215 research outputs found

    Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3

    Get PDF
    We present a magnetoresistive-photoresistive device based on the interaction of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 substrate that undergoes light-induced strain. The magnitude of the resistance and magnetoresistance in the CoFe film can be controlled by the wavelength of the incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic magnetoresistance is detected due to an additional magnetoelastic contribution to magnetic anisotropy of the CoFe film. This effect may find applications in photo-sensing systems, wavelength detectors and can possibly open a research development in light-controlled magnetic switching properties for next generation magnetoresistive memory devices.Comment: 5 pages, 4 figures, journal pape

    Subcoercive and multilevel ferroelastic remnant states with resistive readout

    Get PDF
    Ferroelectric devices use their electric polarization ferroic order as the switching and storage physical quantity for memory applications. However, additional built-in physical quantities and memory paradigms are requested for applications. We propose here to take advantage of the multiferroic properties of ferroelectrics, using ferroelasticity to create a remnant strain, persisting after stressing the material by converse piezoelectricity means. While large electric fields are needed to switch the polarization, here writing occurs at subcoercive much lower field values, which can efficiently imprint multiple remnant strain states. A proof-of-principle device, with the simplest and non-optimized resistance strain detection design, is shown here to exhibit 13-memory states of high reproducibility and reliability. The related advantages in lower power consumption and limited device fatigue make our approach relevant for applications.Comment: Resistive random access memory-like (RRAM) effect is described. Multistate non-volatile ferroelastic-resistive memor

    Dust in dwarf galaxies: The case of NGC 4214

    Get PDF
    We have carried out a detailed modelling of the dust heating and emission in the nearby, starbursting dwarf galaxy NGC 4214. Due to its proximity and the great wealth of data from the UV to the millimeter range (from GALEX, HST, {\it Spitzer}, Herschel, Planck and IRAM) it is possible to separately model the emission from HII regions and their associated photodissociation regions (PDRs) and the emission from diffuse dust. Furthermore, most model parameters can be directly determined from the data leaving very few free parameters. We can fit both the emission from HII+PDR regions and the diffuse emission in NGC 4214 with these models with "normal" dust properties and realistic parameters.Comment: 4pages, 3 figures. To appear in 'The Spectral Energy Distribution of Galaxies' Proceedings IAU Symposium No 284, 201

    Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications

    Get PDF
    We present the results of the characterization of Mg/Co periodic multilayers and their thermal stability for the EUV range. The annealing study is performed up to a temperature of 400\degree C. Images obtained by scanning transmission electron microscopy and electron energy loss spectroscopy clearly show the good quality of the multilayer structure. The measurements of the EUV reflectivity around 25 nm (~49 eV) indicate that the reflectivity decreases when the annealing temperature increases above 300\degreeC. X-ray emission spectroscopy is performed to determine the chemical state of the Mg atoms within the Mg/Co multilayer. Nuclear magnetic resonance used to determine the chemical state of the Co atoms and scanning electron microscopy images of cross sections of the Mg/Co multilayers reveal changes in the morphology of the stack from an annealing temperature of 305\degreee;C. This explains the observed reflectivity loss.Comment: Published in Applied Physics A: Materials Science \& Processing Published at http://www.springerlink.com.chimie.gate.inist.fr/content/6v396j6m56771r61/ 21 page

    Revisiting the dust properties in the molecular clouds of the Large Magellanic Cloud

    Get PDF
    Context. Some Galactic molecular clouds show signs of dust evolution as compared to the diffuse interstellar medium, most of the time through indirect evidence such as color ratios, increased dust emissivity, or scattering (coreshine). These signs are not a feature of all Galactic clouds. Moreover, molecular clouds in the Large Magellanic Cloud (LMC) have been analyzed in a previous study based on Spitzer and IRIS data, at 4' angular resolution, with the use of one single dust model, and did not show any signs of dust evolution. Aims. In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1' angular resolution (four times greater than the previous analysis) and with a larger spectral coverage range thanks to Herschel data. We also ensure the robustness of our results in the framework of various dust models. Methods. We performed a decomposition of the dust emission in the infrared (from 3.6 to 500 mu m) associated with the atomic, molecular, and ionized gas phases in the molecular clouds of the LMC. The resulting spectral energy distributions were fitted with four distinct dust models. We then analyzed the model parameters such as the intensity of the radiation field and the relative dust abundances, as well as the slope of the emission spectra at long wavelengths. Results. This work allows dust models to be compared with infrared data in various environments for the first time, which reveals important differences between the models at short wavelengths in terms of data fitting (mainly in the polycyclic aromatic hydrocarbon bands). In addition, this analysis points out distinct results according to the gas phases, such as dust composition directly affecting the dust temperature and the dust emissivity in the submillimeter and different dust emission in the near-infrared (NIR). Conclusions. We observe direct evidence of dust property evolution from the diffuse to the dense medium in a large sample of molecular clouds in the LMC. In addition, the differences in the dust component abundances between the gas phases could indicate different origins of grain formation. We also point out the presence of a NIR-continuum in all gas phases, with an enhancement in the ionized gas. We favor the hypothesis of an additional dust component as the carrier of this continuum.Peer reviewe

    Submillimeter mapping and analysis of cold dust condensations in the Orion M42 star forming complex

    Get PDF
    We present here the continuum submillimeter maps of the molecular cloud around the M42 Nebula in the Orion region. These have been obtained in four wavelength bands (200, 260, 360 and 580 microns) with the ProNaOS two meter balloon-borne telescope. The area covered is 7 parsecs wide (50 arcmin at a distance of 470 pc) with a spatial resolution of about 0.4 parsec. Thanks to the high sensitivity to faint surface brightness gradients, we have found several cold condensations with temperatures ranging from 12 to 17 K, within 3 parsecs of the dense ridge. The statistical analysis of the temperature and spectral index spatial distribution shows an evidence of an inverse correlation between these two parameters. Being invisible in the IRAS 100 micron survey, some cold clouds are likely to be the seeds for future star formation activity going on in the complex. We estimate their masses and we show that two of them have masses higher than their Jeans masses, and may be gravitationally unstable.Comment: 4 figures, The Astrophysical Journal, Main Journal, in pres

    Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material

    Get PDF
    Single-crystalline FeCo nanoparticles with tunable size and shape were prepared by co-decomposing two metal-amide precursors under mild conditions. The nature of the ligands introduced in this organometallic synthesis drastically affects the reactivity of the precursors and, thus, the chemical distribution within the nanoparticles. The presence of the B2 short-range order was evidenced in FeCo nanoparticles prepared in the presence of HDAHCl ligands, combining 57 Fe Mössbauer, zero-field 59 Co ferromagnetic nuclear resonance (FNR), and X-ray diffraction studies. This is the first time that the B2 structure is directly formed during synthesis without the need of any annealing step. The as-prepared nanoparticles exhibit magnetic properties comparable with the ones for the bulk (M s = 226 Am 2 ·kg -1 ). Composite magnetic materials prepared from these FeCo nanoparticles led to a successful proof-of-concept of the integration on inductor-based filters (27% enhancement of the inductance value at 100 MHz)
    • 

    corecore