90 research outputs found

    The placebo and nocebo effects on peak minute power during incremental arm crank ergometry

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in European Journal of Sport Science on 19 May 2014, available online: http://www.tandfonline.com/doi/abs/10.1080/17461391.2013.822564.This investigation aimed to explore the effects of inert sugar-free drinks described as either 'performance enhancing' (placebo) or 'fatigue inducing' (nocebo) on peak minute power (PMP;W) during incremental arm crank ergometry (ACE). Twelve healthy, non-specifically trained individuals volunteered to take part. A single-blind randomised controlled trial with repeated measures was used to assess for differences in PMP;W, oxygen uptake, heart rate (HR), minute ventilation, respiratory exchange ratio (RER) and subjective reports of local ratings of perceived exertion (LRPE) and central ratings of perceived exertion (CRPE), between three separate, but identical ACE tests. Participants were required to drink either 500 ml of a 'sports performance' drink (placebo), a 'fatigue-inducing' drink (nocebo) or water prior to exercise. The placebo caused a significant increase in PMP;W, and a significant decrease in LRPE compared to the nocebo (p=0.01; p=0.001) and water trials (p=0.01). No significant differences in PMP;W between the nocebo and water were found. However, the nocebo drink did cause a significant increase in LRPE (p=0.01). These results suggest that the time has come to broaden our understanding of the placebo and nocebo effects and their potential to impact sports performance.Peer reviewe

    Automated Method for Tracking Human Muscle Architecture on Ultrasound Scans during Dynamic Tasks

    Get PDF
    Existing approaches for automated tracking of fascicle length (FL) and pennation angle (PA) rely on the presence of a single, user-defined fascicle (feature tracking) or on the presence of a specific intensity pattern (feature detection) across all the recorded ultrasound images. These prerequisites are seldom met during large dynamic muscle movements or for deeper muscles that are difficult to image. Deep-learning approaches are not affected by these issues, but their applicability is restricted by their need for large, manually analyzed training data sets. To address these limitations, the present study proposes a novel approach that tracks changes in FL and PA based on the distortion pattern within the fascicle band. The results indicated a satisfactory level of agreement between manual and automated measurements made with the proposed method. When compared against feature tracking and feature detection methods, the proposed method achieved the lowest average root mean squared error for FL and the second lowest for PA. The strength of the proposed approach is that the quantification process does not require a training data set and it can take place even when it is not possible to track a single fascicle or observe a specific intensity pattern on the ultrasound recording

    Supersonic shear wave elastography of human tendons is associated with in vivo tendon stiffness over small strains

    Get PDF
    Supersonic shear wave (SW) elastography has emerged as a useful imaging modality offering researchers and clinicians a fast, non-invasive, quantitative assessment of tendon biomechanics. However, the exact relationship between SW speed and in vivo tendon stiffness is not intuitively obvious and needs to be verified. This study aimed to explore the validity of supersonic SW elastography against a gold standard method to measure the Achilles tendon's in vivo tensile stiffness by combining conventional ultrasound imaging with dynamometry. Twelve healthy participants performed maximal voluntary isometric plantarflexion contractions (MVC) on a dynamometer with simultaneous ultrasonographic recording of the medial gastrocnemius musculotendinous junction for dynamometry-based measurement of stiffness. The tendon's force–elongation relationship and stress–strain behaviour were assessed. Tendon stiffness at different levels of tension was calculated as the slope of the stress–strain graph. SW speed was measured at the midportion of the free tendon and tendon Young's modulus was estimated. A correlation analysis between the two techniques revealed a statistically significant correlation for small strains (r(10) = 0.604, p =.038). SW-based assessments of in vivo tendon stiffness were not correlated to the gold standard method for strains in the tendon>10 % of the maximum strain during MVC. The absolute values of SW-based Young's modulus estimations were approximately-three orders of magnitude lower than dynamometry-based measurements. Supersonic SW elastography should be only used to assess SW speed for the detection and study of differences between tissue regions, differences between people or groups of people or changes over time in tendon initial stiffness (i.e., stiffness for small strains)

    Altered Achilles tendon function during walking in people with diabetic neuropathy: implications for metabolic energy saving.

    Get PDF
    The Achilles tendon (AT) has the capacity to store and release elastic energy during walking, contributing to metabolic energy savings. In diabetes patients, it is hypothesised that a stiffer Achilles tendon may reduce the capacity for energy saving through this mechanism, thereby contributing to an increased metabolic cost of walking (CoW). The aim of this study was to investigate the effects of diabetes and diabetic peripheral neuropathy (DPN) on the Achilles tendon and plantarflexor muscle-tendon unit behaviour during walking. Twenty three non-diabetic controls (Ctrl); 20 diabetic patients without peripheral neuropathy (DM) and 13 patients with moderate/severe DPN, underwent gait analysis using a motion analysis system, force plates and ultrasound measurements of the gastrocnemius muscle, using a muscle model to determine Achilles tendon and muscle-tendon length changes. During walking, the DM and particularly the DPN group displayed significantly less Achilles tendon elongation (Ctrl: 1.81; DM 1.66; DPN: 1.54 cm), higher tendon stiffness (Ctrl: 210; DM: 231; DPN: 240 N/mm) and higher tendon hysteresis (Ctrl: 18; DM: 21; DPN: 24 %) compared to controls. The muscle fascicles of the gastrocnemius underwent very small length changes in all groups during walking (~0.43cm), with the smallest length changes in the DPN group. Achilles tendon forces were significantly lower in the diabetes groups compared to controls (Ctrl: 2666; DM: 2609; DPN: 2150 N). The results strongly point towards the reduced energy saving capacity of the Achilles tendon during walking in diabetes patients as an important factor contributing to the increased metabolic CoW in these patients

    Optimal lighting levels for stair safety: influence of lightbulb type and brightness on confidence, dynamic balance and stepping characteristics

    Get PDF
    Introduction: Poor lighting has been associated with stair falls in young and older adults. However, current guidelines for illuminating stairs seem arbitrary, differ widely between sources, and are often difficult to interpret. Aims: Here we examined the influence of real-world bulb illumination properties on stair descent safety in young and older adults, with a view to generating preliminary evidence for appropriate lightbulb use/stair illumination. Methods: Stair tread illumination (lux) was measured in a standard UK home (2.23 m ceiling) from a low (50 W; 630 lm) and a high (103 W, 1450 lm) power compact fluorescent lamp (CFL) bulb from the time they were turned on until they reached full brightness. This enabled modelling of their illumination characteristics during warm up. Illumination was also measured from a low (40 W, 470 lm) and a high (100 W, 1521 lm) power LED bulb at first turn-on. Computer-controlled custom lighting then replicated these profiles, in addition to a Bright control (350 lx), on an instrumented staircase descended (3 × trials per light condition) by 12 young (25.3 ± 4.4 years; 5 males), 12 higher ability older (HAOA: 69.6 ± 4.7 years; 5 males) and 13 lower ability older (LAOA: 72.4 ± 4.2; 3 males) healthy adults. Older adults were allocated to ability groups based on physiological and cognitive function. Stair specific confidence was assessed prior to the first descent in each new lighting condition, and whole-body 3D kinematics (Vicon) quantified margins of stability and foot clearances with respect to the step edges. Mixed ANOVAs examined these measures for within-subject effects of lighting (×5), between-subject effects of age (×3) and interactions between lighting and age. Results: Use of CFL bulbs led to lower self-reported confidence in older adults (20.37%, p = .01), and increased margins of stability (12.47%, p = .015) and foot clearances with respect to the step edges (10.36%, p = .003). Importantly, using CFL bulbs increased foot clearance variability with respect to the bottom step (32.74%, p = .046), which is where a high proportion of falls occur. Conclusion: Stair tread illumination from CFL bulbs at first turn on leads to less safe stair negotiation. We suggest high powered LED bulbs may offer a safer alternative

    Is the metabolic cost of walking higher in people with diabetes?

    Get PDF
    People with diabetes walk slower and display biomechanical gait alterations compared with controls, but it remains unknown whether the metabolic cost of walking (CoW) is elevated. The aim of this study was to investigate the CoW and the lower limb concentric joint work as a major determinant of the CoW, in patients with diabetes and diabetic peripheral neuropathy (DPN). Thirty-one nondiabetic controls (Ctrl), 22 diabetic patients without peripheral neuropathy (DM), and 14 patients with moderate/severe DPN underwent gait analysis using a motion analysis system and force plates and treadmill walking using a gas analyzer to measure oxygen uptake. The CoW was significantly higher particularly in the DPN group compared with controls and also in the DM group (at selected speeds only) compared with controls, across a range of matched walking speeds. Despite the higher CoW in patients with diabetes, concentric lower limb joint work was significantly lower in DM and DPN groups compared with controls. The higher CoW is likely due to energetic inefficiencies associated with diabetes and DPN reflecting physiological and biomechanical characteristics. The lower concentric joint work in patients with diabetes might be a consequence of kinematic gait alterations and may represent a natural strategy aimed at minimizing the CoW

    Impact of leg lengthening on viscoelastic properties of the deep fascia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the morphological alterations of the deep fascia subjected to leg lengthening have been investigated in cellular and extracellular aspects, the impact of leg lengthening on viscoelastic properties of the deep fascia remains largely unknown. This study aimed to address the changes of viscoelastic properties of the deep fascia during leg lengthening using uniaxial tensile test.</p> <p>Methods</p> <p>Animal model of leg lengthening was established in New Zealand white rabbits. Distraction was initiated at a rate of 1 mm/day and 2 mm/day in two steps, and preceded until increases of 10% and 20% in the initial length of tibia had been achieved. The deep fascia specimens of 30 mm × 10 mm were clamped with the Instron 1122 tensile tester at room temperature with a constant tensile rate of 5 mm/min. After 5 load-download tensile tests had been performed, the specimens were elongated until rupture. The load-displacement curves were automatically generated.</p> <p>Results</p> <p>The normal deep fascia showed typical viscoelastic rule of collagenous tissues. Each experimental group of the deep fascia after leg lengthening kept the properties. The curves of the deep fascia at a rate of 1 mm/day with 20% increase in tibia length were the closest to those of normal deep fascia. The ultimate tension strength and the strain at rupture on average of normal deep fascia were 2.69 N (8.97 mN/mm<sup>2</sup>) and 14.11%, respectively. The increases in ultimate tension strength and strain at rupture of the deep fascia after leg lengthening were statistically significant.</p> <p>Conclusion</p> <p>The deep fascia subjected to leg lengthening exhibits viscoelastic properties as collagenous tissues without lengthening other than increased strain and strength. Notwithstanding different lengthening schemes result in varied viscoelastic properties changes, the most comparable viscoelastic properties to be demonstrated are under the scheme of a distraction rate of 1 mm/day and 20% increase in tibia length.</p

    The effects of a sleeve knee brace during stair negotiation in patients with symptomatic patellofemoral osteoarthritis.

    Get PDF
    The patellofemoral joint is an important source of pain in knee osteoarthritis. Most biomechanical research in knee osteoarthritis has focused on the tibiofemoral joint during level walking. It is unknown what happens during stair negotiation in patients with patellofemoral joint osteoarthritis, a task commonly increasing pain. Conservative therapy for patellofemoral joint osteoarthritis includes the use of a sleeve knee brace. We aimed to examine the effect of a sleeve knee brace on knee biomechanics during stair negotiation in patellofemoral joint osteoarthritis patients. 30 patellofemoral joint osteoarthritis patients (40-70 years) ascended and descended an instrumented staircase with force plates under two conditions - wearing a Lycra flexible knee support (Bioskin Patellar Tracking Q Brace) and no brace (control condition). Knee joint kinematics (VICON) and kinetics were recorded. During stair ascent, at the knee, the brace significantly reduced the maximal flexion angle (2.7 , P = 0.002), maximal adduction angle (2.0 , P = 0.044), total sagittal range of motion (2.0 , P = 0.008), total frontal range of motion (1.7 , P = 0.023) and sagittal peak extension moment (0.05 Nm/kg, P = 0.043) compared to control. During stair descent, at the knee, the brace significantly reduced the maximal flexion angle (1.8 , P = 0.039) and total sagittal range of motion (1.5 , P = 0.045) compared to control. The small changes in knee joint biomechanics during stair negotiation observed in our study need to be investigated further to help explain mechanisms behind the potential benefits of a sleeve knee brace for painful patellofemoral joint osteoarthritis. [Abstract copyright: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Reliability of force per unit cross-sectional area measurements of the first dorsal interosseus muscle

    Get PDF
    Background: Force per unit cross-sectional area (CSA) measurements of the first dorsal interosseus (FDI) muscle have previously been used as a measure of strength, although the reliability of these techniques has not been reported. Purpose: To determine the test-retest reliability of maximum voluntary isometric force (MVIF), CSA and force per unit CSA measurements of the FDI muscle, using a custom-built dynamometer and ultrasonography. Methods: Following approval from the institutions ethical advisory committee, twenty-seven recreationally active participants, thirteen males (age 22 ± 6 years; height 1.80 ± 0.05 m; body mass 77.5 ± 6.7 kg) and fourteen females (age 24 ± 5 years; height 1.65 ± 0.05 m; body mass 65.1 ± 0.1 kg), completed MVIF and CSA measurements on two separate occasions (Trial 1 and Trial 2) under the same conditions, less than 7 days apart. Reliability was determined using ratio systematic bias and limits of agreement (rLoA), intra-class correlation (ICC), coefficient of variation (CV) and paired samples t-tests. Results: MVIF of the FDI muscle was not significantly different between trials (mean ± SD; 31.8 ± 7.6 N vs. 31.6 ± 7.3 N, P=0.63); rLoA between trials were 1.00 x/÷ 1.09, ICC = 0.990 and CV = 3.22%. CSA of the FDI muscle was not significantly different between trials (22.6 ± 6.9 vs. 22.9 ± 6.9 mm2, P=0.31); rLoA between trials were 0.98 x/÷ 1.19, ICC = 0.979 and CV=6.61%. Force per unit CSA was not significantly different between trials (1.49 ± 0.43 vs. 1.46 ± 0.44 N·mm2; P=0.18); rLoA were 1.02 x/÷ 1.17, ICC = 0.985 and CV = 5.76%. Conclusions: The techniques used to determine MVIF and CSA of the FDI muscle were reliable and can be combined to calculate force per unit CSA. This technique can be used to assess both acute and longitudinal changes in muscle function between and within populations

    The role of muscle strength on tendon adaptability in old age.

    Get PDF
    PURPOSE: The purpose of the study was to determine: (1) the relationship between ankle plantarflexor muscle strength and Achilles tendon (AT) biomechanical properties in older female adults, and (2) whether muscle strength asymmetries between the individually dominant and non-dominant legs in the above subject group were accompanied by inter-limb AT size differences. METHODS: The maximal generated AT force, AT stiffness, AT Young's modulus, and AT cross-sectional area (CSA) along its length were determined for both legs in 30 women (65 ± 7 years) using dynamometry, ultrasonography, and magnetic resonance imaging. RESULTS: No between-leg differences in triceps surae muscle strength were identified between dominant (2798 ± 566 N) and non-dominant limb (2667 ± 512 N). The AT CSA increased gradually in the proximo-distal direction, with no differences between the legs. There was a significant correlation (P < 0.05) of maximal AT force with AT stiffness (r = 0.500) and Young's modulus (r = 0.414), but only a tendency with the mean AT CSA. However, region-specific analysis revealed a significant relationship between maximal AT force and the proximal part of the AT, indicating that this region is more likely to display morphological adaptations following an increase in muscle strength in older adults. CONCLUSIONS: These findings demonstrate that maximal force-generation capabilities play a more important role in the variation of AT stiffness and material properties than in tendon CSA, suggesting that exercise-induced increases in muscle strength in older adults may lead to changes in tendon stiffness foremost due to alterations in material rather than in its size
    • …
    corecore