Particle accelerators are invaluable tools for research in the basic and
applied sciences, in fields such as materials science, chemistry, the
biosciences, particle physics, nuclear physics and medicine. The design,
commissioning, and operation of accelerator facilities is a non-trivial task,
due to the large number of control parameters and the complex interplay of
several conflicting design goals. We propose to tackle this problem by means of
multi-objective optimization algorithms which also facilitate a parallel
deployment. In order to compute solutions in a meaningful time frame a fast and
scalable software framework is required. In this paper, we present the
implementation of such a general-purpose framework for simulation-based
multi-objective optimization methods that allows the automatic investigation of
optimal sets of machine parameters. The implementation is based on a
master/slave paradigm, employing several masters that govern a set of slaves
executing simulations and performing optimization tasks. Using evolutionary
algorithms as the optimizer and OPAL as the forward solver, validation
experiments and results of multi-objective optimization problems in the domain
of beam dynamics are presented. The high charge beam line at the Argonne
Wakefield Accelerator Facility was used as the beam dynamics model. The 3D beam
size, transverse momentum, and energy spread were optimized