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Abstract: Dopamine (DA) is an important neurotransmitter for multiple brain functions, and dysfunctions of the
dopaminergic system are implicated in neurological and neuropsychiatric disorders. Although the dopaminergic
system has been studied at multiple levels, an integrated and efficient computational model that bridges from
molecular to neuronal circuit level is still lacking. In this study, the authors aim to develop a realistic yet efficient
computational model of a dopaminergic pre-synaptic terminal. They first systematically perturb the variables/substrates
of an established computational model of DA synthesis, release and uptake, and based on their relative dynamical
timescales and steady-state changes, approximate and reduce the model into two versions: one for simulating hourly
timescale, and another for millisecond timescale. They show that the original and reduced models exhibit rather
similar steady and perturbed states, whereas the reduced models are more computationally efficient and illuminate the
underlying key mechanisms. They then incorporate the reduced fast model into a spiking neuronal model that can
realistically simulate the spiking behaviour of dopaminergic neurons. In addition, they successfully include
autoreceptor-mediated inhibitory current explicitly in the neuronal model. This integrated computational model
provides the first step toward an efficient computational platform for realistic multiscale simulation of dopaminergic
systems in in silico neuropharmacology.
1 Introduction

Dopamine (DA) is a neurotransmitter released by neurons in
subcortical brain regions to various other brain regions. The DA
system has been extensively studied due to its critical roles in
regulating multiple brain functions, which include motor control,
motivation, learning, goal-oriented behaviour, hypertension and
hormone regulation [1]. In particular a large number of studies
have shown the phasic DA activity and prediction error in
reinforcement learning [2, 3]. Under or overexpression of DA
signalling and other dysfunctions in the mesocorticolimbic DA
system have been linked to a number of brain disorders ranging
from cognitive deficits to neurodegenerative disorders such as
Parkinson’s disease, and hence many pharmacologically active
compounds that interact with DA system have been developed and
used clinically [4–8]. Moreover, drugs such as cocaine,
amphetamines and L-3,4-dihydroxyphenylamine (L-DOPA), a DA
precursor, can induce psychotic episodes by increasing DA levels
[9]. Several features of addiction have been attributed to the DA
system such as both short- and long-term changes in the firing of
DA neurons in the ventral tegmental area [10] and a significant,
long-term down regulation of DA receptors in the striatum [11].
Hence, the DA system is a highly important target in
neuropharmacology.

DA acts on multiple receptors, which can be generally divided
into D1- and D2-like families [12]. Pre- and post-synaptic D2-like
DA autoreceptors are major targets for antipsychotic drugs as they
govern several aspects of DA activity including synthesis, release
and neuronal activity. The firing rate of dopaminergic neurons is
inversely correlated with D2-like autoreceptor activity within the
somatodendritic terminal. These receptors respond to an increase
in extracellular DA by activating G-protein-coupled-inwardly
rectifying potassium channels [13], reducing the excitability of the
DA axon terminal and suppressing the firing rate of these neurons
[14]. Pre-synaptic autoreceptors also interact with DA release from
the axonal terminal and modulate synthesis and release. The
binding of DA to autoreceptors at the neuron terminal limits DA
synthesis by inhibiting tyrosine hydroxylase (TH), thus
decelerating the conversion of tyrosine to L-DOPA [15]. Repeated
exposure to psychostimulants that inhibit DA uptake such as
cocaine and methamphetamine causes decreased activity of the
autoreceptors [16, 17] and the disinhibition of cellular excitability,
culminating in an increased likelihood of future substance abuse
[18]. Mice without D2 receptors on DA neurons are also
hypersensitive to the psychomotor and rewarding effects of
cocaine [19].

Indeed, the DA system has been the target of some effective
pharmacological treatments for pathological conditions. Indirect
DA receptor agonists, together with L-DOPA, have been used to
reduce symptom severity of Parkinson’s disease patients with great
efficacy [20]. Although DA replacement therapy serves only to
alleviate symptoms and has not been known to treat Parkinson’s
disease, it has led to the discovery of more DA receptor agonists,
a search that could be improved with the use of computational
models. The DA system has also been the target of drugs
prescribed for pituitary tumours [21], type 2 diabetes [22],
depression and bipolar disorder [23].

Significant progress has been made in discovering the structural,
genetic, physiological and pharmacological properties of DA
neurons [24]. This has facilitated the development of sufficiently
realistic computational models, which include DA synthesis,
release and reuptake, and signal transduction [25–27]. Biologically
plausible computational models of neuromodulation can assist in
furthering our understanding of how neuromodulators contribute at
the neuronal circuit and behavioural levels [28–31]. As
neuromodulators act across multiple spatial and temporal scales, an
important modelling approach is to develop multiscale models,
which are unfortunately not yet as prevalent in the pharmaceutical
industry as other approaches such as models in genomics,
molecular/cellular biology, pharmacokinetics and metabolism [32,
33]. An essential element of multiscale models is to extract
relevant and important factors or processes at one scale (e.g.
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Fig. 1 Biochemical processes within a dopaminergic pre-synaptic terminal.
Numbers denote steady-state concentrations of substrates (red) and fluxes/
velocities (blue). Adapted from [26]
molecular) to bridge and interact with those at other scales [34].
However, it is sometimes not immediately clear which factors or
processes are relatively more important for retention. In particular,
for the DA pre-synaptic terminal computational model of [26], the
relative influences and timescales of the intracellular processes are
unclear.

In this paper, we will focus on this established model of
pre-synaptic terminal of DA synthesis, release and reuptake [26].
The model can be used to investigate the intracellular effects
due to DA concentration level, enzyme expression levels,
tyrosine inputs and DA transporters (Fig. 1). However, the
model consists of several coupled non-linear differential
equations and mathematical functions and variables that may
potentially respond with very different timescales and
amplitudes. Moreover, the DA neuron is not explicitly modelled
in [26]. This poses a significant problem for developing
computationally efficient multiscale models of DA system from
molecular to neuronal circuit levels.
Table 1 Steady-state values for the substrates and velocities in the model

Substrate/rate Full name

Fast m

[bh2] dihydrobiopterin 37
[bh4] tetrahydrobiopterin 327
[l-dopa] 3,4-dihyroxyphenylalanine 0.3
[tyr] tyrosine 14
[tyr-pool] tyrosine pool 106
[hva] homovanillic acid 5.
[cda] cystosolic DA 1.
[vda] vesicular DA 80
[eda] extracellular DA 0.0
VTH tyrosine hydroxylase 28
VDRR dihydropteridine reductase 24
Vtyrin neutral amino acid transporter 24
VAADC aromatic amino acid decarboxylase 26
VMAT vesicular monoamine transporter 80
VDAT DA (reuptake) transporter 75
Vcatab catabolism of extracellular DA 0.

2

In this paper, we first analyse the various components of this
model [26] by systematically perturbing its variables (substrates)
[35]. Results from the perturbation analysis are used to categorise
the model variables based on their relative importance and relation
to other variables, and also to tease apart the relative timescales of
the variables, thus highlighting the key underlying mechanisms
and providing the conditions for model reduction. The
computational costs of simulating the two reduced (slow and fast)
models are compared with that of the original full model. The
reduced fast model is then incorporated into a spiking neuronal
model with an explicit D2-like autoreceptor-mediated inhibitory
current. Finally, this integrated model is used to simulate the
effects of pharmacological drugs.
2 Computational model of DA synthesis, release
and reuptake

The model in [26] consists of biochemical reactions that occur
during the synthesis, release, catabolism and reuptake of DA
within the pre-synaptic terminal. A schematic diagram of the
model including these reactions is shown in Fig. 1. The model
consists of nine coupled non-linear differential equations that
describe the chemical kinetics of the various substrates involved in
maintaining homeostatic DA synthesis and release (see (1)–(9) and
Table 1). The substrates are denoted in lower case while the
enzyme names and reaction velocities or rates are denoted in upper
case. Transport and reaction velocities are denoted by a capital V
followed by the name of the enzyme, transporter or process in
subscript. For example, tyrosine hydroxylase, denoted by the
symbol TH is the rate limiting enzyme of DA synthesis;
autoreceptors exert their inhibitory effect through this mechanism
by slowing the conversion of tyrosine to L-DOPA (l-dopa) in the
presence of increased firing rates. VTH (tyr, bh4, cda, eda) denotes
the velocity (function) of the TH reaction and its dependence on the
concentrations of the substrates tyrosine (tyr), tetrahydrobiopterin
(bh4), cytosolic DA (cda) and extracellular DA (eda).

d[bh2]

dt
= VTH(tyr, bh4, cda, eda)

− VDRR(bh2, NADPH, bh4, NADP) (1)

d[bh4]

dt
= VDRR(bh2, NADPH, bh4, NADP)

− VTH(tyr, bh4, cda, eda) (2)

d[tyr]

dt
= VTYRin(btyr(t))− VTH(tyr, bh4, cda, eda)− k1

× [tyr]+ k−1 × [tyrpool]− kcatabtyr × [tyr]

(3)
Steady-state value

odel Slow model Full model [26]

41.9 22.7 41
.2 322 337.2 319
7 0.35 0.34 0.36
2 103.6 93.4 126
8 777 701 not given
9 8.3 6.26 not given
6 2.8 4.2 2.65
.7 77.8 78 81
13 0.012 0.012 0.002
.4 27.2 26.7 27.3
.9 27.2 26.7 27.3
1 241 241 241

26.1 26.7 27.3
.7 65.6 77.5 81

68 72.3 80.1
3 0.13 0.12 0.02
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d[l− dopa]

dt
= VTH(tyr, bh4, cda, eda)− VAADC(l− dopa) (4)

d[cda]

dt
= VAADC(l− dopa)− VMAT(cda, vda)+ VDAT(eda)

− kcatabcda × cda (5)

d(vda)

dt
= VMAT(cda, vda)− fire(t)× vda (6)

d(eda)

dt
= fire(t)× vda− VDAT(eda)− VCATAB(eda)− krem

× eda (7)

d(hva)

dt
= kcatabcda × cda+ VCATAB(eda)− kcatabhva × hva (8)

d(tyrpool)

dt
= k1 × tyr − k−1 × tyrpool− kcatabtyrpool × tyrpool (9)

The function fire(t) in (6) and (7) relates to the firing rate of the
(pre-synaptic) DA neurons and is generally time dependent [26].
In this paper, we initially follow [26] and set the value to be 1
micromole per hour (μM/h), that is, vesicular DA is released at a
constant rate with entire pool turning over every hour. When we
later incorporate a spiking neuronal model, this function becomes
an instantaneous step function (delta function) whenever a DA
neuronal spike occurs. The specific functional forms of the
reaction velocities used for (1)–(9) are determined by Michaelis–
Menten kinetics as follows [26]:

VTH(tyr, bh4, eda, cda)

= 0.56

1+ ([tyr]/Ki(tyr))

( )
× 4.5

8([eda]/0.002024)4 + 1
( )+ 0.5

( )

× Vmax × [tyr]× [bh4]

[tyr][bh4]+ Ktyr[bh4]+ KtyrKbh4(1+ ([cda]/Ki(cda)))

( )

(10)

Vtyrin(btyr) =
400[btyr]

64+ [btyr]
(11)

(see (12))

VAADC(l− dopa) = VAADC,max × [l− dopa]

kAADC,m + [l− dopa]
(13)

VMAT(cda, vda) =
VMAT,max × [cda]

kMAT,m + [cda]
− kout × [vda] (14)

VDAT(eda) =
VDAT,max × [eda]

kDAT,m + [eda]
(15)

Vcatab(eda) =
Vcatab,max × [eda]

kcatab,m + [eda]
(16)

The kinetic parameters (with units in μM, μM/h) are taken from [19]
with the exception of those denoted by a * which are from [34]:
kAADC,m = 130, VAADC,max = 10,000, kDAT,m = 1.4, VDAT,max = 8000,
kbh2m = 100, V f

DRR,max = 150, kbh4m = 10, kNADPm = 75, kNADPHm = 75,

Vb
max = 120, kMAT,m = 0.55, VMAT,max = 7082, kout = 80, Ktyr = 130,

Kbh4 = 60, Vmax = 120, Ki(cda) = 110, Ki(tyr) = 160, nicotinamide
adenine dinucleotide phosphate (NADPH)=124*, NADP = 0.25*,
VDRR(bh2, NADPH, bh4, NADP) =
V f
max × [bh2]×

(kbh2m + [bh2])(kNADm

(
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k1 = 6, k−1 = 0.6, kcatabtyr−pool = 0.2, kcatabtyr = 0.8, kcatabcda = 5, kcatab,m = 3,

Vcatab,max = 30, kcatabhva = 3.45 and krem = 400.
The initial values for NADPH and 2-oxoaldehyde dehydrogenase

(NADP+) are not readily provided in [19] and are obtained from
[35], taken as 124 and 0.25 μM, respectively. The ratio of NADPH
to NADP+ is described as 500:1 [36], consistent with those used
in this model. The final steady-state values are consistent with
those in [26] (Table 1).

The full model is simulated in MATLAB (MATLAB R2013b,
The MathWorks, Natick, MA) with Euler’s numerical scheme
being used for integrating the differential equations. The time step
size used for numerical integration in the model is 0.00001 h
(0.0036 s). MATLAB codes are provided in Appendix 2.
3 Results

Intrinsically fast and slow dependent variables or substrates were
elucidated by carrying out step perturbation of each variable and
substrate while analysing the state of the full model at each step.
This ‘separation of timescales’ approach can allow the model to be
reduced for increased computational speed allowing the user to
investigate either slow or fast dynamics independently with greater
efficacy [35]. For example, if fast timescale is the focus of study
(e.g. order of milliseconds), the much slower variables (e.g.
∼hours) can be assumed to be relatively constant, and are
converted from differential equations to mere mathematical
functions or constants. The model is then reduced to a ‘fast mode’
with reduced computational cost. Similarly, if a slow timescale is
the focus (e.g. order of hours), the much faster variables (e.g.
∼milliseconds) are assumed to have rapidly reached their
quasi-steady states, that is, they become mathematical functions.
Again, we can achieve faster computational speed. Therefore, in
principle, we can have two approximate yet efficient computational
models; one that can be used to simulate and examine fast
dynamics, and the other for slower dynamics. Further model
reduction can be achieved by observing the relative magnitude of
how change in one substrate can affect another substrate. For
example, if the perturbation of substrate A elicits a relatively small
change in the concentration of substrate B, then the dynamical
A-to-B relationship can be ignored (see Section 3.2). To search for
the relative timescales and magnitude changes of one substrate
over another, we resort to perturbation of the variables as
discussed below.
3.1 Model perturbation and categorisation

Before onset of perturbation, the system is first simulated and
allowed to reach its steady states. Then perturbation for each
substrate/variable (e.g. tyr) is carried out by abruptly changing one
of the contingent substrates/variables (e.g. bh4, cda or eda) in a
step-wise manner (Fig. 2) [35]. The system is then allowed to
reach its new steady state during the perturbed phase. We have
also tried alternative perturbation methods – by perturbing the
system’s stimuli/inputs, and observing the global effects. However,
the results do not provide a level of acuity nor consistency to
distinguish the substrates’ timescales and substrate-to-substrate
coupling strengths. The resultant reduced models also do not
replicate the behaviour of the original full model well.

Assuming a substrate increases exponentially toward its new
steady state following perturbation, we find the amount of time
(t) it takes for the dependent variable to reach 67% (33% in
cases of exponential decay) of the new steady state (Fig. 2). If t
for that particular variable is relatively fast, the relative variable
or substrate is categorised as a fast variable. Similarly if t is
slow, the variable/substrate is categorised as slow. Specifically,
NADPH
PH + NADPH)

)
− Vb

max × [bh4]× NADP

(kbh4m + [bh4])(kNADPm + NADP)

( )
(12)
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Fig. 2 Example of responses of the variables/substrates (extracellular DA
(eda) and L-DOPA (l-dopa)) over time during a step perturbation of
another variable/substrate (vesicular DA, vda). Arrows denote the
evaluated timescales of eda and l-dopa. Note the different scales on the
horizontal and vertical axes. Perturbation occurs from the 25th hour onwards
under this range of perturbation levels, we calculate the mean of
time constants. Substrates with mean time constants <0.05 will
be labelled as fast, whereas those >0.20 as slow. In between
these two values, substrates will be classified as intermediate.
There will also be substrates with relatively larger standard
deviation in the time constants. Hence, if the standard deviation
is >0.05 and comparable with their mean value, we will assume
the substrate to be classified as mixed. For example, cda has a
mean of 0.056 and standard deviation of 0.062. Therefore, it
will be classified as a substrate with intermediate or mixed
timescales. This process is repeated for other substrates/variables
with different perturbing amplitudes (1.5, 2 and 3 times the
respective steady-state or baseline value), and the overall results
are presented in Table 2, which shows all the variables/
substrates dynamics as having intrinsically slow, fast or
intermediate/mixed dynamics, and then categorised based on the
classification criteria. Clearly, the timescales can vary greatly
from one substrate to another. For example, in terms of
Table 2 Top: Rise and decay time constants (t) (in 10−5 h) of substrates/va
timescales

Substrate Perturbed Perturbation, %

150 200

bh2 tyr 0.097 0.096396
bh2 bh4 0.332531 0.324372
bh2 cda 0.182653 0.178864
bh2 eda 0.17579 0.17278
bh4 bh2 1.78121 8.197055
bh4 tyr 0.058466 0.063716
bh4 cda 0.129081 0.127165
bh4 eda 0.125855 0.12221
l-dopa tyr 0.09912 0.099502
l-dopa bh4 0.088901 0.090077
l-dopa cda 0.064116 0.078224
l-dopa vda 0.038861 0.050756
cda l-dopa 0.14398 0.125
cda vda 0.000323 0.001769
cda eda 0.064515 0.16417
vda cda 0.002426 0.002426
eda vda 0.059719 0.051678
hva cda 0.028875 0.028845
tyr-pool tyr 0.124305 0.124
tyr tyr-pool 0.012233 0.0119
tyr bh4 0.62187 0.60798
tyr cda 0.757081 0.753788
tyr eda 0.75229 0.75692

4

timescales, [cda] responds to perturbation of [vda] with about
two orders of magnitude faster than [l-dopa] responding to the
same [vda] perturbation.

Similarly, Table 3 (top) shows the relative (percentage) changes in
steady-state values from baseline values for the perturbation of all
variables/substrates, whereas the bottom reveals their coupling
strengths based on the classification criteria of the (absolute) mean
and standard deviation of the percentage change. Specifically, if the
mean of the coupling strength’s percentage change is <3, the
coupling will be classified as weak, whereas if >35, it will be
classified as strong. Couplings will be classified under the
intermediate category if the values lie between these two values,
and mixed if the standard deviations are >20 and comparable with
their mean values. The percentage change in steady states can vary
widely, similar to the wide range of the timescales. For example,
[bh2] is muchmore dependent on [cda] and [eda] than [bh4] and [tyr].
3.2 Reduced slow model

To obtain a reduced slow model, fast substrates will be assumed to
have rapidly reached their steady states and their associated
differential equations will be transformed into functions, that is, at
their steady-state values. For example, we can set the differential
(7) for the fast substrate eda, d[eda]/dt = 0, and solve the resultant
algebraic equation (using the Mathematica software package) [35],
we can obtain

[eda]= fire(t)× release× kcatab,edam · vda · kDAT,m
krem× kcatab,edam +V catab,eda

max
( )× kDAT,m + kcatab,edam ×VDAT,max

(17)

Similarly for the other fast variables vda and hva. If we instead wish
to obtain a reduced fast model, then the slow substrates can be set to
be assumed to be approximately constant (with specific steady-state
values initially obtained from the full model simulations), and
similar solving of the algebraic equations will be required.
Specifically, we could keep the dynamics of the fast variables eda,
vda and hva, and set the rest of slow and intermediate/mixed
variables to be constant. For example, if we have set d[l -dopa]/dt
= 0 in (4), we would have obtained

[l− dopa] = VTH(tyr, bh4, cda, eda)× kAADC,m
VAADC,max − VTH(tyr, bh4, cda, eda)

(18)
riables after perturbations. Bottom: Classification of substrates/variables’

Mean Standard deviation Class

300

0.094077 0.195 0.0975 mixed
0.325767
0.176167
0.17171
12.66077 2.016 4.084 slow
0.64047
0.126272
0.12308
0.099872 0.083 0.022 mixed
0.092284
0.081265
0.114403
0.102 0.056 0.062 mixed

0.009089
0.05702
0.002429 0.002 0 fast
0.037623 0.05 0.011 fast
0.028832 0.029 0 fast
0.125 0.124 0 slow

0.021202 0.535 0.32 slow
0.60286
0.757526
0.768391
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Table 3 Top: Percentage change in steady states of substrates/variables after perturbation. Bottom: Classification of substrates/variables’ coupling
strengths

Substrate Perturbed Perturbation, % Mean Standard deviation Class

150 200 300

bh2 tyr 4 6.4 14.47 8.29 5.48 intermediate
bh2 bh4 0.64 1.01 1.37 1 0.37 weak
bh2 cda −28.75 −37.55 −43.77 −36.7 7.55 strong
bh2 eda −41.58 −49.33 −52.33 −47.75 5.55 strong
bh4 bh2 30.62 44.81 74.8 50.08 22.56 strong
bh4 tyr 4.61 7.07 10.05 7.24 2.72 intermediate
bh4 cda −0.86 −2.79 −3.4 −2.35 1.33 weak
bh4 eda 2.45 5.34 6.85 4.88 2.24 intermediate
l-dopa tyr 12.02 17.09 22.2 17.1 5.09 intermediate
l-dopa bh4 1.82 2.63 3.38 2.61 0.78 weak
l-dopa cda 2.7 7.89 11.06 7.22 4.22 intermediate
l-dopa vda −9.47 −9.42 −32.91 −17.27 13.55 mixed
cda l-dopa 72.98 17.89 39.34 43.4 27.77 strong
cda vda −30.76 −83.14 −99.8 −71.23 36.03 strong
cda eda 11.14 23 58.48 30.87 24.63 mixed
vda cda 7.67 3.0755 17.19 9.31 7.2 intermediate
eda vda 12.29 34.06 56.19 34.18 21.95 mixed
hva cda 3.02 8.02 14.81 8.62 5.92 intermediate
tyr-pool tyr 55.24 67.39 70.16 64.26 7.94 strong
tyr tyr-pool 70.17 80.93 70.172 73.76 6.21 strong
tyr bh4 −43.68 −80.94 −235.38 −120 101.64 mixed
tyr cda 63.15 62.54 62.03 62.57 0.56 strong
tyr eda 37.78 38.43 48.67 41.63 6.11 strong
and similarly for other slow variables. See Appendix 1 for details.
From our simulations, we find that the steady states of the full and
reduced model are reasonably well matched, while all kinetic
parameters remain within the ranges presented in the literature (see
Table 1).

In Fig. 3, we can see the steady states of the full and reduced slow
models (see Table 1) have similar values. On perturbing the blood
Fig. 3 Comparison of full and reduced slow model under perturbation. The
blood tyrosine concentration [btyr] is altered (using a step function) over
time to represent three sessions of food intake (meals) and the effects on
other fast substrates (vesicular DA (vda) and L-DOPA (l-dopa)) and the
velocity of the tyrosine hydroxylase (TH) reaction, VTH, over a 16 h period
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tyrosine (btyr) three times over a 16 h period, simulating the effect
of food intake in the form of three meals throughout the waking
day, we found that the full and reduced slow model show very
similar perturbed behaviours.

Further reduction of the slow model can be achieved by observing
the relative effect of one substrate over another. For example, [cda]
has relatively smaller effect on [bh4] (Table 3), and we can ignore
this factor in the model reduction process.

The execution time for a 48 h simulation of the reduced slow
model and the full model are compared using MATLAB’s
stopwatch timer. By comparing the computational speed of a
single run, we found that the reduced slow model with fewer
differential equations took 61.32 s to run while the full model took
64.95 s. The simulation times were calculated based on the most
computationally intensive part of the code, namely, the numerical
integration. If we repeat the simulations over 10,000 runs for 48 h
simulation (e.g. in search for optimal drug dosage), then we can
save about 10 h of computational time.
3.3 Reduced fast model integrated into a spiking neuron
model

Reactions that occur on the scale of milliseconds to tens of seconds
are isolated and analysed by either holding substrates with slower
dynamics at a constant value or calculating their values as
functions at each time step. Homovanillic acid (hva) serves as an
endpoint for the catabolism of cytosolic DA (cda) and exhibits fast
dynamics. As this model does not explicitly simulate the
catabolism of cda, no other substrates are dependent on hva, and
therefore it can be excluded from the analysis. The fast model can
thus be reduced further by simulating the dynamics of only eda
and vda (extracellular and vesicular DAs) with two differential
equations and the control parameter for neuronal spiking, ‘fire’.

The constant values for the ‘slow’ substrates can be obtained by
simulating either the full or reduced slow model until the
difference between the values of substrate X at time T, X(T ), and
X(T−1) is less than some value ε, where ε is small enough to
represent no significant change. In our simulations, we select ε to
be 0.002. We found that the reduced fast model with much lesser
differential equations was able to complete a 48 h simulation in
61.6 s, 3.35 s faster than the original full model. If the simulation
were to be repeated 10,000 times we would save 9.3 h.

To artificially implement the effects of neuronal spiking, the
function ‘fire’ in (6) and (7) will attain an instantaneous value
5



increase whenever the presumed neuron fires an action potential. On
artificially mimicking action potentials or neuronal spiking as in
[19], we found that the behaviours of the perturbed substrates in
the reduced fast model are similar to that as in the full model
(Fig. 4). In particular, not only are the slow substrates or velocities
similar, but so are the faster substrates or velocities, for example,
vda and eda. Note that vda and eda are both directly influenced by
neuronal spiking – the release of DA into the extracellular space
involves the reduction of vda and enhancement of eda.

So far, as in [19], the neuron is not explicitly modelled. Here, we
improve the model by incorporating a spiking neuronal model with
intrinsic bursting behaviour similar to that of experimentally
observed dopaminergic neurons [37, 38]. We will make use of the
simplified, computationally efficient and highly scalable Izhikevich
model, an adaptive quadratic integrate-and-fire neuronal model
capable of generating a wide range of biologically plausible
neuronal spiking patterns [39]. The membrane potential V of this
neuronal model can be described by the differential equation

dV

dt
= 0.04V 2 + 5V + 140−W + I (19)

where I is the overall afferent or input current and W is some
recovery variable described by

dW

dt
= a(bV −W ) (20)

where a and b are parameters that govern the overall timescale of the
recovery and the coupling strength, respectively. These two coupled
equations describe the membrane dynamics of the neuron, with an
after-spike resetting condition: if V≥ 0 mV, then V is replaced by c
while W by W + d, where c and d are model parameters. Hence,
the spiking pattern of the Izhikevich model can be controlled
Fig. 4 Example of responses of the variables/rates (vda, eda, VDAT and the
catabolism of eda, Vcatab,eda) during a series of artificial spike perturbations
(denoted by vertical lines at the top). Note the rate of eda catabolism
increases and the concentration of the vda ‘reservoir’ decreases slightly as
eda concentration increases at the time of each spike. Note that [vda] of
the full and fast models overlapped
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using only these four parameters, a, b, c and d. To capture the
general (intrinsically bursting) spiking behaviour as in experiments
[37, 38], we set a = 0.0025(1/ms), b = 0.2(1/mV), c =−55 mV
and d = 2.

Fig. 5 illustrates this intrinsic bursting at around about 2–3 spikes
per burst within ∼20 ms duration (Fig. 5, inset), and an interval of
∼0.5–1 s between consecutive bursts (Fig. 5, top panel) [37, 38].
Extracellular DA level [eda] varies ∼0.01–1 μM during bursting or
stimulation, consistent with [40, 41]. To be even more realistic,
we set the function ‘fire’ in (6) and (7) to be zero when the
neuron is not spiking, similar to that in [35]. The simulation in
Fig. 5 shows that the substrates do not vary greatly between the
reduced fast model and the full model. Note that the activities
have now been changed. For example, the initial [eda] before
neuronal firing is at zero. This is justifiable given that in a more
natural condition there will be multiple active dopaminergic
neurons contributing to the increased baseline [eda] concentration
observable in vivo.
3.4 Inhibitory autoreceptors

It has been known that dopaminergic autoreceptors can not only
affect DA synthesis and release [26, 42], but also inhibit neuronal
excitability. As previous models of dopaminergic pre-synaptic
terminal did not include such a specific autoinhibitory
current-based mechanism, we make use of our reduced fast
neuronal model to further explore such combined effects. We
validated the incorporation of the autoreceptors to our model
against the results recorded from electrophysiological and
computational studies as shown below.

Our reduced pre-synaptic terminal dopaminergic neuronal model
is completed by incorporating additional inhibitory currents into
the Izhikevich model [39]. Specifically, the additional current
depends on [eda] as follows:

Iauto = − f

1+ e−g([eda]−h)
(21)
Fig. 5 Neuronal bursting activity effects on [eda] and intracellular
substrates. Note that each instantaneous change in activities is due to a
burst of neuronal membrane potential or spikes (denoted by an asterisk);
each burst consists of three spikes (see inset)
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Fig. 6 Relationship between neuronal firing rate and mean [eda]. Black
filled circles: from [43]; grey filled circles: our reduced integrated model;
unfilled circles: [45]. In our model, mean [eda] is calculated from
averaging the fluctuations (due to neuronal spiking activity) over time.
Both firing rate and mean [eda] are evaluated at steady state. Dashed line:
fitted only to grey simulated data
where f, g and h control the overall amplitude, gain or slope, and the
offset of the assumed sigmoidal function of the current. Note that for
simplicity, we did not include an additional timescale for Iauto as
observed in [42], although this can be easily achieved by having
an additional differential equation for the dynamics of Iauto. The
values of these parameters are determined by fitting the [eda] and
baseline (tonic) neuronal firing rate to experimental data. In [43–
45], the coupling between the (somatodendritic) DA levels and
neuronal firing rate were determined as a function of cocaine dose,
an effective measure of uptake inhibition. Our model is able to
exhibit such an inverse linear relationship (Fig. 6).

Since the neuronal model is already intrinsically bursting, we
could now investigate how the duration of the burst affects the
amount of [eda]. In Fig. 7, we increase the external input current
with a step-change in amplitude from 4.55 to 15 to mimic the
bursting neuronal activity from tonic firing activity. There is a
Fig. 7 Burst and pause on phasic [eda]. Top: [eda]; bottom: neuronal membrane
0.6 s. Right: black – pause duration of 0.8 s; grey – 2.4 s. Compared with [43]
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phasic increase in [eda], and this increase depends on the duration
of the bursting behaviour. Conversely, when the external input
current is reduced to 0, mimicking a ‘pause’ of DA neuronal firing
[eda] is reduced. These results look comparable with those in [43].

Next, as in [26], we block the autoreceptors, for example,
mimicking the administration of D2-receptor agonists, to
understand how the [eda]-versus-firing rate relationship is affected.
Best et al. [26] have shown that autoreceptors act as a homeostatic
mechanism on DA neuronal firing rate by reducing its firing rate
range (Fig. 9B in [26]). However, the model presented in [26]
does not have an explicit DA autoreceptor-mediated inhibitory
current. In the absence of this inhibitory current our integrated
model’s [eda]-versus-firing rate relationship is similar to that in
[26], but a dramatic change is observed when the
autoreceptor-mediated inhibitory current is explicitly modelled,
shown in Fig. 8 (left panel). In fact, the slope of the curve in the
presence of autoreceptors is negative while that in [26] is positive.

Conceptually, DA autoreceptors can provide negative feedback to
the intracellular processing [26]. For example, if there is too much
[eda], then the autoreceptors will inhibit VTH and reduce the
production of [l-dopa], which will subsequently lead to a reduction
in [eda]. Conversely, when there is too much [eda], the
autoreceptor-induced inhibition on VTH will be reduced and allow
more [l-dopa] and [eda] to be subsequently manufactured. It is not
clear how autoreceptor-mediated inhibitory current in neurons can
influence this dynamic homeostatic process. In Fig. 8 (right), we
show that in the absence of this current, [eda] increases almost
linearly with increasing [l-dopa] as discussed above. In the
presence of the autoreceptor-mediated current, this linear
relationship is shifted vertically downwards. This can be explained
by realising that the inhibitory current will lead to reduction of
neuronal firing rate which and hence lesser [eda]. In other words,
for the same amount of [eda] released, there will be more [l-dopa]
produced when the autoreceptor-mediated inhibitory current is
present. In summary, we have developed a more realistic model of
the DA pre-synaptic terminal which explicitly has DA D2
autoreceptors to not only inhibit the intracellular dynamics (via
VTH), as in [26], but also simultaneously inhibit the membrane
potential of the dopaminergic neuron.
potential. Left: burst; right: pause. Left, black – burst duration of 0.1 s; grey –
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Fig. 8 Effects of autoreceptor-mediated inhibitory current on homeostatic processes. Left: [eda] versus neuronal firing rate (percentage change from baselines)
with and without autoreceptors. The results with autoreceptors are very different from that of [26]. Right: [eda] versus [l-dopa] (absolute values) with and without
autoreceptors
4 Discussion

We have analysed an established computational model of DA
synthesis, release and reuptake using a simple perturbation method.
This method has previously been successfully applied to a
serotonergic pre-synaptic terminal model [35]. In this paper, we
have shown similar success for the dopaminergic pre-synaptic
terminal model, but with a different set of substrates and reactions.
Specifically, we show that different variables or substrates are
affected (or perturbed) much more than others. Importantly, the
intrinsic timescales of the variables or substrates can vary widely,
ranging across several orders of magnitude. This wide range of
inherent timescales allows us to separate the slow and fast variables/
substrates that subsequently approximate and reduce the original
model into a slow and fast version. We found that the reduced slow
and fast models are not only more computationally efficient due to
the reduced number of differential equations to be numerically
integrated, but can also capture same the tonic and phasic activity
features as in the full model. Importantly, the simpler model helps
to identify the key reactions for a specific timescale.

Next, we incorporate the reduced fast model into a (Izhikevich)
spiking neuronal model that can replicate realistic tonic and phasic
(bursting) spiking behaviours. This integrated reduced fast model
behaves similarly to an integrated model with the full set of
intracellular processes. By adding an explicit inhibitory
autoreceptor-mediated current into this spiking neuronal model, we
show that the model can exhibit suppression of firing rate with
increasing [eda] in a linear way, as found in experiments and other
computational modelling works [43, 44]. It should be noted that,
unlike the model in [43], our model has an explicit neuronal
model for the autoreceptor-mediated current to directly inhibit the
neuronal membrane excitability. Our integrated model’s results
also differ from that of the work in [26], which has no
autoreceptor-induced inhibition on neuronal firing rate. However,
with a more integrated model, it is not immediately clear how
large a role (D2-like) autoreceptors can play in terms of the
homeostasis of DA neuronal activity, and this deserves further
investigation. Overall, our integrated DA pre-synaptic terminal
model is not only computationally efficient, but can also explicitly
account for key mechanisms during steady states.

In addition to tonic steady states, an important function of DA is
its phasic activity behaviour, which is related to behavioural
(reinforcement) learning. The high transient extracellular DA level
release during DA neuronal bursting has been suggested as a
signal that facilitates prediction error and the enforcement of
synaptic plasticity within targeted brain regions, which can result
in behavioural change [46, 47]. In this paper, we have
demonstrated the possibility of large amount of [eda] release
following a burst of neuronal spiking from regular spiking at
baseline. We have also shown how pause behaviour can quickly
reduce the [eda] level. Although correlated with the surprise
8

absence of an expected reward [46], the actual function of pause
activity on behavioural change remains unknown.

Reduced models of neuromodulators can be incorporated into
large-scale computational models [28–31, 48–50]. The seemingly
small increase in simulation speed will be amplified when we
increase the complexity of the model, for example, when simulating
multiple neurons simultaneously. In particular, our similar reduced
fast model for the serotonergic pre-synaptic terminal has been
shown to be successfully implemented in spiking neuronal network
models to efficiently simulate an entire population of ∼100,000
serotonergic neurons [35]. We would expect our current integrated
model to simulate as efficiently (there are also about a total of
∼100,000 dopaminergic neurons [51]). These reduced models will
be useful tools for in silico investigations attempting to bridge
between molecular, cellular, cognitive and behavioural mechanisms
[28–30]. The ability of these models to directly mimic the effects of
drugs and genetic polymorphisms [26] will also make them useful
for rapid testing in drug discovery and development in
neuropharmacology. Further extension of the current work will
include modelling the DA post-synaptic effects such as signal
transduction and neuronal circuit dynamics at the microcircuit level
[48] or at a larger scale [30].
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7 Appendix

7.1 Appendix 1

Analytical solutions of steady states of substrates

[bh2] =
bh2/(VDRRk

bh2
+ bh2)

1− (bh2/(VDRRk
bh2

+ bh2 ))

( )
× VDRRk

bh2
(22)

[bh4] =
bh4/(VDRRk

bh4
+ bh4)

1− (bh4/(VDRRk
bh4

+ bh4))

( )
× VDRRk

bh4
(23)

[l− dopa] = VTH(tyr, bh4, cda, eda)× kAADC,m
VAADC,max − VTH(tyr, bh4, cda, eda)

(24)

(see (25))

7.2 Appendix 2

The following are two MATLAB codes, one (7.2.1) for simulating
the full model similar to the original model in [26], and the other
(7.2.2) is the reduced fast model with spiking neuronal model and
autoreceptor-mediated current.

7.2.1 Full model: See Fig. 9.

7.2.2 Reduced fast model with spiking neuron and
autoreceptor-mediated current: See Fig. 10.
l− dopa)+ VDAT(eda)− vMATKout
× vda
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(25)
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Fig. 9 Full model
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Fig. 9 Continued



Fig. 10 Reduced fast model with spiking neuron and autoreceptor-mediated current



Fig. 10 Continued



Fig. 10 Continued
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