1,231 research outputs found

    Applications of high pressure differential scanning calorimetry to aviation fuel thermal stability research

    Get PDF
    High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels

    Les fonds et collections de la bibliothĂšque municipale de Rouen

    Get PDF
    Neveu ValĂ©rie, Quillet Christelle. Les fonds et collections de la bibliothĂšque municipale de Rouen. In: Études Normandes, 58e annĂ©e, n°4, 2009. Lire en Normandie. pp. 19-30

    Introduction: dance in Africa and beyond: creativity and identity in a globalized world

    Get PDF
    In this introduction to the special issue on dance in Africa and beyond, we review the anthropological study of dance in Africa since the 1920s and introduce the seven contributions, organized around the key themes of transformed identities (both contemporary and historical), decoloniality, new media, morality, and the problematic representations of African diasporic identities in contemporary Europe. With this special issue, we argue that the study of dance and music provides an important window into the myriad creative ways in which people in Africa and in the African diaspora deal with problematic situations, generate new artistic forms, engage with questions of ethics, and carve out spaces in which they experiment with novelty and reinvigorate their lives

    A Parallel General Purpose Multi-Objective Optimization Framework, with Application to Beam Dynamics

    Full text link
    Particle accelerators are invaluable tools for research in the basic and applied sciences, in fields such as materials science, chemistry, the biosciences, particle physics, nuclear physics and medicine. The design, commissioning, and operation of accelerator facilities is a non-trivial task, due to the large number of control parameters and the complex interplay of several conflicting design goals. We propose to tackle this problem by means of multi-objective optimization algorithms which also facilitate a parallel deployment. In order to compute solutions in a meaningful time frame a fast and scalable software framework is required. In this paper, we present the implementation of such a general-purpose framework for simulation-based multi-objective optimization methods that allows the automatic investigation of optimal sets of machine parameters. The implementation is based on a master/slave paradigm, employing several masters that govern a set of slaves executing simulations and performing optimization tasks. Using evolutionary algorithms as the optimizer and OPAL as the forward solver, validation experiments and results of multi-objective optimization problems in the domain of beam dynamics are presented. The high charge beam line at the Argonne Wakefield Accelerator Facility was used as the beam dynamics model. The 3D beam size, transverse momentum, and energy spread were optimized

    Weeklong improved colour contrasts sensitivity after single 670 nm exposures associated with enhanced mitochondrial function

    Get PDF
    Mitochondrial decline in ageing robs cells of ATP. However, animal studies show that long wavelength exposure (650-900 nm) over weeks partially restores ATP and improves function. The likely mechanism is via long wavelengths reducing nanoscopic interfacial water viscosity around ATP rota pumps, improving their efficiency. Recently, repeated 670 nm exposures have been used on the aged human retina, which has high-energy demands and significant mitochondrial and functional decline, to improve vision. We show here that single 3 min 670 nm exposures, at much lower energies than previously used, are sufficient to significantly improve for 1 week cone mediated colour contrast thresholds (detection) in ageing populations (37-70 years) to levels associated with younger subjects. But light needs to be delivered at specific times. In environments with artificial lighting humans are rarely dark-adapted, hence cone function becomes critical. This intervention, demonstrated to improve aged mitochondrial function can be applied to enhance colour vision in old age

    A limit result for a system of particles in random environment

    Full text link
    We consider an infinite system of particles in one dimension, each particle performs independant Sinai's random walk in random environment. Considering an instant tt, large enough, we prove a result in probability showing that the particles are trapped in the neighborhood of well defined points of the lattice depending on the random environment the time tt and the starting point of the particles.Comment: 11 page

    Core cracking and hydrothermal circulation can profoundly affect Ceres' geophysical evolution

    Get PDF
    Observations and models of Ceres suggest that its evolution was shaped by interactions between liquid water and silicate rock. Hydrothermal processes in a heated core require both fractured rock and liquid. Using a new core cracking model coupled to a thermal evolution code, we find volumes of fractured rock always large enough for significant interaction to occur. Therefore, liquid persistence is key. It is favored by antifreezes such as ammonia, by silicate dehydration which releases liquid, and by hydrothermal circulation itself, which enhances heat transport into the hydrosphere. The effect of heating from silicate hydration seems minor. Hydrothermal circulation can profoundly affect Ceres' evolution: it prevents core dehydration via “temperature resets,” core cooling events lasting ∌50 Myr during which Ceres' interior temperature profile becomes very shallow and its hydrosphere is largely liquid. Whether Ceres has experienced such extensive hydrothermalism may be determined through examination of its present-day structure. A large, fully hydrated core (radius 420 km) would suggest that extensive hydrothermal circulation prevented core dehydration. A small, dry core (radius 350 km) suggests early dehydration from short-lived radionuclides, with shallow hydrothermalism at best. Intermediate structures with a partially dehydrated core seem ambiguous, compatible both with late partial dehydration without hydrothermal circulation, and with early dehydration with extensive hydrothermal circulation. Thus, gravity measurements by the Dawn orbiter, whose arrival at Ceres is imminent, could help discriminate between scenarios for Ceres' evolution

    Variational solution of the Gross-Neveu model; 2, finite-N and renormalization

    Get PDF
    We show how to perform systematically improvable variational calculations in the O(2N) Gross-Neveu model for generic N, in such a way that all infinities usually plaguing such calculations are accounted for in a way compatible with the renormalization group. The final point is a general framework for the calculation of non-perturbative quantities like condensates, masses, etc..., in an asymptotically free field theory. For the Gross-Neveu model, the numerical results obtained from a "two-loop" variational calculation are in very good agreement with exact quantities down to low values of N

    Enhanced growth rates of the Mediterranean mussel in a coastal lagoon driven by groundwater inflow

    Get PDF
    Groundwater discharge is today recognized as an important pathway for freshwater, nutrients and other dissolved chemical substances to coastal systems. While its effect on supporting primary production in coastal ecosystems is increasingly recognized, its impact on growth of animals at higher trophic level (primary and secondary consumers) is less well documented. Here, we investigate the impact of groundwater discharge on the growth of the Mediterranean mussel (Mytilus galloprovincialis) in a coastal lagoon. Growth rates and condition index (tissue weight/shell weight) of mussels growing at groundwater-exposed sites and at a control site in Salses-Leucate lagoon (France) were measured. The mussels in this lagoon produce circadian (daily rhythm) growth increments in their shell, as opposed to semi-diurnal increments in tidally influenced systems. Mussels from groundwater-influenced sites have higher growth rate and condition index compared to those from a control site. Importantly, growth rates from groundwater-influenced sites are amongst the highest rates reported for the Mediterranean region (41 ± 9 ÎŒm d⁻Âč). The higher growth rates at groundwater-influenced sites are likely a consequence of both the higher winter temperatures of lagoon water as a result of groundwater discharging with relatively constant temperatures, and the groundwater-driven nutrient supply that increase the food availability to support mussel growth. Overall, this study demonstrates that groundwater discharge to Mediterranean lagoons provides favorable environmental conditions for fast growth of mussels of high commercial-quality
    • 

    corecore