17,463 research outputs found

    Higgs self coupling measurement in e+e- collisions at center-of-mass energy of 500 GeV

    Get PDF
    Feasibility of the measurement of the trilinear self-couplings of the Higgs boson is studied. Such a measurement would experimentally determine the structure of the Higgs potential. Full hadronic and semi-leptonic final states of the double-Higgs strahlung have been investigated.Comment: 10 pages, 5 tables, 8 figure

    Stochastic pump of interacting particles

    Full text link
    We consider the overdamped motion of Brownian particles, interacting via particle exclusion, in an external potential that varies with time and space. We show that periodic potentials that maintain specific position-dependent phase relations generate time-averaged directed current of particles. We obtain analytic results for a lattice version of the model using a recently developed perturbative approach. Many interesting features like particle-hole symmetry, current reversal with changing density, and system-size dependence of current are obtained. We propose possible experiments to test our predictions.Comment: 4 pages, 2 figure

    Deuterium on Venus: Observations from Earth

    Get PDF
    In view of the importance of the deuterium-to-hydrogen ratio in understanding the evolutionary scenario of planetary atmospheres and its relationship to understanding the evolution of our own Earth, we undertook a series of observations designed to resolve previous observational conflicts. We observed the dark side of Venus in the 2.3 micron spectral region in search of both H2O and HDO, which would provide us with the D/H ratio in Venus' atmosphere. We identified a large number of molecular lines in the region, belonging to both molecules, and, using synthetic spectral techniques, obtained mixing ratios of 34 plus or minus 10 ppm and 1.3 plus or minus 0.2 ppm for H2O and HDO, respectively. These mixing ratios yield a D/H ratio for Venus of D/H equals 1.9 plus or minus 0.6 times 10 (exp 12) and 120 plus or minus 40 times the telluric ratio. Although the detailed interpretation is difficult, our observations confirm that the Pioneer Venus Orbiter results and establish that indeed Venus had a period in its early history in which it was very wet, perhaps not unlike the early wet period that seems to have been present on Mars, and that, in contrast to Earth, lost much of its water over geologic time

    Anomalous spatial diffusion and multifractality in optical lattices

    Get PDF
    Transport of cold atoms in shallow optical lattices is characterized by slow, nonstationary momentum relaxation. We here develop a projector operator method able to derive in this case a generalized Smoluchowski equation for the position variable. We show that this explicitly non-Markovian equation can be written as a systematic expansion involving higher-order derivatives. We use the latter to compute arbitrary moments of the spatial distribution and analyze their multifractal properties.Comment: 5 pages, 3 figure

    First order-rewritability and containment of conjunctive queries in horn description logics

    Get PDF
    International audienceWe study FO-rewritability of conjunctive queries in the presence of ontologies formulated in a description logic between EL and Horn-SHIF, along with related query containment problems. Apart from providing characterizations, we establish complexity results ranging from EXPTIME via NEXPTIME to 2EXPTIME, pointing out several interesting effects. In particular, FO-rewriting is more complex for conjunctive queries than for atomic queries when inverse roles are present, but not otherwise

    Intensified production of zeolite A: Life cycle assessment of a continuous flow pilot plant and comparison with a conventional batch plant

    Get PDF
    This study investigates on the environmental impact of an intensified technology for the manufacturing of Zeolite A, one of the largest zeolites employed worldwide by volume and value. The technology under consideration is an oscillatory continuous-flow synthesis, developed industrially by Arkema, and currently at pilot-scale. Life cycle assessment (LCA) is used in this work to measure the sustainability of this emerging technology in an anticipatory fashion, before its full deployment, with the aim of driving the process development toward the minimization of the environmental footprint. The assessment explores the full life-cycle of the production system and comprises comparative analysis, scenario analysis, and a hotspot analysis. Finally, the continuous-flow technology is benchmarked against the environmental impact of a conventional batch production of zeolite A, based on a full-scale commercial plant. The results evidence that significant benefits would stem from shifting from batch to continuous-flow production. The comparative analysis reveals that the extent of the latter advantages depends on the impact category under consideration and directs the next steps of CF system's process development toward pivotal aspects such as the recirculation system to further reduce the system's environmental impacts. Regardless of the chosen production technology, a large share of the total environmental impact hinges on the production of NaOH, a building block of the synthesis, and hence is hardly mitigatable. On the whole, the findings of this work emphasize the need of prioritizing LCA during the development phase of emerging technologies and underline its efficacy to prevent waste of resources and capitals

    First principles study of local electronic and magnetic properties in pure and electron-doped Nd2_2CuO4_4

    Full text link
    The local electronic structure of Nd2CuO4 is determined from ab-initio cluster calculations in the framework of density functional theory. Spin-polarized calculations with different multiplicities enable a detailed study of the charge and spin density distributions, using clusters that comprise up to 13 copper atoms in the CuO2plane. Electron doping is simulated by two different approaches and the resulting changes in the local charge distribution are studied in detail and compared to the corresponding changes in hole doped La2CuO4. The electric field gradient (EFG) at the copper nucleus is investigated in detail and good agreement is found with experimental values. In particular the drastic reduction of the main component of the EFG in the electron-doped material with respect to LaCuO4 is explained by a reduction of the occupancy of the 3d3z^2-r^2 atomic orbital. Furthermore, the chemical shieldings at the copper nucleus are determined and are compared to results obtained from NMR measurements. The magnetic hyperfine coupling constants are determined from the spin density distribution

    High-ionization mid-infrared lines as black hole mass and bolometric luminosity indicators in active galactic nuclei

    Get PDF
    We present relations of the black hole mass and the optical luminosity with the velocity dispersion and the luminosity of the [Ne V] and the [O IV] high-ionization lines in the mid-infrared (MIR) for 28 reverberation-mapped active galactic nuclei. We used high-resolution Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer data to fit the profiles of these MIR emission lines that originate from the narrow-line region of the nucleus. We find that the lines are often resolved and that the velocity dispersion of [Ne V] and [O IV] follows a relation similar to that between the black hole mass and the bulge stellar velocity dispersion found for local galaxies. The luminosity of the [Ne V] and the [O IV] lines in these sources is correlated with that of the optical 5100A continuum and with the black hole mass. Our results provide a means to derive black hole properties in various types of active galactic nuclei, including highly obscured systems.Comment: accepted for publication in ApJ
    corecore