926 research outputs found

    EU public debt management and eurobonds

    Get PDF
    A common Eurobond making each participating issuer liable only for its own share could be agreed upon by the Member States with the lowest credit risk premia: Finland, France and Germany. However, the efficiency gains from this weak form of cooperation in terms of market integration and liquidity would be limited if not offset by the higher costs of an inflexible debt management. To reap the liquidity benefits of a unified market, the Eurobonds should be issued by all euro-area Member States or by an EU Institution. But only a common bond jointly guaranteed by all euro-area Member States could reach the \u201csafehaven\u201d status and the size needed to compete with the US Treasury market. The mutualisation of credit risks faces however strong political opposition, because of fears of relaxed fiscal discipline and inequitable sharing of its benefits and costs. Although solutions to these problems can be found, more evidence is needed on the benefits and costs of a common Eurobond to convince potential issuers. This paper makes a first step in this directio

    Nerve growth factor and bromocriptine: a sequential therapy for human bromocriptine-resistant prolactinomas.

    Get PDF
    Nerve growth factor (NGF) administration to athymic mice with transplanted human bromocriptine-resistant prolactinoma, results in the expression of dopamine D-2 receptors in the tumour and restores sensitivity to subsequent treatment with bromocriptine, which then produces normalisation of plasma prolactin and tumour regression. Sequential administration of NGF and bromocriptine thus may be a promising therapy for patients refractory to bromocriptine

    Redistribution of DAT/α-synuclein complexes visualized by “in situ” proximity ligation assay in transgenic mice modelling early Parkinson’s disease

    Get PDF
    Alpha-synuclein, the major component of Lewy bodies, is thought to play a central role in the onset of synaptic dysfunctions in Parkinson's disease (PD). In particular, α-synuclein may affect dopaminergic neuron function as it interacts with a key protein modulating dopamine (DA) content at the synapse: the DA transporter (DAT). Indeed, recent evidence from our "in vitro" studies showed that α-synuclein aggregation decreases the expression and membrane trafficking of the DAT as the DAT is retained into α-synuclein-immunopositive inclusions. This notwithstanding, "in vivo" studies on PD animal models investigating whether DAT distribution is altered by the pathological overexpression and aggregation of α-synuclein are missing. By using the proximity ligation assay, a technique which allows the "in situ" visualization of protein-protein interactions, we studied the occurrence of alterations in the distribution of DAT/α-synuclein complexes in the SYN120 transgenic mouse model, showing insoluble α-synuclein aggregates into dopaminergic neurons of the nigrostriatal system, reduced striatal DA levels and an altered distribution of synaptic proteins in the striatum. We found that DAT/α-synuclein complexes were markedly redistributed in the striatum and substantia nigra of SYN120 mice. These alterations were accompanied by a significant increase of DAT striatal levels in transgenic animals when compared to wild type littermates. Our data indicate that, in the early pathogenesis of PD, α-synuclein acts as a fine modulator of the dopaminergic synapse by regulating the subcellular distribution of key proteins such as the DAT

    FluoroSpot assay to analyze SARS-CoV-2-specific T cell responses

    Get PDF
    Monitoring antigen-specific T cell frequency and function is essential to assess the host immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we present a FluoroSpot assay for concurrently detecting ex vivo antiviral cytokine production by SARS-CoV-2-specific T cells following peptide stimulation. We then detail intracellular cytokine staining by flow cytometry to further validate the FluoroSpot assay results and define the specific T cell subpopulations. For complete details on the use and execution of this protocol, please refer to Tiezzi et al. (2023).

    Retinoic acid stimulates meningioma cell adhesion to the extracellular matrix and inhibits invasion

    Get PDF
    Meningiomas are tumours derived from the arachnoid and pia mater. During embryogenesis, these membranes develop from the migrating craniofacial neural crest. We have previously demonstrated that meningiomas have characteristic features of embryonic meninges. Craniofacial neural crest derivatives are affected during normal development and migration by retinoic acid. We speculated, therefore, that meningioma cell migration and invasion would be affected in a similar way. In this study we investigated the mechanisms of invasion and migration in meningiomas and the effects of retinoic acid (RA). We found that low doses of RA inhibit in vitro invasion in meningioma cells, without affecting cell proliferation or viability. The matrix metalloproteinases MMP-2 (72 kDa gelatinase) and MMP-9 (92 kDa gelatinase), which play a key role in invasion in other tumours, are not affected by RA. RA inhibits cell migration on collagen I and fibronectin. A possible mechanism for these effects is provided by the fact that RA strongly stimulates adhesion of meningioma cells to extracellular matrix substrates. As in vitro invasion, migration and decreased adhesion to the extracellular matrix correlate with the clinical manifestation of tumour invasion, we conclude that RA induces a non-invasive phenotype in meningioma cells. © 1999 Cancer Research Campaig

    A simplified sars-cov-2 pseudovirus neutralization assay

    Get PDF
    COVID-19 is an ongoing pandemic caused by the highly infectious coronavirus SARS-CoV-2 that is engaging worldwide scientific research to find a timely and effective eradication strategy. Great efforts have been put into anti-COVID-19 vaccine generation in an effort to protect the world population and block SARS-CoV-2 spread. To validate the protective efficacy of the vaccination campaign and effectively control the pandemic, it is necessary to quantify the induction of neutralizing antibodies by vaccination, as they have been established to be a correlate of protection. In this work, a SARS-CoV-2 pseudovirus neutralization assay, based on a replication-incompetent lentivirus expressing an adapted form of CoV-2 S protein and an ACE2/TMPRSS2 stably expressing cell line, has been minimized in terms of protocol steps without loss of accuracy. The goal of the present simplified neutralization system is to improve SARS-CoV-2 vaccination campaign by means of an easy and accessible approach to be performed in any medical laboratory, maintaining the sensitivity and quantitative reliability of classical serum neutralization assays. Further, this assay can be easily adapted to different coronavirus variants by simply modifying the pseudotyping vector

    Integrated dopaminergic neuronal model with reduced intracellular processes and inhibitory autoreceptors

    Get PDF
    Dopamine (DA) is an important neurotransmitter for multiple brain functions, and dysfunctions of the dopaminergic system are implicated in neurological and neuropsychiatric disorders. Although the dopaminergic system has been studied at multiple levels, an integrated and efficient computational model that bridges from molecular to neuronal circuit level is still lacking. In this study, the authors aim to develop a realistic yet efficient computational model of a dopaminergic pre‐synaptic terminal. They first systematically perturb the variables/substrates of an established computational model of DA synthesis, release and uptake, and based on their relative dynamical timescales and steady‐state changes, approximate and reduce the model into two versions: one for simulating hourly timescale, and another for millisecond timescale. They show that the original and reduced models exhibit rather similar steady and perturbed states, whereas the reduced models are more computationally efficient and illuminate the underlying key mechanisms. They then incorporate the reduced fast model into a spiking neuronal model that can realistically simulate the spiking behaviour of dopaminergic neurons. In addition, they successfully include autoreceptor‐mediated inhibitory current explicitly in the neuronal model. This integrated computational model provides the first step toward an efficient computational platform for realistic multiscale simulation of dopaminergic systems in in silico neuropharmacology

    Intratumor Regulatory Noncytotoxic NK Cells in Patients with Hepatocellular Carcinoma

    Get PDF
    Previous studies support the role of natural killer (NK) cells in controlling hepatocellular carcinoma (HCC) progression. However, ambiguity remains about the multiplicity and the role of different NK cell subsets, as a pro-oncogenic function has been suggested. We performed phenotypic and functional characterization of NK cells infiltrating HCC, with the corresponding nontumorous tissue and liver from patients undergoing liver resection for colorectal liver metastasis used as controls. We identified a reduced number of NK cells in tumors with higher frequency of CD56(BRIGHT)CD16(-) NK cells associated with higher expression of NKG2A, NKp44, and NKp30 and downregulation of NKG2D. Liver-resident (CXCR6(+)) NK cells were reduced in the tumors where T-bet(hi)Eomes(lo) expression was predominant. HCCs showed higher expression of CD49a with particular enrichment in CD49a(+)Eomes(+) NK cells, a subset typically represented in the decidua and playing a proangiogenic function. Functional analysis showed reduced TNF-alpha production along with impaired cytotoxic capacity that was inversely related to CXCR6(-), T-bet(hi)Eomes(lo), and CD49a(+)Eomes(+) NK cells. In conclusion, we identified a subset of NK cells infiltrating HCC, including non-liver-resident cells that coexpressed CD49a and Eomes and showed reduced cytotoxic potential. This NK cell subset likely plays a regulatory role in proangiogenic function

    Cloning, expression, and functional analysis of human dopamine D1 receptors

    Full text link
    Aim : To construct an HEK293 cell line stably expressing human dopamine D 1 receptor (D 1 R). Methods : cDNA was amplified by RT-PCR using total RNA from human embryo brain tissue as the template. The PCR products were subcloned into the plasmid pcDNA3 and cloned into the plasmid pcDNA3.1. The cloned D 1 R cDNA was sequenced and stably expressed in HEK293 cells. Expression of D 1 R in HEK293 cells was monitored by the [ 3 H]SCH23390 binding assay. The function of D 1 R was studied by the cAMP accumulation assay, CRE-SEAP reporter gene activity assay, and intracellular calcium assay. Results : An HEK293 cell line stably expressing human D 1 R was obtained. A saturation radioligand binding experiment with [ 3 H]SCH23390 demonstrated that the K d and B max values were 1.5±0.2 nmol/L and 2.94±0.15 nmol/g of protein, respectively. In the [ 3 H]SCH23390 competition assay, D 1 R agonist SKF38393 displaced [ 3 H]SCH23390 with an IC 50 value of 2.0 (1.5–2.8) Μmol/L. SKF38393 increased the intracellular cAMP level and CRE-SEAP activity through D 1 R expressed in HEK293 cells in a concentration-dependent manner with an EC 50 value of 0.25 (0.12–0.53) Μmol/L and 0.39 (0.27–0.57) Μmol/L at 6 h/0.59 (0.22–1.58) Μmol/L at 12 h, respectively. SKF38393 also increased the intracellular calcium level in a concentration-dependent manner with EC 50 value of 27 (8.6–70) nmol/L. Conclusion : An HEK293 cell line stably expressing human D 1 R was obtained successfuly. The study also demonstrated that the CRE-SEAP activity assay could be substituted for the cAMP accumulation assay for measuring increase in cAMP levels. Thus, both intracellular calcium measurements and the CRE-SEAP activity assay are suitable for high-throughput screening in drug research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75187/1/j.1745-7254.2005.00017.x.pd
    • 

    corecore