772 research outputs found

    Oxandrolone in trauma patients

    Get PDF
    Study Objective To determine the effect of oxandrolone administration on nutritional and clinical outcomes after multiple trauma. Design Prospective, randomized, double-blind, placebo-controlled study. Setting. Level 1 trauma center in a university teaching hospital. Patients Sixty-two patients requiring enteral nutrition, 60 of whom completed the study. Intervention Patients were randomized to receive either oxandrolone 10 mg or placebo twice/day for a maximum of 28 days. Measurements and Main Results Total urinary nitrogen, prealbumin, nitrogen balance, total body water, and body cell mass were measured on day 1 of enteral nutrition and then at day 7, day 10, and study exit. Patients were assessed daily for metabolic and infectious complications. The two groups were similar for demographics and dosage of enteral nutrition. Measurement of total urinary nitrogen at study entry showed both groups to be highly catabolic (oxandrolone 17.2 ± 4.9, placebo 19.1 ± 10.8 g/day, NS). On days 7 and 10, total urinary nitrogen increased in both groups; however, there was no significant difference between groups. Nitrogen balance was negative throughout the study in each group. Body cell mass decreased slightly in both groups over the study period. Prealbumin serum concentrations increased significantly in both groups at day 10 and study exit compared with study entry. The groups did not differ significantly for length of hospital stay (oxandrolone 30.8 ± 17.9, placebo 27.0 ± 25.7 days), length of intensive care unit stay (oxandrolone 17.1 ± 7.8, placebo 15.5 ± 9.7 days), and frequency of pneumonia or sepsis (oxandrolone 48, placebo 43 episodes). Conclusion Oxandrolone 20 mg/day does not have obvious benefit in nutritional and clinical outcomes during the first month after multiple trauma

    Large Binocular Telescope and Sptizer Spectroscopy of Star-forming Galaxies at 1 < z < 3: Extinction and Star Formation Rate Indicators

    Get PDF
    We present spectroscopic observations in the rest-frame optical and near- to mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous star-forming galaxies at redshift 1 < z < 3 from the LUCIFER instrument on the Large Binocular Telescope and the Infrared Spectrograph on Spitzer. The sample was selected to represent pure, actively star-forming systems, absent of active galactic nuclei. The large lensing magnifications result in high signal-to-noise spectra that can probe faint IR recombination lines, including Pa and Br at high redshifts. The sample was augmented by three lensed galaxies with similar suites of unpublished data and observations from the literature, resulting in the final sample of seven galaxies. We use the IR recombination lines in conjunction with H observations to probe the extinction, Av, of these systems, as well as testing star formation rate (SFR) indicators against the SFR measured by fitting spectral energy distributions to far-IR photometry. Our galaxies occupy a range of Av from 0 to 5.9 mag, larger than previously known for a similar range of IR luminosities at these redshifts. Thus, estimates of SFR even at z 2 must take careful count of extinction in the most IR luminous galaxies.We also measure extinction by comparing SFR estimates from optical emission lines with those from far- IR measurements. The comparison of results from these two independent methods indicates a large variety of dust distribution scenarios at 1 < z < 3. Without correcting for dust extinction, the H SFR indicator underestimates the SFR; the size of the necessary correction depends on the IR luminosity and dust distribution scenario. Individual SFR estimates based on the 6.2m polycyclic aromatic hydrocarbon emission line luminosity do not show a systematic discrepancy with extinction, although a considerable, 0.2 dex, scatter is observed

    SANEPIC: A Map-Making Method for Timestream Data From Large Arrays

    Get PDF
    We describe a map-making method which we have developed for the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) experiment, but which should have general application to data from other submillimeter arrays. Our method uses a Maximum Likelihood based approach, with several approximations, which allows images to be constructed using large amounts of data with fairly modest computer memory and processing requirements. This new approach, Signal And Noise Estimation Procedure Including Correlations (SANEPIC), builds upon several previous methods, but focuses specifically on the regime where there is a large number of detectors sampling the same map of the sky, and explicitly allowing for the the possibility of strong correlations between the detector timestreams. We provide real and simulated examples of how well this method performs compared with more simplistic map-makers based on filtering. We discuss two separate implementations of SANEPIC: a brute-force approach, in which the inverse pixel-pixel covariance matrix is computed; and an iterative approach, which is much more efficient for large maps. SANEPIC has been successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related results available at http://blastexperiment.info/ [the BLAST Webpage

    Submillimeter galaxies behind the Bullet Cluster (1E 0657-56)

    Full text link
    Clusters of galaxies are effective gravitational lenses able to magnify background galaxies and making it possible to probe the fainter part of the galaxy population. Submillimeter galaxies, which are believed to be star-forming galaxies at typical redshifts of 2 to 3, are a major contaminant to the extended Sunyaev-Zeldovich (SZ) signal of galaxy clusters. For a proper quantification of the SZ signal the contribution of submillimeter galaxies needs to be quantified. The aims of this study are to identify submillimeter sources in the field of the Bullet Cluster (1E 0657-56), a massive cluster of galaxies at z~0.3, measure their flux densities at 870 micron, and search for counterparts at other wavelengths to constrain their properties. We carried out deep observations of the submillimeter continuum emission at 870 micron using the Large APEX BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope. Several numerical techniques were used to quantify the noise properties of the data and extract sources. In total, seventeen sources were found. Thirteen of them lie in the central 10 arcminutes of the map, which has a pixel sensitivity of 1.2 mJy per 22 arcsec beam. After correction for flux boosting and gravitational lensing, the number counts are consistent with published submm measurements. Nine of the sources have infrared counterparts in Spitzer maps. The strongest submm detection coincides with a source previously reported at other wavelengths, at an estimated redshift z~2.7. If the submm flux arises from two images of a galaxy magnified by a total factor of 75, as models have suggested, its intrinsic flux would be around 0.6 mJy, consistent with an intrinsic luminosity below 10^12 L_sun.Comment: Accepted by A&A, 15 pages, 11 figure

    LBT and Spitzer Spectroscopy of Star-Forming Galaxies at 1 < z < 3: Extinction and Star Formation Rate Indicators

    Get PDF
    We present spectroscopic observations in the rest-frame optical and near- to mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous star-forming galaxies at redshift 1 < z < 3 from the LUCIFER instrument on the Large Binocular Telescope and the Infrared Spectrograph on Spitzer. The sample was selected to represent pure, actively star-forming systems, absent of active galactic nuclei. The large lensing magnifications result in high signal-to-noise spectra that can probe faint IR recombination lines, including Pa-alpha and Br-alpha at high redshifts. The sample was augmented by three lensed galaxies with similar suites of unpublished data and observations from the literature, resulting in the final sample of seven galaxies. We use the IR recombination lines in conjunction with H-alpha observations to probe the extinction, Av, of these systems, as well as testing star formation rate (SFR) indicators against the SFR measured by fitting spectral energy distributions to far-IR photometry. Our galaxies occupy a range of Av from ~0 to 5.9 mag, larger than previously known for a similar range of IR luminosities at these redshifts. Thus, estimates of SFR even at z ~ 2 must take careful count of extinction in the most IR luminous galaxies. We also measure extinction by comparing SFR estimates from optical emission lines with those from far-IR measurements. The comparison of results from these two independent methods indicates a large variety of dust distribution scenarios at 1 < z < 3. Without correcting for dust extinction, the H-alpha SFR indicator underestimates the SFR; the size of the necessary correction depends on the IR luminosity and dust distribution scenario. Individual SFR estimates based on the 6.2 micron PAH emission line luminosity do not show a systematic discrepancy with extinction, although a considerable, ~0.2 dex scatter is observed.Comment: Accepted for publication in The Astrophysical Journal; 14 pages, 8 figure

    Regular Spectra and Universal Directionality of Emitted Radiation from a Quadrupolar Deformed Microcavity

    Full text link
    We have investigated quasi-eigenmodes of a quadrupolar deformed microcavity by extensive numerical calculations. The spectral structure is found to be quite regular, which can be explained on the basis of the fact that the microcavity is an open system. The far-field emission directions of the modes show unexpected similarity irrespective of their distinct shapes in phase space. This universal directionality is ascribed to the influence from the geometry of the unstable manifolds in the corresponding ray dynamics.Comment: 10 pages 11 figure

    A Bright Submillimeter Source in the Bullet Cluster (1E0657--56) Field Detected with BLAST

    Get PDF
    We present the 250, 350, and 500 micron detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The 500 micron centroid is coincident with an AzTEC 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 micron and 350 micron centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with the Bullet Cluster. The submillimeter redshift estimate based on 250-1100 micron photometry at the position of the AzTEC source is z_phot = 2.9 (+0.6 -0.3), consistent with the infrared color redshift estimation of the most likely IRAC counterpart. These flux densities indicate an apparent far-infrared luminosity of L_FIR = 2E13 Lsun. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic far-infrared luminosity of the source is found to be L_FIR <= 10^12 Lsun, consistent with typical luminous infrared galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps are available at http://blastexperiment.info

    Over half of the far-infrared background light comes from galaxies at z >= 1.2

    Full text link
    Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 <= z <= 4, these massive submillimetre galaxies go through a phase characterized by optically obscured star formation at rates several hundred times that in the local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 microns in the rest frame. At 1 <= z <= 4, the peak is redshifted to wavelengths between 200 and 500 microns. The cumulative effect of these galaxies is to yield extragalactic optical and far-infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 microns. Combining our results at 500 microns with those at 24 microns, we determine that all of the FIRB comes from individual galaxies, with galaxies at z >= 1.2 accounting for 70 per cent of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.Comment: Accepted to Nature. Maps available at http://blastexperiment.info

    AKARI and BLAST Observations of the Cassiopeia A Supernova Remnant and Surrounding Interstellar Medium

    Full text link
    We use new large area far infrared maps ranging from 65 - 500 microns obtained with the AKARI and the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) missions to characterize the dust emission toward the Cassiopeia A supernova remnant (SNR). Using the AKARI high resolution data we find a new "tepid" dust grain population at a temperature of ~35K and with an estimated mass of 0.06 solar masses. This component is confined to the central area of the SNR and may represent newly-formed dust in the unshocked supernova ejecta. While the mass of tepid dust that we measure is insufficient by itself to account for the dust observed at high redshift, it does constitute an additional dust population to contribute to those previously reported. We fit our maps at 65, 90, 140, 250, 350, and 500 microns to obtain maps of the column density and temperature of "cold" dust (near 16 K) distributed throughout the region. The large column density of cold dust associated with clouds seen in molecular emission extends continuously from the surrounding interstellar medium to project on the SNR, where the foreground component of the clouds is also detectable through optical, X-ray, and molecular extinction. At the resolution available here, there is no morphological signature to isolate any cold dust associated only with the SNR from this confusing interstellar emission. Our fit also recovers the previously detected "hot" dust in the remnant, with characteristic temperature 100 K.Comment: Accepted for publication in the Astrophysical Journal. Maps and related data are available at http://blastexperiment.info
    corecore