7,304 research outputs found
Experimental studies of equilibrium vortex properties in a Bose-condensed gas
We characterize several equilibrium vortex effects in a rotating
Bose-Einstein condensate. Specifically we attempt precision measurements of
vortex lattice spacing and the vortex core size over a range of condensate
densities and rotation rates. These measurements are supplemented by numerical
simulations, and both experimental and numerical data are compared to theory
predictions of Sheehy and Radzihovsky [17] (cond-mat/0402637) and Baym and
Pethick [25] (cond-mat/0308325). Finally, we study the effect of the
centrifugal weakening of the trapping spring constants on the critical
temperature for quantum degeneracy and the effects of finite temperature on
vortex contrast.Comment: Fixed minor notational inconsistencies in figures. 12 pages, 8
figure
Nonequilibrium effects of anisotropic compression applied to vortex lattices in Bose-Einstein condensates
We have studied the dynamics of large vortex lattices in a dilute-gas
Bose-Einstein condensate. While undisturbed lattices have a regular hexagonal
structure, large-amplitude quadrupolar shape oscillations of the condensate are
shown to induce a wealth of nonequilibrium lattice dynamics. When exciting an m
= -2 mode, we observe shifting of lattice planes, changes of lattice structure,
and sheet-like structures in which individual vortices appear to have merged.
Excitation of an m = +2 mode dissolves the regular lattice, leading to randomly
arranged but still strictly parallel vortex lines.Comment: 5 pages, 6 figure
Scaling of the CKM Matrix in the 5D MSSM
We discuss a five-dimensional Minimal Supersymmetric Standard Model
compactified on a orbifold, looking at, in particular, the one-loop
evolution equations of the Yukawa couplings for the quark sector and various
flavor observables. Different possibilities for the matter fields are
discussed, that is, where they are in the bulk or localised to the brane. The
two possibilities give rise to quite different behaviours. By studying the
implications of the evolution with the renormalisation group of the Yukawa
couplings and of the flavor observables we find that, for a theory that is
valid up to the unification scale, the case where fields are localised to the
brane, with a large , would be more easily distinguishable from
other scenarios.Comment: 12 pages, 8 figures, Extra comments adde
Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors
We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with ≲ 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of σ_E = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for ∼1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering
Normal-superfluid interaction dynamics in a spinor Bose gas
Coherent behavior of spinor Bose-Einstein condensates is studied in the
presence of a significant uncondensed (normal) component. Normal-superfluid
exchange scattering leads to a near-perfect local alignment between the spin
fields of the two components. Through this spin locking, spin-domain formation
in the condensate is vastly accelerated as the spin populations in the
condensate are entrained by large-amplitude spin waves in the normal component.
We present data evincing the normal-superfluid spin dynamics in this regime of
complicated interdependent behavior.Comment: 5 pages, 4 fig
Stationary wave patterns generated by an impurity moving with supersonic velocity through a Bose-Einstein condensate
Formation of stationary 3D wave patterns generated by a small point-like
impurity moving through a Bose-Einstein condensate with supersonic velocity is
studied. Asymptotic formulae for a stationary far-field density distribution
are obtained. Comparison with three-dimensional numerical simulations
demonstrates that these formulae are accurate enough already at distances from
the obstacle equal to a few wavelengths.Comment: 7 pages, 3 figure
Observation of anomalous spin-state segregation in a trapped ultra-cold vapor
We observe counter-intuitive spin segregation in an inhomogeneous sample of
ultra-cold, non-condensed Rubidium atoms in a magnetic trap. We use spatially
selective microwave spectroscopy to verify a model that accounts for the
differential forces on two internal spin states. In any simple understanding of
the cloud dynamics, the forces are far too small to account for the dramatic
transient spin polarizations observed. The underlying mechanism remains to be
elucidated.Comment: 5 pages, 3 figure
Renormalization Group Study of the A+B->0 Diffusion-Limited Reaction
The diffusion-limited reaction, with equal initial densities
, is studied by means of a field-theoretic renormalization
group formulation of the problem. For dimension an effective theory is
derived, from which the density and correlation functions can be calculated. We
find the density decays in time as a,b \sim C\sqrt{\D}(Dt)^{-d/4} for , with \D = n_0-C^\prime n_0^{d/2} + \dots, where is a universal
constant, and is non-universal. The calculation is extended to the
case of unequal diffusion constants , resulting in a new
amplitude but the same exponent. For a controlled calculation is not
possible, but a heuristic argument is presented that the results above give at
least the leading term in an expansion. Finally, we address
reaction zones formed in the steady-state by opposing currents of and
particles, and derive scaling properties.Comment: 17 pages, REVTeX, 13 compressed figures, included with epsf. Eq.
(6.12) corrected, and a moderate rewriting of the introduction. Accepted for
publication in J. Stat. Phy
Output coupling of a Bose-Einstein condensate formed in a TOP trap
Two distinct mechanisms are investigated for transferring a pure 87Rb
Bose-Einstein condensate in the F = 2, mF = 2 state into a mixture of
condensates in all the mF states within the F = 2 manifold. Some of these
condensates remain trapped whilst others are output coupled in the form of an
elementary pulsed atom laser. Here we present details of the condensate
preparation and results of the two condensate output coupling schemes. The
first scheme is a radio frequency technique which allows controllable transfer
into available mF states, and the second makes use of Majorana spin flips to
equally populate all the manifold sub-states.Comment: 12 Pages, 5 Figures, submitted to J. Phys.
Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo
In the 1990s the rates of increase of greenhouse gas concentrations, most notably of methane, were observed to change, for reasons that have yet to be fully determined. This period included the eruption of Mt. Pinatubo and an El Nino warm event, both of which affect biogeochemical processes, by changes in temperature, precipitation and radiation. We examine the impact of these changes in climate on global isoprene emissions and the effect these climate dependent emissions have on the hydroxy radical, OH, the dominant sink for methane. We model a reduction of isoprene emissions in the early 1990s, with a maximum decrease of 40 Tg(C)/yr in late 1992 and early 1993, a change of 9%. This reduction is caused by the cooler, drier conditions following the eruption of Mt. Pinatubo. Isoprene emissions are reduced both directly, by changes in temperature and a soil moisture dependent suppression factor, and indirectly, through reductions in the total biomass. The reduction in isoprene emissions causes increases of tropospheric OH which lead to an increased sink for methane of up to 5 Tg(CH4)/year, comparable to estimated source changes over the time period studied. There remain many uncertainties in the emission and oxidation of isoprene which may affect the exact size of this effect, but its magnitude is large enough that it should remain important
- …