689 research outputs found

    Large eddy simulation of plume dispersion behind an aircraft in the take-off phase

    Get PDF
    The aim of this paper is to provide an investigation, using large eddy simulation, into plume dispersion behind an aircraft in co-flowing take-off conditions. Validation studies of the computational model were presented by Aloysius and Wrobel (Environ Model Softw 24:929–937, 2009) and a study of the flow and dispersion properties of a double-engine aircraft jetwas presented by Aloysius et al. EEC/SEE/2007/001,EUROCONTROLExperimentalCentre, http://www.eurocontrol.int/eec/gallery/content/public/document/eec/report/2007/ 032_ALAQS_comparison_of_CFD_and_Lagrangian_dispersion_methods.pdf), in which only the engine was modelled. In this paper, the complete geometry of a Boeing 737 is modelled and investigated. The currentwork represents a contribution towards a better understanding of the source dynamics behind an airplane jet engine during the take-off and landing phases. The information provided from these simulations will be useful for future improvements of existing dispersion models

    Scalable analysis of movement data for extracting and exploring significant places

    Get PDF
    Place-oriented analysis of movement data, i.e., recorded tracks of moving objects, includes finding places of interest in which certain types of movement events occur repeatedly and investigating the temporal distribution of event occurrences in these places and, possibly, other characteristics of the places and links between them. For this class of problems, we propose a visual analytics procedure consisting of four major steps: 1) event extraction from trajectories; 2) extraction of relevant places based on event clustering; 3) spatiotemporal aggregation of events or trajectories; 4) analysis of the aggregated data. All steps can be fulfilled in a scalable way with respect to the amount of the data under analysis; therefore, the procedure is not limited by the size of the computer's RAM and can be applied to very large data sets. We demonstrate the use of the procedure by example of two real-world problems requiring analysis at different spatial scales

    Interferometric Phase Calibration Sources in the Declination Range 0deg to -30deg

    Full text link
    We present a catalog of 321 compact radio sources in the declination range 0deg > delta > -30deg. The positions of these sources have been measured with a two-dimensional rms accuracy of 35 milliarcseconds using the NRAO Very Large Array. Each source has a peak flux density >50 mJy at 8.4 GHz. We intend for this catalog to be used mainly for selection of phase calibration sources for radio interferometers, although compact radio sources have other scientific uses.Comment: 9 pages. To appear in ApJS. Catalog (Table 3) is abbreviated in printed version. Complete catalog available at ftp://ftp.aoc.nrao.edu/pub/staff/jwrobel/WPW2003_ApJS.tx

    Numerical solution of the two-dimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 Taylor & Francis.This paper presents new formulations of the boundary–domain integral equation (BDIE) and the boundary–domain integro-differential equation (BDIDE) methods for the numerical solution of the two-dimensional Helmholtz equation with variable coefficients. When the material parameters are variable (with constant or variable wave number), a parametrix is adopted to reduce the Helmholtz equation to a BDIE or BDIDE. However, when material parameters are constant (with variable wave number), the standard fundamental solution for the Laplace equation is used in the formulation. The radial integration method is then employed to convert the domain integrals arising in both BDIE and BDIDE methods into equivalent boundary integrals. The resulting formulations lead to pure boundary integral and integro-differential equations with no domain integrals. Numerical examples are presented for several simple problems, for which exact solutions are available, to demonstrate the efficiency of the proposed methods

    Numerical solution of the two-dimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 Taylor & Francis.This paper presents new formulations of the boundary–domain integral equation (BDIE) and the boundary–domain integro-differential equation (BDIDE) methods for the numerical solution of the two-dimensional Helmholtz equation with variable coefficients. When the material parameters are variable (with constant or variable wave number), a parametrix is adopted to reduce the Helmholtz equation to a BDIE or BDIDE. However, when material parameters are constant (with variable wave number), the standard fundamental solution for the Laplace equation is used in the formulation. The radial integration method is then employed to convert the domain integrals arising in both BDIE and BDIDE methods into equivalent boundary integrals. The resulting formulations lead to pure boundary integral and integro-differential equations with no domain integrals. Numerical examples are presented for several simple problems, for which exact solutions are available, to demonstrate the efficiency of the proposed methods

    Enhanced Electron Pairing in a Lattice of Berry Phase Molecules

    Full text link
    We show that electron hopping in a lattice of molecules possessing a Berry phase naturally leads to pairing. Our building block is a simple molecular site model inspired by C60_{60}, but realized in closer similarity with Na3_3. In the resulting model electron hopping must be accompanied by orbital operators, whose function is to switch on and off the Berry phase as the electron number changes. The effective hamiltonians (electron-rotor and electron-pseudospin) obtained in this way are then shown to exhibit a strong pairing phenomenon, by means of 1D linear chain case studies. This emerges naturally from numerical studies of small NN-site rings, as well as from a BCS-like mean-field theory formulation. The pairing may be explained as resulting from the exchange of singlet pairs of orbital excitations, and is intimately connected with the extra degeneracy implied by the Berry phase when the electron number is odd. The relevance of this model to fullerides, to other molecular superconductors, as well as to present and future experiments, is discussed.Comment: 30 pages, RevTe

    Radio Variability in Seyfert Nuclei

    Full text link
    Comparison of 8.4-GHz radio images of a sample of 11 early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in 5 of them over a 7-yr period. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of ~100-pc-scale radio emission is seen. NGC2110 is the only source with significant extended radio structure and strong nuclear variability (>38% nuclear decline over seven years). Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognised in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio-jet emission within the central ~50 pc. If flares in radio light curves correspond to ejection of new relativistic components or emergence of shocks in the underlying flow, we suggest that radio jets may be intrinsically non-relativistic during quiescence, but that Seyferts, as black-hole driven AGN, have the capacity to accelerate relativistic jets during radio flares. Taken together with the increased detection rate of flat spectrum radio nuclei in Seyferts imaged at VLBI resolutions and the detection of variable water megamaser emission, our results support the paradigm of intermittent periods of quiescence and nuclear outburst across the Seyfert population. (Abridged).Comment: Accepted for publication in Astrophysical Journal; 15 pages, 7 figures and 3 table

    P2Y<sub>12</sub>-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction

    Get PDF
    Emergency hematopoiesis is the driving force of the inflammatory response to myocardial infarction (MI). Increased proliferation of hematopoietic stem and progenitor cells (LSK) after MI enhances cell production in the bone marrow (BM) and replenishes leukocyte supply for local cell recruitment to the infarct. Decoding the regulation of the inflammatory cascade after MI may provide new avenues to improve post-MI remodeling. In this study, we describe the influence of adenosine diphosphate (ADP)-dependent P2Y12-mediated signaling on emergency hematopoiesis and cardiac remodeling after MI. Permanent coronary ligation was performed to induce MI in a murine model. BM activation, inflammatory cell composition and cardiac function were assessed using global and platelet-specific gene knockout and pharmacological inhibition models for P2Y12. Complementary in vitro studies allowed for investigation of ADP-dependent effects on LSK cells. We found that ADP acts as a danger signal for the hematopoietic BM and fosters emergency hematopoiesis by promoting Akt phosphorylation and cell cycle progression. We were able to detect P2Y12 in LSK, implicating a direct effect of ADP on LSK via P2Y12 signaling. P2Y12 knockout and P2Y12 inhibitor treatment with prasugrel reduced emergency hematopoiesis and the excessive inflammatory response to MI, translating to lower numbers of downstream progeny and inflammatory cells in the blood and infarct. Ultimately, P2Y12 inhibition preserved cardiac function and reduced chronic adverse cardiac remodeling after MI. P2Y12-dependent signaling is involved in emergency hematopoiesis after MI and fuels post-ischemic inflammation, proposing a novel, non-canonical value for P2Y12 antagonists beyond inhibition of platelet-mediated atherothrombosis

    Computational fluid dynamics modelling of an entire synchronous generator for improved thermal management

    Get PDF
    This study is the first in a series dedicated to investigating the airflow and thermal management of electrical machines. Owing to the temperature dependent resistive losses in the machine's windings, any improvement in cooling provides a direct reduction in losses and an increase in efficiency. This study focuses on the airflow which is intrinsically linked to the thermal behaviour of the machine as well as the windage power consumed to drive the air through the machine. A full computational fluid dynamics (CFD) model has been used to analyse the airflow around all major components of the machine. Results have been experimentally validated and investigated. At synchronous speed the experimentally tested mass flow rate and windage torque were under predicted by 4% and 7%, respectively, by the CFD. A break-down of torque by component shows that the fan consumes approximately 87% of the windage torque

    Nearby quasar remnants and ultra-high energy cosmic rays

    Get PDF
    As recently suggested, nearby quasar remnants are plausible sites of black-hole based compact dynamos that could be capable of accelerating ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate at the nuclei of nearby dead quasars, those in which the putative underlying supermassive black holes are suitably spun-up. Based on galactic optical luminosity, morphological type, and redshift, we have compiled a small sample of nearby objects selected to be highly luminous, bulge-dominated galaxies, likely quasar remnants. The sky coordinates of these galaxies were then correlated with the arrival directions of cosmic rays detected at energies >40> 40 EeV. An apparently significant correlation appears in our data. This correlation appears at closer angular scales than those expected when taking into account the deflection caused by typically assumed IGM or galactic magnetic fields over a charged particle trajectory. Possible scenarios producing this effect are discussed, as is the astrophysics of the quasar remnant candidates. We suggest that quasar remnants be also taken into account in the forthcoming detailed search for correlations using data from the Auger Observatory.Comment: 2 figures, 4 tables, 11 pages. Final version to appear in Physical Review
    corecore