735 research outputs found

    Comparison between finite element and experimental evidences of innovative W lattice materials for sacrificial limiter applications

    Get PDF
    Power exhaust is a key mission for the realization of fusion electricity. Engineering challenges may arise from the extreme heat fluxes developed during plasma transients, above the limit offered by existing materials. These can reduce the lifetime of plasma-facing components (PFCs), imposing extraordinary maintenance, reactor safety issues and ultimately delayed return to normal operation. Concerning the EU DEMO reactor, discrete sacrificial limiters are being investigated as the last safety resource of the reactor's wall in case of unmitigated events. Within this context, micro-engineered tungsten (W) lattices are proposed to cope with unmitigated plasma disruptions. Unlike bulk W, lattices can be tailored to meet the operational requirements of the limiter, compromise between steady-state and off-design performances while avoiding overloading of the heat sink and delay the need for extraordinary maintenance. By calibrating an equivalent solid model originally developed and validated for open-cell aluminum (Al) foams, tailored lattices have been modelled and samples fabricated through additive manufacturing for characterization and testing, currently ongoing. In the present work, the thermal response of lattice samples during thermal shock high heat flux (HHF) tests performed at the linear facility QSPA Kh-50 facility is simulated using ANSYS and compared with available results. Enthalpy changes of W were imposed to simulate phase change. Good agreement with experiments and SDC-IC reference up to melting point was observed. Ultimately, a thermal quench of an unmitigated DEMO disruption was simulated involving an original MAPDL routine that removes mesh elements at the melting or vaporization point.s

    Containment structures and port configurations

    Get PDF
    This article describes the DEMO cryostat, the vacuum vessel, and the tokamak building as well as the system configurations to integrate the main in-vessel components and auxiliary systems developed during the Pre-Conceptual Design Phase. The vacuum vessel is the primary component for radiation shielding and containment of tritium and other radioactive material. Various systems required to operate the plasma are integrated in its ports. The vessel together with the external magnetic coils is located inside the even larger cryostat that has the primary function to provide a vacuum to enable the operation of the superconducting coils in cryogenic condition. The cryostat is surrounded by a thick concrete structure: the bioshield. It protects the external areas from neutron and gamma radiation emitted from the tokamak. The tokamak building layout is aligned with the VV ports implementing floors and separate rooms, so-called port cells, that can be sealed to provide a secondary confinement when a port is opened during in-vessel maintenance. The ports of the torus-shaped VV have to allow for the replacement of in-vessel components but also incorporate plasma limiters and auxiliary heating and diagnostic systems. The divertor is replaced through horizontal ports at the lower level, the breeding blanket (BB) through upper vertical ports. The pipe work of these in-vessel components is also routed through these ports. To facilitate the vertical replacement of the BB, it is divided into large vertical segments. Their mechanical support during operation relies on vertically clamping them inside the vacuum vessel by a combination of obstructed thermal expansion and radial pre-compression due to the ferromagnetic force acting on the breeding blanket structural material in the toroidal magnetic field

    Impact of plasma-wall interaction and exhaust on the EU-DEMO design

    Get PDF
    In the present work, the role of plasma facing components protection in driving the EU-DEMO design will be reviewed, focusing on steady-state and, especially, on transients. This work encompasses both the first wall (FW) as well as the divertor. In fact, while the ITER divertor heat removal technology has been adopted, the ITER FW concept has been shown in the past years to be inadequate for EU-DEMO. This is due to the higher foreseen irradiation damage level, which requires structural materials (like Eurofer) able to withstand more than 5 dpa of neutron damage. This solution, however, limits the tolerable steady-state heat flux to ~1 MW/m2, i.e. a factor 3–4 below the ITER specifications. For this reason, poloidally and toroidally discontinuous protection limiters are implemented in EU-DEMO. Their role consists in reducing the heat load on the FW due to charged particles, during steady state and, more importantly, during planned and off-normal plasma transients. Concerning the divertor configuration, EU-DEMO currently assumes an ITER-like, lower single null (LSN) divertor, with seeded impurities for the dissipation of the power. However, this concept has been shown by numerous simulations in the past years to be marginal during steady-state (where a detached divertor is necessary to maintain the heat flux below the technological limit and to avoid excessive erosion) and unable to withstand some relevant transients, such as large ELMs and accidental loss of detachment. Various concepts, deviating from the ITER design, are currently under investigation to mitigate such risks, for example in-vessel coils for strike point sweeping in case of reattachment, as well as alternative divertor configurations. Finally, a broader discussion on the impact of divertor protection on the overall machine design is presented

    Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain

    Get PDF
    Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe

    A new generation of real-time systems in the JET tokamak

    Get PDF
    Recently a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of the JET’s well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide realtime performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests’ (IRQs) affinities together with the kernel’s CPU isolation mechanism allows to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multicore architectures. In the past year, four new systems based on this philosophy have been installed and are now part of the JET’s routine operation. The focus of the present work is on the configuration and interconnection of the ingredients that enable these new systems’ real-time capability and on the impact that JET’s distributed real-time architecture has on system engineering requirements, such as algorithm testing and plant commissioning. Details are given about the common real-time configuration and development path of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronising over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel

    ITER-like current ramps in JET with ILW: experiments, modelling and consequences for ITER

    Get PDF
    Since the ITER-like wall in JET (JET-ILW) came into operation, dedicated ITER-like plasma current ( I p ) ramp-up (RU) and ramp-down (RD) experiments have been performed and matched to similar discharges with the carbon wall (JET-C). The experiments show that access to H-mode early in the I p</p

    ITER-like current ramps in JET with ILW: experiments, modelling and consequences for ITER

    Get PDF
    Since the ITER-like wall in JET (JET-ILW) came into operation, dedicated ITER-like plasma current ( I p ) ramp-up (RU) and ramp-down (RD) experiments have been performed and matched to similar discharges with the carbon wall (JET-C). The experiments show that access to H-mode early in the I p</p

    Long-term outcome of COVID-19 patients treated with helmet noninvasive ventilation vs. high-flow nasal oxygen: a randomized trial

    Get PDF
    Background: Long-term outcomes of patients treated with helmet noninvasive ventilation (NIV) are unknown: safety concerns regarding the risk of patient self-inflicted lung injury and delayed intubation exist when NIV is applied in hypoxemic patients. We assessed the 6-month outcome of patients who received helmet NIV or high-flow nasal oxygen for COVID-19 hypoxemic respiratory failure. Methods: In this prespecified analysis of a randomized trial of helmet NIV versus high-flow nasal oxygen (HENIVOT), clinical status, physical performance (6-min-walking-test and 30-s chair stand test), respiratory function and quality of life (EuroQoL five dimensions five levels questionnaire, EuroQoL VAS, SF36 and Post-Traumatic Stress Disorder Checklist for the DSM) were evaluated 6&nbsp;months after the enrollment. Results: Among 80 patients who were alive, 71 (89%) completed the follow-up: 35 had received helmet NIV, 36 high-flow oxygen. There was no inter-group difference in any item concerning vital signs (N = 4), physical performance (N = 18), respiratory function (N = 27), quality of life (N = 21) and laboratory tests (N = 15). Arthralgia was significantly lower in the helmet group (16% vs. 55%, p = 0.002). Fifty-two percent of patients in helmet group vs. 63% of patients in high-flow group had diffusing capacity of the lungs for carbon monoxide &lt; 80% of predicted (p = 0.44); 13% vs. 22% had forced vital capacity &lt; 80% of predicted (p = 0.51). Both groups reported similar degree of pain (p = 0.81) and anxiety (p = 0.81) at the EQ-5D-5L test; the EQ-VAS score was similar in the two groups (p = 0.27). Compared to patients who successfully avoided invasive mechanical ventilation (54/71, 76%), intubated patients (17/71, 24%) had significantly worse pulmonary function (median diffusing capacity of the lungs for carbon monoxide 66% [Interquartile range: 47–77] of predicted vs. 80% [71–88], p = 0.005) and decreased quality of life (EQ-VAS: 70 [53–70] vs. 80 [70–83], p = 0.01). Conclusions: In patients with COVID-19 hypoxemic respiratory failure, treatment with helmet NIV or high-flow oxygen yielded similar quality of life and functional outcome at 6&nbsp;months. The need for invasive mechanical ventilation was associated with worse outcomes. These data indicate that helmet NIV, as applied in the HENIVOT trial, can be safely used in hypoxemic patients. Trial registration Registered on clinicaltrials.gov NCT04502576 on August 6, 202
    • …
    corecore