1,028 research outputs found

    Parasite infections in a social carnivore: Evidence of their fitness consequences and factors modulating infection load

    Get PDF
    There are substantial individual differences in parasite composition and infection load in wildlife populations. Few studies have investigated the factors shaping this heterogeneity in large wild mammals or the impact of parasite infections on Darwinian fitness, particularly in juveniles. A host's parasite composition and infection load can be shaped by factors that determine contact with infective parasite stages and those that determine the host's resistance to infection, such as abiotic and social environmental factors, and age. Host–parasite interactions and synergies between coinfecting parasites may also be important. We test predictions derived from these different processes to investigate factors shaping infection loads (fecal egg/oocyte load) of two energetically costly gastrointestinal parasites: the hookworm Ancylostoma and the intracellular Cystoisospora, in juvenile spotted hyenas (Crocuta crocuta) in the Serengeti National Park, in Tanzania. We also assess whether parasite infections curtail survival to adulthood and longevity. Ancylostoma and Cystoisospora infection loads declined as the number of adult clan members increased, a result consistent with an encounter‐reduction effect whereby adults reduced encounters between juveniles and infective larvae, but were not affected by the number of juveniles in a clan. Infection loads decreased with age, possibly because active immune responses to infection improved with age. Differences in parasite load between clans possibly indicate variation in abiotic environmental factors between clan den sites. The survival of juveniles (<365 days old) to adulthood decreased with Ancylostoma load, increased with age, and was modulated by maternal social status. High‐ranking individuals with low Ancylostoma loads had a higher survivorship during the first 4 years of life than high‐ranking individuals with high Ancylostoma loads. These findings suggest that high infection loads with energetically costly parasites such as hookworms during early life can have negative fitness consequences

    Structures performance, benefit, cost-study

    Get PDF
    New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies

    Bounded Delay and Concurrency for Earliest Query Answering

    Get PDF
    International audienceEarliest query answering is needed for streaming XML processing with optimal memory management. We study the feasibility of earliest query answering for node selection queries. Tractable queries are distinguished by a bounded number of concurrently alive answer candidates at every time point, and a bounded delay for node selection. We show that both properties are decidable in polynomial time for queries defined by deterministic automata for unranked trees. Our results are obtained by reduction to the bounded valuedness problem for recognizable relations between unranked trees

    Magneto-Coulomb Oscillation in Ferromagnetic Single Electron Transistors

    Full text link
    The mechanism of the magneto-Coulomb oscillation in ferromagnetic single electron transistors (SET's) is theoretically considered. Variations in the chemical potentials of the conduction electrons in the ferromagnetic island electrode and the ferromagnetic lead electrodes in magnetic fields cause changes in the free energy of the island electrode of the SET. Experimental results of the magneto-Coulomb oscillation in a Ni/Co/Ni ferromagnetic SET are presented and discussed. Possible applications of this phenomenon are also discussed.Comment: 24 pages Latex, 5 figures in GIF files, style files included. Revised version: some errors are corrected and further discussions are added. To be published in J. Phys. Soc. Jpn. Vol.67 (1998) No.

    Importance of Correlation Effects on Magnetic Anisotropy in Fe and Ni

    Full text link
    We calculate magnetic anisotropy energy of Fe and Ni by taking into account the effects of strong electronic correlations, spin-orbit coupling, and non-collinearity of intra-atomic magnetization. The LDA+U method is used and its equivalence to dynamical mean-field theory in the static limit is emphasized. Both experimental magnitude of MAE and direction of magnetization are predicted correctly near U=4 eV for Ni and U=3.5 eV for Fe. Correlations modify one-electron spectra which are now in better agreement with experiments.Comment: 4 pages, 2 figure

    Non-Markovian quantum trajectories for spectral detection

    Full text link
    We present a formulation of non-Markovian quantum trajectories for open systems from a measurement theory perspective. In our treatment there are three distinct ways in which non-Markovian behavior can arise; a mode dependent coupling between bath (reservoir) and system, a dispersive bath, and by spectral detection of the output into the bath. In the first two cases the non-Markovian behavior is intrinsic to the interaction, in the third case the non-Markovian behavior arises from the method of detection. We focus in detail on the trajectories which simulate real-time spectral detection of the light emitted from a localized system. In this case, the non-Markovian behavior arises from the uncertainty in the time of emission of particles that are later detected. The results of computer simulations of the spectral detection of the spontaneous emission from a strongly driven two-level atom are presented

    Sexual selection in mushroom-forming basidiomycetes

    Get PDF
    We expect that sexual selection may play an important role in the evolution of mushroom-forming basidiomycete fungi. Although these fungi do not have separate sexes, they do play female and male roles: the acceptance and the donation of a nucleus, respectively. The primary mycelium (monokaryon) of basidiomycete fungi, growing from a germinating sexual spore, is hermaphroditic, but it loses female function upon the acceptance of a second nucleus. The resulting dikaryon with two different nuclei in each cell retains a male potential as both nuclei can fertilize receptive mycelia. We tested the occurrence of sexual selection in the model species of mushroom-forming basidiomycetes, Schizophyllum commune, by pairing monokaryons with fully compatible dikaryons. In most pairings, we found a strong bias for one of the two nuclei although both were compatible with the monokaryon when paired alone. This shows that sexual selection can occur in mushroom-forming basidiomycetes. Since the winning nucleus of a dikaryon occasionally varied depending on the receiving monokaryon, we infer that sexual selection can operate through choosiness of the receiving individual (analogous to female choice). However, in other cases the same nucleus won, irrespective of the receiving monokaryon, suggesting that competition between the two nuclei of the donating mycelium (analogous to male–male competition) might also play a role

    Transfer RNA-derived small RNAs in the cancer transcriptome

    Get PDF
    The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing

    Mouse Phenome Database: an integrative database and analysis suite for curated empirical phenotype data from laboratory mice.

    Get PDF
    The Mouse Phenome Database (MPD; https://phenome.jax.org) is a widely used resource that provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD houses individual animal data with detailed, searchable protocols, and makes these data available to other resources via API. MPD provides rigorous curation of experimental data and supporting documentation using relevant ontologies and controlled vocabularies. Most data in MPD are from inbreds and other reproducible strains such that the data are cumulative over time and across laboratories. The resource has been expanded to include the QTL Archive and other primary phenotype data from mapping crosses as well as advanced high-diversity mouse populations including the Collaborative Cross and Diversity Outbred mice. Furthermore, MPD provides a means of assessing replicability and reproducibility across experimental conditions and protocols, benchmarking assays in users\u27 own laboratories, identifying sensitized backgrounds for making new mouse models with genome editing technologies, analyzing trait co-inheritance, finding the common genetic basis for multiple traits and assessing sex differences and sex-by-genotype interactions. Nucleic Acids Res 2018 Jan 4; 46(D1):D843-D850
    corecore