′ = PREMISES(s′′)∩dom odm,
pvs = freeVarsAtLine(p,ol),
evs =

⋃
{freeVars(e′) | e′ ∈ es′},

vs =
⋃
{freeVars(e) | e ∈ es ∨ e = UPSHOT(s′′)}− (pvs∪ evs),

ŝ = mk-Sequent(vs,es,UPSHOT(s′′)) in
∀ê ∈ es ·

establishesExp(odm(ê), ê,ol,p, th,rm, thm, tmm)
∧ establishesSequent(ŝ,s)

Not exported.

The justifs in a sequent hypothesis justification are those (ordinary) dependents which are
justifications:

justifs :SeqHypJustif → Justification-set
justifs(j) 4 {j′ ∈ rng ORDDEPS(j) | j′ ∈ Justification}

Not exported.

The lines in a sequent hypothesis justification are the lines of all of its justifs plus those
dependents which are lines:

lines :SeqHypJustif → Line-ref -set
lines(j) 4 ⋃

{lines(j′) | j′ ∈ justifs(j)}∪{l ∈ rng ORDDEPS(j) | l ∈ Line-ref}

Not exported.

The boxes in a sequent hypothesis justification are just those in all of its justifs:

boxes :SeqHypJustif → Box-ref -set
boxes(j) 4 ⋃

{boxes(j′) | j′ ∈ justifs(j)}

Not exported.

The sequents in a sequent hypothesis justification are those in all its justifs plus its SEQUENT:

sequents :SeqHypJustif → Sequent-ref -set
sequents(j) 4 ⋃

{sequents(j′) | j′ ∈ justifs(j)}∪{SEQUENT(j)}

Not exported.

The rules in a sequent hypothesis justification are just those in all of its justifs:
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rules :SeqHypJustif → Rule-ref -set
rules(j) 4 ⋃

{rules(j′) | j′ ∈ justifs(j)}

Not exported.

The thMorphs in a sequent hypothesis justification are just those in all of its justifs:

thMorphs :SeqHypJustif → ThMorph-ref -set
thMorphs(j) 4 ⋃

{thMorphs(j′) | j′ ∈ justifs(j)}

Not exported.

The relevant part of a sequent hypothesis justification is obtained by removing unused
parts from the VMAP and ORDDEPS fields and replacing all justification dependents in
the resulting sequent hypothesis justification with their relevant part. If the justification’s
SEQUENT isn’t amongst the proof’s sequent hypotheses, it’s all considered to be relevant.

relevantJustif :SeqHypJustif ×Proof ×Rulemap×ThMorphmap→ SeqHypJustif
relevantJustif (j,p,rm, tmm) 4

if SEQUENT(j) ∈ dom SEQHYPS(p)
then

let mk-SeqHypJustif (s,vm,odm) = j,
s′ = SEQHYPS(p)(s),
vm′ = NFV(s′)C vm,
odm′ = {ê 7→ relevantJustif (odm(ê),p,rm, tmm) |

ê ∈ dom odm∧odm(ê) ∈ Justification},
odm′′ = PREMISES(s′)C (odm † odm′),
in

mk-SeqHypJustif (s,vm′,odm′′)
else j

Not exported.

A sequent hypothesis justification is reasonable at some ordinary line of a proof if it’s OK
and if all the justifications used in it are reasonable at that line:

isReasonableAtLine (j:SeqHypJustif ,ol:Ordline-ref ,p:Proof , th:Theory-ref ,
rm:Rulemap, thm:Theorymap, tmm:ThMorphmap) a:B

pre ol ∈ ordlines(p)∧ isConsisWithSig(ruleStmt(p), fullSig(th, thm))
post a ⇔

isOK(j,p, th,rm, thm, tmm)
∧∀ĵ ∈ justifsUsed(j,p,rm, tmm) ·

isReasonableAtLine(ĵ,ol,p, th,rm, thm, tmm)

Not exported.

Unfold Definition Justifications

UnfoldDefJustif :: TOLINE : Line-ref
SUBTERM : Index
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Roughly, the subterm of the expression on line TOLINE designated by INDEX is replaced
by whatever it’s defined to be14.

An unfold definition justification is OK if:
1. The TOLINE is one of the proof’s lines;

2. The index given points to a valid subterm of the expression on that line;

3. The subterm at that index is unfoldable.

isOK :UnfoldDefJustif×Proof×Theory-ref×Rulemap×Theorymap×ThMorphmap
→ B

isOK(j,p, th,rm, thm, tmm) 4

let mk-UnfoldDefJustif (l, i) = j,
elab = expLabelling(p),
Σ = fullSig(th, thm) in

l ∈ dom elab∧ isValidIndex(elab(l), i)∧
isUnfoldable(termAtIndex(elab(l), i),Σ)

Not exported.

An unfold definition justification establishes some expression if it is OK and if the result
of unfolding the definition at the appropriate index in the expression on the given line
yields (some expression equivalent to) that expression:

establishesExp (j:UnfoldDefJustif ,e:Exp,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)
post a ⇔

isOK(j,p, th,rm, thm, tmm)
∧
let mk-UnfoldDefJustif (l, i) = j,

elab = expLabelling(p),
Σ = fullSig(th, thm) in

isEquivalentTo(unfoldDefAt(elab(l),Σ, i),e)

Not exported.

An unfold definition justification establishes a sequent if it’s OK and if the expression
resulting from unfolding the definition at the appropriate index in the expression on the
given line establishes the required sequent:

establishesSequent (j:UnfoldDefJustif ,s:Sequent,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)

14Note that this makes no provision for unfolding definitions in sequent hypotheses. This is probably not
an important omission, and, as the proof model stands, there’s no easy way to accommodate such unfolding.
It is therefore being ignored.
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post a ⇔
isOK(j,p, th,rm, thm, tmm)
∧
let mk-UnfoldDefJustif (l, i) = j,

elab = expLabelling(p),
Σ = fullSig(th, thm) in

establishesSequent(unfoldDefAt(elab(l),Σ, i),s)

Not exported.

An unfold definition justification has no justifs:

justifs :UnfoldDefJustif → Justification-set
justifs(j) 4 {}

Not exported.

The lines (actually, there’s only one!) of an unfold definition justification are simply its
TOLINE.

lines :UnfoldDefJustif → Line-ref -set
lines(j) 4 {TOLINE(j)}

Not exported.

An unfold definition justification has no boxes . . .

boxes :UnfoldDefJustif → Box-ref -set
boxes(j) 4 {}

Not exported.

. . . and no sequents . . .

sequents :UnfoldDefJustif → Sequent-ref -set
sequents(j) 4 {}

Not exported.

. . . and no rules . . .

rules :UnfoldDefJustif → Rule-ref -set
rules(j) 4 {}

Not exported.

. . . and no theory morphisms.

thMorphs :UnfoldDefJustif → ThMorph-ref -set
thMorphs(j) 4 {}

Not exported.

The relevant part of an unfold definition justification is the whole thing.
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relevantJustif :UnfoldDefJustif ×Proof ×Rulemap×ThMorphmap
→ UnfoldDefJustif

relevantJustif (j,p,rm, tmm) 4 j

Not exported.

An unfold definition justification is reasonable at an ordinary line if it’s OK:

isReasonableAtLine (j:UnfoldDefJustif ,ol:Ordline-ref ,p:Proof , th:Theory-ref ,
rm:Rulemap, thm:Theorymap, tmm:ThMorphmap) a:B

pre ol ∈ ordlines(p)∧ isConsisWithSig(ruleStmt(p), fullSig(th, thm))
post a ⇔ isOK(j,p, th,rm, thm, tmm)

Not exported.

Fold Definition Justifications

This is just like unfolding definitions, only backwards.

FoldDefJustif :: TOLINE : Line-ref
SUBTERM : Index

A fold definition justtification is OK if it’s TOLINE is one of the lines of the proof.

isOK :FoldDefJustif×Proof×Theory-ref×Rulemap×Theorymap×ThMorphmap
→ B

isOK(j,p, th,rm, thm, tmm) 4 TOLINE(j) ∈ lines(p)

Not exported.

A fold definition justification establishes an expression if:

1. The justification is OK;

2. The index in its SUBTERM field is a valid index of that expression;

3. The subterm at that index is unfoldable;

4. The result of unfolding the definition at that subterm yields (some expression equiv-
alent to) the expression on the justification’s TOLINE.

establishesExp (j:FoldDefJustif ,e:Exp,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)
post a ⇔

isOK(j,p, th,rm, thm, tmm)
∧
let mk-FoldDefJustif (l, i) = j,

elab = expLabelling(p),
Σ = fullSig(th, thm) in

isValidIndex(e, i)∧ isUnfoldable(termAtIndex(e, i),Σ)
∧ isEquivalentTo(unfoldDefAt(e,Σ, i),elab(l))
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Not exported.

A fold definition justification establishes a sequent if:

1. The justification is OK;

2. The free variables in the expression on the TOLINE and the sequent’s new free
variables are disjoint;

3. The index in its SUBTERM field is a valid index of the upshot of the sequent;

4. The subterm at that index is unfoldable;

5. The expression resulting from unfolding the definition at that subterm is equivalent
to the expression on the TOLINE.

establishesSequent (j:FoldDefJustif ,s:Sequent,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)
post a ⇔

isOK(j,p, th,rm, thm, tmm)
∧
let mk-FoldDefJustif (l, i) = j,

elab = expLabelling(p),
Σ = fullSig(th, thm),
e = UPSHOT(s) in

isValidIndex(e, i)∧ isUnfoldable(termAtIndex(e, i),Σ)
∧NFV(s)∩ freeVars(elab(l)) = {}
∧ isEquivalentTo(unfoldDefAt(e,Σ, i),elab(l))

Not exported.

A fold definition justification has no justifs:

justifs :FoldDefJustif → Justification-set
justifs(j) 4 {}

Not exported.

The lines (again, there’s only one!) of a fold definition justification are simply its TOLINE.

lines :FoldDefJustif → Line-ref -set
lines(j) 4 {TOLINE(j)}

Not exported.

A fold definition justification has no boxes . . .

boxes :FoldDefJustif → Box-ref -set
boxes(j) 4 {}
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Not exported.

. . . and no sequents . . .

sequents :FoldDefJustif → Sequent-ref -set
sequents(j) 4 {}

Not exported.

. . . and no rules . . .

rules :FoldDefJustif → Rule-ref -set
rules(j) 4 {}

Not exported.

. . . and no theory morphisms.

thMorphs :FoldDefJustif → ThMorph-ref -set
thMorphs(j) 4 {}

Not exported.

The relevant part of a fold definition justification is the whole thing.

relevantJustif :FoldDefJustif ×Proof ×Rulemap×ThMorphmap
→ FoldDefJustif

relevantJustif (j,p,rm, tmm) 4 j

Not exported.

A fold definition justification is reasonable at an ordinary line if it’s OK:

isReasonableAtLine (j:FoldDefJustif ,ol:Ordline-ref ,p:Proof , th:Theory-ref ,
rm:Rulemap, thm:Theorymap, tmm:ThMorphmap) a:B

pre ol ∈ ordlines(p)∧ isConsisWithSig(ruleStmt(p), fullSig(th, thm))
post a ⇔ isOK(j,p, th,rm, thm, tmm)

Not exported.

Null Justifications

These beasts cover the case when no decision has yet been made on the type of justifica-
tion to be used at some given point.

A null justification doesn’t establish an expression:

establishesExp (j:NullJustif ,e:Exp,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)
post a ⇔ false

Not exported.

A null justification doesn’t establishes a sequent either:



388 C The Specification of the Proof Assistant

establishesSequent (j:FoldDefJustif ,s:Sequent,ol:Ordline-ref ,p:Proof ,
th:Theory-ref ,rm:Rulemap, thm:Theorymap,

tmm:ThMorphmap) a:B
pre ol ∈ ordlines(p)
post a ⇔ false

Not exported.

A null justification has no justifs . . .

justifs :NullJustif → Justification-set
justifs(j) 4 {}

Not exported.

. . . and no lines . . .

lines :NullJustif → Line-ref -set
lines(j) 4 {}

Not exported.

. . . and no boxes . . .

boxes :NullJustif → Box-ref -set
boxes(j) 4 {}

Not exported.

. . . and no sequents . . .

sequents :NullJustif → Sequent-ref -set
sequents(j) 4 {}

Not exported.

. . . and no rules . . .

rules :NullJustif → Rule-ref -set
rules(j) 4 {}

Not exported.

. . . and no theory morphisms.

thMorphs :NullJustif → ThMorph-ref -set
thMorphs(j) 4 {}

Not exported.

The relevant part of a null justification is the whole thing.

relevantJustif :NullJustif ×Proof ×Rulemap×ThMorphmap→ NullJustif
relevantJustif (j,p,rm, tmm) 4 j

Not exported.

A null justification is reasonable at any ordinary line.
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isReasonableAtLine (j:NullJustif ,ol:Ordline-ref ,p:Proof , th:Theory-ref ,
rm:Rulemap, thm:Theorymap, tmm:ThMorphmap) a:B

pre ol ∈ ordlines(p)∧ isConsisWithSig(ruleStmt(p), fullSig(th, thm))
post a ⇔ true

Not exported.

C.8.4 Accessing Functions (Justifications)

The justifications used in some justification are the justifs of the relevant part of that
justification.

justifsUsed :Justification×Proof ×RuleMap×ThMorphmap→ Justification-set
justifsUsed(j,p,rm, tmm) 4 justifs(relevantJustif (j,p,rm, tmm)

Not exported.

The lines used in some justification are the lines of the relevant part of that justification.

linesUsed :Justification×Proof ×RuleMap×ThMorphmap→ Line-ref -set
linesUsed(j,p,rm, tmm) 4 lines(relevantJustif (j,p,rm, tmm)

Not exported.

The boxes used in some justification are the boxes of the relevant part of that justification.

boxesUsed :Justification×Proof ×RuleMap×ThMorphmap→ Box-ref -set
boxesUsed(j,p,rm, tmm) 4 boxes(relevantJustif (j,p,rm, tmm)

Not exported.

The rules used in some justification are the rules of the relevant part of that justification.

rulesUsed :Justification×Proof ×RuleMap×ThMorphmap→ Rule-ref -set
rulesUsed(j,p,rm, tmm) 4 rules(relevantJustif (j,p,rm, tmm)

Not exported.

And the theory morphisms used in some justification are the theory morphisms of the
relevant part of that justification.

thMorphsUsed :Justification×Proof ×RuleMap×ThMorphmap
→ ThMorph-ref -set

thMorphsUsed(j,p,rm, tmm) 4 thMorphs(relevantJustif (j,p,rm, tmm)

Not exported.

C.8.5 Dependencies

A line l depends on some other line l′ in a proof if l is an ordinary line and if l′ is one of
the lines used in justifying l or is the conclusion of some box used in justifying l or if it
depends on such a line/conclusion of a box:
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dependsOnLine (l:Line-ref , l′:Line-ref ,p:Proof ,
rm:Rulemap, tmm:ThMorphmap) a:B

pre l, l′ ∈ lines(p)
post let jlab = justifLabelling(p),

bm = BOXMAP(p) in
a ⇔
l ∈ dom jlab∧
let j = jlab(l),

cons = {CON(bm(b)) | b ∈ boxesUsed(j,p,rm, tmm)},
ls = linesUsed(j,p,rm, tmm)∪ cons in

(l′ ∈ ls ∨ ∃l̂ ∈ ls ·dependsOnLine(l̂, l′,p,rm, tmm))

Not exported.

The lines used in a proof are those on which the proof’s conclusion depends:

linesUsed :Proof ×Rulemap×ThMorphmap→ Line-ref -set
linesUsed(p,rm, tmm) 4

let bm = BOXMAP(p),
ls = linesOfBox(p,ROOT(p)),
con = CON(bm(ROOT(p))) in

{con}∪{l ∈ ls | dependsOnLine(con, l,p,rm, tmm)}

Not exported.

This function is intended to be applied to completed proofs to determine which lines are
actually needed in the proof, i.e. as part of the proof garbage collector.

The rules used in justifying some set of lines in a proof are the rules used in the justifica-
tions of those lines!

rulesUsedInLines :Proof ×Line-ref -set×Rulemap×ThMorphmap
→ Rule-ref -set

rulesUsedInLines(p, ls,rm, tmm) 4

let jlab = lsC justifLabelling(p) in⋃
{rulesUsed(j,p,rm, tmm) | j ∈ rng jlab}

Not exported.

The rules used in a proof are those used in the justifications of the lines used therein:

rulesUsed :Proof ×Rulemap×ThMorphmap→ Rule-ref -set
rulesUsed(p,rm, tmm) 4

let ls = linesUsed(p,rm, tmm) in
rulesUsedInLines(p, ls,rm, tmm)

Exported for complete proofs.

And the theory morphisms used in a proof are those used in the justifications of the lines
used:
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thMorphsUsed :Proof ×Rulemap×ThMorphmap→ ThMorph-ref -set
thMorphsUsed(p,rm, tmm) 4

let ls = linesUsed(p,rm, tmm),
jlab = lsC justifLabelling(p) in⋃
{thMorphsUsed(j,p,rm, tmm) | j ∈ rng jlab}

Exported for complete proofs.

A proof is well-formed if it has no circular dependencies and has no dependencies which
reach into boxes:

isWfdProof :Proof ×Rulemap×ThMorphmap→ B
isWfdProof (p,rm, tmm) 4

∀b ∈ roots(p) ·
let ls = linesOfBox(p,b),

bs = subboxesOfBox(p,b),
jlab = lsC justifLabelling(p) in

∀l ∈ dom jlab ·
¬ dependsOnLine(l, l,p,rm, tmm)
∧boxesUsed(jlab(l),p,rm, tmm)∩{b′ ∈ bs | l ∈ linesOfBox(p,b′)}

= {}
∧∀b̂ ∈ bs ·

l /∈ linesOfBox(p, b̂) ⇒
linesUsed(jlab(l),p,rm, tmm)∩ lines(bm(b̂)) = {}
∧boxesUsed(jlab(l),p,rm, tmm)∩BOXES(bm(b̂)) = {}

Background. Warning when violated.

Claim:

isWfdProof (p,rm, tmm)∧ l1 ∈ lines(p)∧dependsOnLine(l1, l2,p,rm, tmm)
⇒ l2 ∈ lines(p)∧boxOfLine(p, l1) ∈ subboxesOfBox(p,boxOf (l2,p))

Claim:

∀l, l′ ∈ Line-ref ,b ∈ Box-ref ·
(dependsOnLine(l, l′,p,rm, tmm)∧

l /∈ linesOfBox(p,b)∧ l′ ∈ linesOfBox(p,b))
⇒ let con = CON(BOXMAP(p)(b)) in
(dependsOnLine(l,con,p,rm, tmm)∧dependsOnLine(con, l′,p,rm, tmm))

C.8.6 When is a Proof Finished?

A function for finding the assumptions on which a line depends, by tracing back along
dependencies:

assumptionsOfLine (p:Proof , l:Line-ref ,rm:Rulemap,
tmm:ThMorphmap) ls:Line-ref -set

pre isWfdProof (p,rm, tmm)∧ l ∈ lines(p)
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post let jlab = justifLabelling(p) in
ls = if l ∈ dom jlab

then
let j = jlab(l),

ls1 =
⋃
{assumptionsOfLine(p, l′,rm, tmm) |

l′ ∈ linesUsed(j,p,rm, tmm)},
ls2 =

⋃
{assumptionsOfBox(p,b,rm, tmm) |

b ∈ boxesUsed(j,p,rm, tmm)} in
ls1∪ ls2

else {l}

Exported.

assumptionsOfBox (p:Proof ,b:Box-ref ,rm:Rulemap,
tmm:ThMorphmap) ls:Line-ref -set

pre isWfdProof (p,rm, tmm)∧b ∈ dom BOXMAP(p)
post let b′ = BOXMAP(p)(b) in

ls = assumptionsOfLine(p,CON(b′),rm, tmm)−dom HYPS(b′)

Not exported.

Note how hypotheses of boxes are discharged.

Claim:

isWfdProof (p,rm, tmm)∧ol ∈ ordlines(p) ⇒
assumptionsOfLine(p,ol,rm, tmm)⊆

{l ∈ Line-ref | dependsOnLine(ol, l,p,rm, tmm)}

A proof is finished if it is well-formed and the only assumptions on which its conclusion
depends are hypotheses of its ROOT:

isFinished :Proof ×Rulemap×ThMorphmap→ B
isFinished(p,rm, tmm) 4

let bm = BOXMAP(p),
root = bm(ROOT(p)) in

isWfdProof (p,rm, tmm)
∧assumptionsOfLine(p,CON(root),rm, tmm)⊆ dom HYPS(root)

Not exported.

Of course, just because a proof is finished doesn’t mean that it’s valid: its expression
labellings must also be reasonable and complete, and its justifications must all be valid.

C.8.7 General Support Functions for Proofs

First, a function to extract the free variables available at a given line in a proof by collect-
ing all the new free variables of boxes containing the line:

freeVarsAtLine (p:Proof , l:Line-ref ) vs:VSymb-set
pre l ∈ lines(p)
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post vs =
⋃
{newFreeVarsOfBox(p,b) |

l ∈ linesOfBox(p,b)∧b ∈ dom BOXMAP(p)}

Not exported.

Claims:

s ∈ rng SEQHYPS(p) ⇒ NFV(s)∩ freeVarsAtLine(p, l) = {}

l /∈ linesOfBox(p,b) ⇒ newFreeVarsOfBox(p,b)∩ freeVarsAtLine(p, l) = {}

let bm = BOXMAP(p),box = bm(b) in
(isWfdProof (p,rm, tmm)∧b ∈ dom bm
∧dependsOnLine(CON(box), l,p,rm, tmm)∧ l /∈ lines(box))
⇒ newFreeVarsOfBox(p,b)∩ freeVarsAtLine(p, l) = {}

It’s as a result of this third property that the usual variable occurrence side-conditions will
be inforced.

An expression is reasonable at some line in a proof if its free variables are all available
at that line, if it’s reasonable with respect to the relevant signature, if it contains no place-
holders, and if metavariables appear consistently in the expression and the proof’s rule
statement:

isReasonableAtLine (e:Exp, l:Line-ref ,p:Proof , th:Theory-ref ,
thm:Theorymap) a:B

pre l ∈ lines(p)∧ isConsisWithSig(ruleStmt(p), fullSig(th, thm))
post a ⇔

freeVars(e)⊆ freeVarsAtLine(p, l)
∧ isReasonableWRTSig(e, fullSig(th, thm))
∧ isFull(e)
∧ isConsisWithRuleStmt(e,ruleStmt(p))

Not exported.

A sequent is reasonable at some line in a proof if its apparent free variables are actually
free or are available at that line, if all its exps are reasonable with respect to the relevant
signature and contain no placeholders, and if metavariables appear consistently in the
sequent and the proof’s rule statement:

isReasonableAtLine (s:Sequent, l:Line-ref ,p:Proof , th:Theory-ref ,
thm:Theorymap) a:B

pre l ∈ lines(p)∧ isConsisWithSig(ruleStmt(p), fullSig(th, thm))
post a ⇔

freeVars(s)⊆ NFV(s)∪ freeVarsAtLine(p, l)
∧∀e ∈ exps(s) ·

isReasonableWRTSig(e, fullSig(th, thm))∧ isFull(e)
∧ isConsisWithRuleStmt(s,ruleStmt(p))

Not exported.

A rule statement is reasonable at some line in a proof if its conclusion, its ordinary hy-
potheses and its sequent hypotheses are all reasonable at that line:
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isReasonableAtLine (rs:RuleStmt, l:Line-ref ,p:Proof , th:Theory-ref ,
thm:Theorymap) a:B

pre l ∈ lines(p)∧ isConsisWithSig(ruleStmt(p), fullSig(th, thm))
post a ⇔

isReasonableAtLine(CONCL(rs), l,p, th, thm)
∧∀e ∈ ORDHYPS(rs) ·

isReasonableAtLine(e, l,p, th, thm)
∧∀s ∈ SEQHYPS(rs) ·

isReasonableAtLine(s, l,p, th, thm)

Not exported.

C.8.8 Consistency Checks on the Expressions and Justifications in a
Proof

A line has a reasonable body if the expression on it is reasonable at that line:

hasReasonableBody (l:Line-ref ,p:Proof , th:Theory-ref , thm:Theorymap) a:B
pre l ∈ lines(p)∧ isConsisWithSig(ruleStmt(p), fullSig(th, thm))
post let e = expLabelling(p)(l) in

a ⇔ isReasonableAtLine(e, l,p, th, thm)

Background. Warning when violated.

A line has a reasonable justification if it’s a hypothesis line or if it’s an ordinary line whose
justification is reasonable at that line:

hasReasonableJustif (l:Line-ref ,p:Proof , th:Theory-ref ,rm:Rulemap,
thm:Theorymap, tmm:ThMorphmap) a:B

pre l ∈ lines(p)∧ isConsisWithSig(ruleStmt(p), fullSig(th, thm))
post let jlab = justifLabelling(p) in

a ⇔ l ∈ dom jlab ⇒ isReasonableAtLine(jlab(l), l,p, th,rm, thm, tmm)

Background. Warning when violated.

C.8.9 Completeness Checks
A line in a proof is completely justified (with redundancies allowed) if it’s a hypothesis
line or if it’s an ordinary line whose body is established by its justification:

isJustifiedLine (p:Proof , l:Line-ref , th:Theory-ref ,
rm:Rulemap, thm:Theorymap, tmm:ThMorphmap) a:B

pre l ∈ lines(p)
post let elab = expLabelling(p),

jlab = justifLabelling(p) in
a ⇔ l ∈ dom jlab ⇒ establishesExp(jlab(l),elab(l),p, th,rm, thm, tmm)

Exported.

A proof conducted in a given theory is complete if it is finished and all the lines used
to establish the conclusion have complete and reasonable bodies and justifications (if
appropriate):



C.9 The Store 395

isComplete (p:Proof , th:Theory-ref ,rm:Rulemap, thm:Theorymap,
tmm:ThMorphmap) a:B

pre isReasonableWRTTheory(ruleStmt(p), th, thm)
post a ⇔

isFinished(p)
∧∀l ∈ linesUsed(p) ·

hasReasonableBody(l,p, th, thm)
∧hasReasonableJustif (l,p, th,rm, thm, tmm)
∧ isJustifiedLine(p, l, th,rm, thm, tmm)

Exported.

C.9 The Store

Store :: RULES : Rulemap
THS : Theorymap
THMORPHS : ThMorphmap

C.9.1 Completeness checks

The set of rules on which a proof seems to depend:

antecedents :Proof ×Rulemap×Theorymap×ThMorphmap→ Rule-ref -set
antecedents(p,rm, thm, tmm) 4

rulesUsed(p)∪⋃
{rulesUsed(τ,rm, thm, tmm) | τ ∈ thMorphsUsed(p,rm, tmm)}

Not exported.
(Actually, the proof also depends on any other rules which might be needed to complete
the justifications of the relevant theory morphisms.)

A function to test whether a derived rule depends on another:

dependsOnRule :Rule-ref ×Rule-ref ×Rulemap×Theorymap×ThMorphmap
→ B

dependsOnRule(r1,r2,rm, thm, tmm) 4

let p = PROOF(rm(r1)),
rs = antecedents(p,rm, thm, tmm) in

r1 ∈dom rm∧p 6=nil∧(r2 ∈ rs∨∃r ∈ rs ·dependsOnRule(r,r2,rm, thm, tmm))

Exported.

isNoncircular :Rulemap×Theorymap×ThMorphmap→ B
isNoncircular(rm, thm, tmm) 4

∀r ∈ dom rm ·¬ dependsOnRule(r,r,rm, thm, tmm)
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Background. Warning when violated.

Although this has been relegated to the status of a consistency check, it’s probably impor-
tant enough that the user should be warned whenever a circularity is introduced. Similarly,
when searching for rules to apply in a proof, rules which depend on the rule being proven
should be rejected (remembering that there might be other rules with the same statement
which need not be rejected!)

An operation to check whether a rule is established modulo a set of rules:

isEstablishedModRules :Rule-ref ×Rule-ref -set
×Rulemap×Theorymap×ThMorphmap→ B

isEstablishedModRules(r,rules,rm, thm, tmm) 4

r ∈ dom rm∧ is-OK-Rule(rm(r))∧
let p = PROOF(rm(r)) in
(r ∈ rules
∨ p = nil
∨ p 6= nil∧ isComplete(p,THEORY(rm(r)),rm, thm, tmm)
∧∀r′ ∈ rulesUsed(p,rm, tmm) ·

isEstablishedModRules(r′,rules,rm, thm, tmm)
∧∀τ ∈ thMorphsUsed(p,rm, tmm) ·

isEstablishedModRules(τ,rules,rm, thm, tmm))

Exported.

isEstablishedModRules :ThMorph-ref ×Rule-ref -set
×Rulemap×Theorymap×ThMorphmap→ B

isEstablishedModRules(τ,rules,rm, thm, tmm) 4 τ ∈ dom tmm
∧ isReasonableThMorph(τ,rm, thm, tmm)
∧∀r ∈ rulesUsed(τ,rm, thm, tmm) ·

isEstablishedModRules(r,rules,rm, thm, tmm)

Exported.

A valid derived rule is one which is established modulo the empty set.

An operation which extracts a set of incompletely-proven rules on which a rule depends:

rulesYetToBeProven :Rule-ref ×Rulemap×Theorymap×ThMorphmap
→ Rule-ref -set

rulesYetToBeProven(r,rm, thm, tmm) 4 let p = PROOF(rm(r)) in
if r ∈ dom rm
then if p = nil

then {}
else if isComplete(p,THEORY(rm(r)),rm, thm, tmm)

then
⋃
{rulesYetToBeProven(r′,rm, thm, tmm) |

r′ ∈ rulesUsed(p,rm, tmm)}
else {r}

else {r}
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Exported.
The function is called recursively, bottoming out at undefined rules and rules with incom-
plete proofs.

Claim: The rules returned by rulesYetToBeProven are necessary to establish the rule in
question (at least, according to the proofs currently stored): i.e.

isEstablishedModRules(r,rules,rm, thm, tmm)∧ r /∈ rules
⇒ rulesYetToBeProven(r,rm, thm, tmm)⊆ rules

The set is not necessarily sufficient to establish the rule, however, since some of the theory
morphisms involved may not be completely justified.
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Appendix D

The specification of the animation tool

This specification makes heavy use of other work within mural . A simple prototype of the
system SYMBEX as specified here has been built, which contains most of the functionality
specified except for recursion and simplification. This implies that it is only suitable to
demonstrate some of the ideas; it is not a usable system. Because of a shortage of time it
was then decided to concentrate all efforts on building the proof tool, rather than continue
implementing SYMBEX.

D.1 Data structure and some auxiliary functions

SEStateOp
Define

Index = N∗1
A state as used for describing the operational semantics of a language for symbolic exe-
cution is defined recursively by

SE-map = Name m−→ PredS-set

SE-elem = SE-map | SEStateOp

SEStateOp :: SEQ : SE-elem∗

INDEX : Index

where

inv-SEStateOp(mk-SEStateOp(Seq, ix)) 4

Seq 6= []
∧hd Seq:SE-map
∧∀k ≤ len Seq ·Seq[k]:SEStateOp ⇒ INDEX(Seq[k]) = cons(k, ix)

This is the same definition as in the definition of the operational semantics of symbolic
execution in Section 9.3.1, repeated in the theory ThOpSem (described in Section 9.4.1).
However, it is now considered as a part of the SYMBEXSTATE, while before it was a type
defined within the operational semantics (Section 9.3.1) or a mural theory (Section 9.4.1).
Similarly, some of the functions defined below have been defined before in Sections 9.3
and 9.4. In the implementation of SYMBEX, a translation mechanism is needed that
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translates between these different versions, in particular between an SEStateOp in the
SYMBEXSTATE and the equivalent one in ThOpSem. This is necessary so that symbolic
execution on the SEStateOp in SYMBEXSTATE can be performed according to the rules
of the theory ThOpSem.

Auxiliary functions
The function get-element gets a particular element of the sequence in an SEStateOp or
one of its sub-sequences, as selected by its argument ix:

get-element :SEStateOp× Index→ SE-elem
get-element(S, ix) 4

if front ix = []
then SEQ(S)[last ix]
else get-element(SEQ(S)[last ix], front ix)

pre ix 6= []
∧ if front ix 6= []

then SEQ(S)[last ix]:SEStateOp
∧pre-get-element(SEQ(S)[last ix], front ix)

else true
The function current-index finds the current or last index in an SEStateOp:

current-index :SEStateOp→ Index
current-index(S) 4 if last SEQ(S):SE-map

then [len SEQ(S)]
else current-index(last SEQ(S))⊕ len SEQ(S)

current-index(S) is always the index of a SE-map:

Lemma D.1.1

∀S:SEStateOp ·
pre-get-element(S,current-index(S))
∧get-element(S,current-index(S)):SE-map

Proof By induction over len front current-index(S). �

The function previous, given the index of an element in SEStateOp, finds the index of the
previous element:

previous : Index→ Index
previous(ix) 4 if hd ix = 1

then tl ix
else cons(hd ix−1, tl ix)

pre ix 6= []
We now introduce the function collect-preds, which collects into a set all the PredS

in a given SEStateOp S, up to a certain element (given as argument ix) in the execution
sequence of S. If ix is empty, then all PredS in S are collected:
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collect-preds :SEStateOp× Index→ PredS-set
collect-preds(S, ix) 4

let ix′ = if ix = [] then [len SEQ(S)] else ix in⋃last ix′
i=1

(
if SEQ(S)[i]:SE-map
then

⋃
n∈dom SEQ(S)[i] SEQ(S)[i](n)

else if i = last ix′

then collect-preds(SEQ(S)[i], front ix′)

else collect-preds(SEQ(S)[i], [ ])
)

pre if ix 6= []
then last ix≤ len SEQ(S)

∧ if SEQ(S)[last ix]:SEStateOp
then pre-collect-preds(SEQ(S)[last ix], front ix)
else front ix = []

else true

Assumptions and Beliefs

Assump :: index : Index
stmt : PredS

Assumptions are used for recording assumed predicates. They consist of an index which
records when an assumption was made, and the assumed statement itself. The following
function extracts the statements from a set of Assump.

statements :Assump-set→ PredS-set
statements(as) 4 {stmt(a) | a ∈ as}

A Belief , which is used to store a believed predicate, is similar to an Assump, except
that it also stores the description values in the current element of the SEStateOp. This
is necessary since a Belief represents a proof obligation that should later be discharged.
To do so, one needs to know the hypotheses that are allowed to be used in the proof,
namely all the PredS that are known to hold at the time when the Belief is stated (cf. the
specifications of the operations BELIEVE and DISCHARGE in Appendix D.2).

Belief :: index : Index
current : PredS-set
stmt : PredS

The function name statements is now overloaded to extract the statements from Belief s
as well as Assumps:

statements :Belief -set→ PredS-set
statements(bs) 4 {stmt(b) | b ∈ bs}

Proven and provable rule statements
The following function checks whether a given RuleStmt is established by a given rule
under a given instantiation, using various functions from the specification of mural :
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isProvenRuleStmt :RuleStmt×Rule-ref ×Theory-ref × Instantiation
×Rulemap×Theorymap×ThMorphmap→ B

isProvenRuleStmt(rs,rr, thr, i,rm, thm, thmm) 4

let rule = rm(rr) in
let rs′ = mk-RuleStmt(

{Instantiate(s, i) | s ∈ SEQHYPS(STMT(rule))},
{Instantiate(a, i) | a ∈ ORDHYPS(STMT(rule))},
Instantiate(CONCL(STMT(rule)), i)) in

Establishes(rs′,rs)
∧ Is-Complete-Proof (PROOF(rule), thr,rm, thm, thmm)

The operation PROVABLE checks whether a rule statement is provable in a theory
and, if it is, adds it (including its proof) to the theory as a new rule. This operation is to
be provided by mural .

PROVABLE (rs:RuleStmt, th:Theory-ref ) r:{YES,DONTKNOW}
ext wr mural : Store
post r = YES ⇒ rs is provable in th

∧ the rule with statement rs and a (complete) proof is
added to th in mural

Of course there exists a trivial implementation of PROVABLE that always returns the value
DONTKNOW. Although this implementation would be correct with respect to the specifi-
cation, obviously one would hope for something more intelligent, probably implemented
by proof tactics and/or using decision procedures for decidable classes of problems. In
different contexts, one should presumably use different proof tactics and decision proce-
dures, even though they implement the same operation PROVABLE. An example of such
a proof tactic is the algorithm transform given in Section 9.3.6.
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The state
The state of a symbolic execution system has the following structure:

SYMBEXSTATE :: S : SEStateOp
history : SpecName∗

assume : Assump-set
beliefs : Belief -set
module : Theory-ref
wmodule : Theory-ref
wflag : B
mural : Store

where

inv-SYMBEXSTATE(mk-SYMBEXSTATE(s,h,ass,b,m,wm,wf , f )) 4

m ∈ dom THS(f )
∧wm ∈ dom THS(f )
∧ inv-ThModule(THS(f )(m))
∧ inv-WThModule(THS(f )(wm))
∧m ∈ PARENTS(THS(f )(wm))
∧ len SEQ(s) = len h+1
∧ rng h⊆ specs(m)
∧h = [] ⇒ wf = false
∧ INDEX(s) = [ ]

The invariant expresses that the theories module and wmodule should be the names (in
mural) of the theory and weak theory of the same module. The length of SEQ(S) should
be one more than the length of the history to allow for the initial starting state. All the
SpecNames in the history should be defined in the module. The wflag should initially
be set to false to show that so far no weak symbolic execution has taken place. The
SEStateOp should not be an element inside some other SEStateOp.

Copying the state
The following function copies an existing SYMBEXSTATE, up to a given element in the
execution sequence.

copy-SESTATE :SYMBEXSTATE×N1→ SYMBEXSTATE
copy-SESTATE(mk-SYMBEXSTATE(s,h,ass,bel,m,wm,wf , f ), i) 4

mk-SYMBEXSTATE(
mk-SEStateOp(SEQ(s)(1, . . . , i), INDEX(s)),
h(1, . . . , i−1),
{a:Assump | a ∈ ass∧ last index(a)≤ i},
{b:Belief | b ∈ bel∧ last index(b)≤ i},
m,
wm,
wf ,
f )
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Initial states
A SYMBEXSTATE is initial, if it satisfies

is-initial-SESTATE :SYMBEXSTATE→ B
is-initial-SESTATE(mk-SYMBEXSTATE(s,h,ass,b,m,wm,wf , f )) 4

len SEQ(s) = 1
∧dom hd SEQ(s) = {}
∧ass = {}
∧b = {}

The invariant on SYMBEXSTATE implies, for an initial SYMBEXSTATE, that history=
[] and wflag = false. Different initial SYMBEXSTATEs at most differ in their module,
wmodule and mural. Given any particular values for module, wmodule and mural, the
initial SYMBEXSTATE will be called ARBITRARY.

D.2 Operations
All the operations specified in the following should be accessible to the user. Their user
interface is discussed in [Kne89, §6.2].

Symbolic execution
Operation SYMB EXECUTE symbolically executes a sequence of specifications. The
pre-condition checks that there is a rule or axiom that holds in module and has the shape

hyp-set ` 〈sn-seq,S〉 ↪→ 〈[ ],S′〉

for some hyp-set ⊆ collect-preds(S, [ ]) and some S′:SEStateOp. The post-condition
then applies this transition to S.

SYMB EXECUTE (sn-seq:SpecName∗)
ext wr S : SEStateOp

wr history : SpecName∗

rd module : Theory-ref
rd wflag : B
rd mural : Store

pre wflag = false
∧ rng sn-seq⊆ specs(module)
∧∃S′:SEStateOp · ∃hyp-set ⊆ collect-preds(S, [ ]) ·

let rs = mk-RuleStmt({},
hyp-set,
〈sn-seq,S〉 ↪→ 〈[ ],S′〉) in

PROVABLE(rs,module) = YES

∧ len SEQ(S′) = len SEQ(S)+ len sn-seq
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post ∃hyp-set ⊆ collect-preds(S, [ ]) ·
let rs = mk-RuleStmt({},

hyp-set,
〈sn-seq,

↼−
S 〉 ↪→ 〈[ ],S〉) in

PROVABLE(rs,module) = YES

∧history =
↼−−−−
history⊕ sn-seq

In the special case of SYMB EXECUTE, one should use the “tactic” transform intro-
duced in Section 9.3.6 to implement the operation PROVABLE and find a proof of the
RuleStmt.

The theory of the operational semantics of a language is expected to be such that
at any stage in the symbolic execution, usually (but not necessarily) only one rule will
be applicable. In this case the tactic is fully automatic, no user interaction is required.
Note however that this remark only applies to symbolic execution itself; simplification
is a separate step and should certainly be user-guided. Although the operation SYMB
EXECUTE allows the user to symbolically execute a whole sequence of specifications, he
will often only want to execute one at a time and then execute the next specification on
the result of the previous symbolic execution.

The reason for the pre-condition wflag = false is that once weak symbolic execution
has been used on an SEStateOp, any further symbolic execution can only lead to a weak
result and therefore has to be dealt with using the operation W SYMB EXECUTE speci-
fied below.

Weak symbolic execution
W SYMB EXECUTE behaves just like SYMB EXECUTE, except that it uses the ‘weak’
theory wmodule instead of module, and sets the wflag to show that the result has been
derived using weak symbolic execution.

W SYMB EXECUTE (sn-seq:SpecName∗)
ext wr S : SEStateOp

wr history : SpecName∗

rd wmodule : Theory-ref
wr wflag : B
rd mural : Store

pre rng sn-seq⊆ specs(wmodule)
∧∃S′:SEStateOp · ∃hyp-set ⊆ collect-preds(S, [ ]) ·

let rs = mk-RuleStmt({},
hyp-set,
〈sn-seq,S〉 ↪→ 〈[ ],S′〉) in

PROVABLE(rs,wmodule) = YES

∧ len SEQ(S′) = len SEQ(S)+ len sn-seq

post post-SYMB EXECUTE(sn-seq,
↼−
S ,

↼−−−−
history,

wmodule,mural,
↼−−
wflag,S,history)

∧wflag = true
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Showing the results
SHOW shows the value of a program variable name after execution of a number of oper-
ations given by the index ix.

SHOW (name:Name, ix: Index) ps-set:PredS-set
ext rd S : SEStateOp
pre pre-get-element(S, ix)
∧get-element(S, ix):SE-map
∧name ∈ dom get-element(S, ix)

post ps-set = get-element(S, ix)(name)

To see the value of a program variable in terms of the values after n operations (with
n < m), run SHOW and then SIMPLIFY the result.

Simplification
SIMPLIFY simplifies an expression by applying a rule to it (but only returns the result
and does not change the state).

To specify SIMPLIFY , we need the auxiliary function simp-hypotheses. This function
collects all the PredS in an SEStateOp S up to an index ix, except for a given ps which
is a current description value of the given name n. This is exactly the set of hypotheses
allowed to be used for proving a simplification of ps. Note that this definition does not
exclude the possibility that ps itself is in the resulting set, since it may also be the descrip-
tion value of identifier nm 6= n. In this case it is trivial to prove that ps⇔ true and ps may
be deleted from the description value of n since it does not affect the denotation of the
SEStateOp.

simp-hypotheses :SEStateOp×PredS×Name× Index→ PredS-set
simp-hypotheses(S,ps,n, ix) 4

let nmset = dom get-element(S, ix)−{n} in
collect-preds(S,previous(ix))
∪
⋃

nm∈nmset get-element(S, ix)(nm)
∪get-element(S, ix)(n)−{ps}

pre pre-get-element(S, ix)
∧get-element(S, ix):SE-map
∧n ∈ dom get-element(S, ix)
∧ps ∈ get-element(S, ix)(n)
∧pre-collect-preds(S,previous(ix))

Now SIMPLIFY is defined as below. The pre-condition checks that the SEStateOp
contains ps in the right place (as given by ix) and that ps can be simplified to some ps′ by
rule rr. The post-condition then states that this rule should be applied to ps to get output
ps′.

SIMPLIFY (ps:PredS,rr:Rule-ref , inst: Instantiation, ix: Index,
n:Name) ps′:PredS
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ext rd S : SEStateOp
rd module : Theory-ref

rd wflag : B
rd mural : Store

pre wflag = false
∧pre-simp-hypotheses(S,ps,n, ix)
∧∃ps′′:PredS · ∃hyp-set ⊆ simp-hypotheses(S,ps,n, ix) ·

let rs = mk-RuleStmt({},hyp-set,ps⇔ ps′′) in
isProvenRuleStmt(rs,rr,module, inst,RULES(mural),

THS(mural),THMORPHS(mural))

post ∃hyp-set ⊆ simp-hypotheses(
↼−
S ,ps,n, ix) ·

let rs = mk-RuleStmt({},hyp-set,ps⇔ ps′) in
isProvenRuleStmt(rs,rr,module, inst,RULES(mural),

THS(mural),THMORPHS(mural))

Weak simplification
The operation W SIMPLIFY is specified just like SIMPLIFY , except that it uses the weak
theory wmodule instead of module, and the conclusion of the rule is an implication rather
than an equivalence. Weak simplification is not possible in the initial state when all the
PredS that could be simplified have been introduced by ASSUME or BELIEVE.

W SIMPLIFY (ps:PredS,rr:Rule-ref , inst: Instantiation, ix: Index,
n:Name) ps′:PredS

ext rd S : SEStateOp
rd wmodule : Theory-ref

rd mural : Store
pre len S≥ 2
∧pre-simp-hypotheses(S,ps,n, ix)
∧∃ps′′:PredS · ∃hyp-set ⊆ simp-hypotheses(S,ps,n, ix) ·

let rs = mk-RuleStmt({},hyp-set,ps⇒ ps′′) in
isProvenRuleStmt(rs,rr,wmodule, inst,RULES(mural),

THS(mural),THMORPHS(mural))

post ∃hyp-set ⊆ simp-hypotheses(
↼−
S ,ps,n, ix) ·

let rs = mk-RuleStmt({},hyp-set,ps⇒ ps′) in
isProvenRuleStmt(rs,rr,wmodule, inst,RULES(mural),

THS(mural),THMORPHS(mural))

Storing results of simplification
When an expression has been simplified, REMEMBER saves the simplified value in the
state by replacing the old ps1:PredS with the new ps2:PredS. This is done using the
auxiliary function replace:
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replace :PredS×PredS×SEStateOp× Index×Name→ SEStateOp
replace(ps1,ps2,S, ix,n) 4

mk-SEStateOp
(

{i 7→ if i = hd ix
then if SEQ(S)[i]:SE-map

then {nm 7→
{

SEQ(S)[i](n)−{ps1}∪{ps2} if nm = n
SEQ(S)[i](nm) otherwise

}
| nm ∈ dom SEQ(S)[i]}

else replace(ps1,ps2,SEQ(S)[i], tl ix,n)
else SEQ(S)[i]

| i ∈ {1, . . . , len SEQ(S)}},
INDEX(S)

)
pre pre-get-element(S, ix)
∧get-element(S, ix):SE-map
∧ps1 ∈ get-element(S, ix)(n)

Then REMEMBER is specified as

REMEMBER (ps1,ps2:PredS,rr:Rule-ref , inst: Instantiation, ix: Index,
name:Name)

ext wr S : SEStateOp
rd module : Theory-ref

rd wflag : B
rd mural : Store

pre pre-SIMPLIFY(ps1,rr, inst, ix,n,S,module,wflag,mural)
∧post-SIMPLIFY(ps1,rr, inst, ix,n,ps2,S,module,wflag,mural)

post S = replace(ps1,ps2,
↼−
S , ix,n)

Storing results of weak simplification
W REMEMBER stores the results of W SIMPLIFY . It is specified as

W REMEMBER (ps1,ps2:PredS,rr:Rule-ref , inst: Instantiation, ix: Index,
name:Name)

ext wr S : SEStateOp
rd module : Theory-ref

wr wflag : B
rd mural : Store

pre pre-W SIMPLIFY(ps1,rr, inst, ix,n,S,module,mural)
∧post-W SIMPLIFY(ps1,rr, inst, ix,n,ps2,S,module,mural)

post S = replace(ps1,ps2,
↼−
S , ix,n)

∧wflag = true

Checking logical expressions
CHECK checks whether a given PredS ps is provable in the theory module, given all the
description values in the current SEStateOp up to index ix. Of course, this will in general
be undecidable, therefore CHECK will answer either YES, it has found a proof, or NO, it
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has found a proof of ¬ps, or DONTKNOW, it has not found a proof and therefore does not
know whether the expression is provable or not.

CHECK (ps:PredS, ix: Index) r:{YES,NO,DONTKNOW}
ext rd S : SEStateOp

rd module : Theory-ref
wr mural : Store

post (r = YES ⇒ ∃hyp-set ⊆ collect-preds(S, ix) ·
PROVABLE(mk-RuleStmt({},hyp-set,ps),module) = YES)

∧ (r = NO⇒∃hyp-set ⊆ collect-preds(S, ix) ·
PROVABLE(mk-RuleStmt({},hyp-set,¬ps),module) = YES)

Assuming a logical expression
Define the auxiliary function

add-restriction :SEStateOp×PredS→ SEStateOp
add-restriction(S,ps) 4

if last SEQ(S):SE-map
then let new = {n 7→ if n ∈ dom last SEQ(S)

then last SEQ(S)(n)∪{ps}
else {ps}
| n ∈ mentions(ps)} in

front SEQ(S)⊕ last SEQ(S)† new
else front SEQ(S)⊕add-restriction(last SEQ(S),ps)

pre mentions(ps) 6= {}

ASSUME adds a given PredS ps to assume, i.e. assumes that this expression is true.
This is mainly useful for simplifying expressions, in particular conditionals. In many
cases, the user will first want to make a copy of the starting state, and come back to it later
to assume ¬ps in order to cover all cases.

The pre-condition of ASSUME only checks that ps does actually use a variable, since
assuming a ground term would not make much sense.

ASSUME (ps:PredS)
ext wr S : SEStateOp

wr assume : Assump-set
pre mentions(ps) 6= {}
post assume =↼−−−−assume∪{mk-Assump(current-index(

↼−
S ),ps)}

∧S = add-restriction(
↼−
S ,ps)

Believing a logical expression
BELIEVE also assumes that a given logical expression is true. The difference to ASSUME
is that this leads to a proof obligation that should later be discharged — the belief has to
be justified. A Belief thus plays the rôle of a lemma that is used before it is proven. One
special case when this can be particularly useful is in symbolic execution of incomplete
specifications, where one may use a property of some component that cannot be proven
yet because the component itself has not been specified yet.
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Since it does make sense to believe a ground term, a new auxiliary function is needed
to handle this case. If ps is a ground term, then the user has to provide the Name that
ps gets associated with, since one can no longer automatically associate ps with those
n:Name that are mentioned in ps.

add-restriction-g :SEStateOp×PredS×Name→ SEStateOp
add-restriction-g(S,ps,n) 4

if last SEQ(S):SE-map
then let new = {n 7→ if n ∈ dom last SEQ(S)

then last SEQ(S)(n)∪{ps}
else {ps}} in

front SEQ(S)⊕ last SEQ(S)† new
else front SEQ(S)⊕add-restriction-g(last SEQ(S),ps,n)

BELIEVE (ps:PredS,n: [Name])
ext wr S : SEStateOp

wr beliefs : Belief -set
pre mentions(ps) = {}⇒ n 6= nil
post let elem = get-element(

↼−
S ,current-index(

↼−
S )) in

let current =
⋃

n∈dom elem elem(n) in

beliefs =
↼−−−
beliefs∪{mk-Belief (current-index(

↼−
S ),current,ps)}

∧ if mentions(ps) = {}
then S = add-restriction-g(

↼−
S ,ps,n)

else S = add-restriction(
↼−
S ,ps)

Discharging BELIEVEd proof obligations
DISCHARGE discharges a BELIEVEd proof obligation. The pre-condition checks that
there exists a rule or axiom that holds in the theory, and whose statement expresses the
assumption.

DISCHARGE (b:Belief )
ext wr S : SEStateOp

rd module : Theory-ref
wr beliefs : Belief -set
rd mural : Store

pre let hyp-set′ = collect-preds(S,previous(index(b)))∪ current(b) in
∃hyp-set ⊆ hyp-set′ ·

let rs = mk-RuleStmt({},hyp-set,stmt(b)) in
PROVABLE(rs,module)

post beliefs =
↼−−−
beliefs−{b}
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The Theorem Prover’s House

The Theorem Prover’s house1 is on a high headland, above the seagulls’ nests in steep
cliffs above a pebbly seashore. The Theorem Prover wakes soon after the sun has appeared
over the mountains behind the few miles of pasture inland, and sits up in his bed. He stares
out to sea, of which he takes pleasure in observing the variations from one day to the next.
To the north, only fields and mountains touch the coastline. Some distance down the coast
to the south, he can see the little town where he goes, every Thursday, to pick up groceries
and to spend an hour or two with the vet’s wife while the vet is out on his rounds.

He descends from the transparent dome enclosing his bed, to the central space of his
house. He makes a mug of tea in the peripheral alcove he calls his kitchen; thinks about
shaving, but does not because it is not Monday – the vet’s wife, somewhat passé, likes
a three-day stubble – not Monday, he reasons (in his head), because it is Tuesday, as he
determines from the calendar on the wall in his workspace under the bed.

The calendar is functional but unaesthetic, so he touches it, slides his finger down
the resulting menu to the ‘today’s picture’ slot, and stands back to admire the result. It
is Turner’s The Fighting Temeraire. He has been pleased with his subscription to this
service, even if it is a shade pricey; anyway, he has few worries about money. He drags
one corner with his finger, until the picture fills much of the wall; but he takes a cursory
glance at the noticeboard before covering it: one or two new results advertised in the
category theory section, and some ongoing political wranglings in the board of the Royal
Logical Society.

He has had some ideas overnight for the problem, bits of whose proof are still littered
all over the opposite wall; but before pulling it down to his desk, at which he now kneels,
he will see what has arrived to be done today. Once yesterday’s clutter has been moved
to the wall, the desk is relatively tidy. A touch at a clear space pops up his rôle panel,
and he chooses to unfurl the BUSINESS ADMIN cartouche. In it, the informal mailbox
is glowing red: he presses at it and reveals a letter from his agent, who must have been
up early. He listens to the message: would he review a new hyperbook? He drafts a
brief acceptance, signs and despatches it, watching the route indicator show its arrival
at the agent’s wristerminal. The other ADMIN cartouches he ignores: they mostly give
access to tax and VAT stuff, which he is content to leave to his accountant, as he is unable
to comprehend such complexities. (Which was a considerable problem for himself and
many others, when a date-dependent bug appeared in the accountant last April. Since
then, he has changed to a formally-certified accountant; the old one was later convicted
of unverified behaviour, and descheduled).

1See also The Verifier by Mike Shields (Newcastle University).
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Collapsing the Business Admin browser back into its cartouche, he chooses instead the
Theorem Proving rôle. The summary of the Incoming Jobs Channel shows the originators,
subject matter and fees of a couple of small jobs and one big one: “STL, Group Theory,
4000kW; Jones, prog transformation, 3500kW; Praxis, spec lang consistency, 32000kW”.
He fingers the last, getting the details showing deadline, originator’s informal description,
originator id and reference, agent’s id and reference, expenses incurred (initialized to 0),
sundry other administrative and commercial details, and of course the formal description
of the problem itself. This he expands to a long scroll over the desk, then splits off some
interesting bits into separate windows. He spends an hour or so just reading it, crawling
over it on his hands and knees, often juxtaposing various parts, or revealing elided detail
(and sometimes getting irritated when a window gets ‘stuck’ to his knee as he moves
around).

Going back to the Theorem Proving Rôle, he opens the Resources cartouche, and
within that the NCC Theorem Proving Library access, which first reveals a welcoming
green and yellow logo and a money socket (female), which is flashing because it isn’t
connected to anything. He prods at the Praxis job’s expenses cartouche, revealing the
empty ‘outputs’ list and a picture of a stack of money plugs (male). He drags one over
towards the Library’s socket and as soon as they are brought together, they recognize
their type-compatibility and the connection is made with a flash and a beep: the Library’s
socket shows the Praxis job’s logo and name, and the job’s expense supplies list shows the
NCC library logo, together with the charges as they clock up. The NCC Library has now
interrogated the TP’s personal environment to find out where he likes to start navigating
from, and the Library window shows this position. He navigates through, spawning off a
few useful theorems and tactics in their own windows and comparing them with parts of
the job’s formal statement. The expenses clock up as he goes.

Finally, he sets up some short propositions to do some preliminary checks. These are
very boring: he decides to set an automatic theorem prover at them while he has some tea.
The Theorem Proving Library contains an Automatic TP section, to which he navigates;
a number of whimsically-named ATPs are offered by various commercial concerns. They
have various strengths and weaknesses, some listed in the blurb attached to each, and
some which he knows from experience or reputation. He selects a couple which advertize
‘no fee without termination’ and applies them to his propositions, setting an audio alarm
triggered by termination before making his tea and going to sit on his bed to watch the
seagulls.

Variations Various reviewers have suggested alternatives to this basic scenario. Mark
van Harmelen suggests a cordless keyboard is an essential accessory, hanging from a
long shoulder-strap like those used by rock musicians; objects displayed on the floor are
pointed to with the toes. Rather than crawling all over the theorems, Peter Lindsay would
use a remote control for armchair theorem-proving, using a light-gun to zap propositions
from a distance. Ursula Martin envisages the even more remote cellphone model, in which
the TP works whilst jogging along the clifftops.
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