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Abstract. Since the ITER-like wall in JET (JET-ILW) came into operation,

dedicated ITER-like plasma current (Ip) ramp-up (RU) and ramp-down (RD)

experiments have been performed and matched to similar discharges with the carbon

wall (JET-C). The experiments show that access to H-mode early in the Ip RU phase

and maintaining H-mode in the Ip RD as long as possible are instrumental to achieve

low internal plasma inductance (li) and to minimize flux consumption. In JET-ILW,

at a given current rise rate similar variations in li (0.7-0.9) are obtained as in JET-

C. In most discharges no strong W accumulation is observed. However, in some low

density cases during the early phase of the Ip RU (ne/n
Gw
e ∼ 0.2) strong core radiation

due to W influx led to hollow electron temperature (Te) profiles. In JET-ILW Zeff is

significantly lower than in JET-C. W significantly disturbs the discharge evolution

when the W concentration approaches 10−4; this threshold is confirmed by predictive

transport modelling using the CRONOS code. Ip RD experiments in JET-ILW

confirm the result of JET-C that sustained H-mode and elongation reduction are both

instrumental in controlling li.
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1. Introduction

In the last years, simulations and experiments around the world have been focused on

15 MA scenarios for ITER [1], this being the most demanding of the ITER reference

scenarios for the superconducting poloidal field (PF) coils. Indeed the PF system plays

a crucial role during the plasma current (Ip) ramp-up (RU) phase of a discharge: first, it

must provide a stable plasma equilibrium during this phase; second, it must be able to

provide the significant amount of magnetic flux that is needed to ramp up Ip inductively.

Also the current ramp-down (RD) of a burning plasma is a challenging part of plasma

operation. Apart from the issue of not exceeding the density limit, a burning plasma

is usually in H-mode before the Ip RD and shall return to L-mode before termination.

During the H-L transition the plasma quickly loses energy content, which needs to be

properly handled by plasma shape, position and vertical stability systems.

The ITER PF coils must remain within several limits, such as coil current, coil

field, voltage, power and central solenoid force limits. Allowing for control margins, the

PF system of ITER will only allow a range of li = 0.7 − 1.0 [2] (note that throughout

this paper li refers to li(3), as defined in e.g. [2]). Therefore it is important to perform

ITER-like Ip RU and RD experiments in present-day tokamaks, and to extrapolate the

results to ITER by predictive modelling. Such experiments have been done in most of

the available large tokamaks, such as JET, ASDEX-U and DIII-D [2, 3, 4, 5]. Past JET

experiments were done with a carbon wall (JET-C), so their results cannot directly be

extrapolated to ITER. An all-metal ITER-like wall, consisting of beryllium (Be) in the

main chamber and tungsten (W) surfaces in the divertor, has recently been installed in

JET (JET-ILW) [6]. Therefore, dedicated ITER-like Ip RU and RD experiments have

been set up in JET-ILW [7], and matched to similar discharges in JET-C [2, 3], in order

to assess if the flux consumption and plasma inductance li evolution is modified by

the Be-wall and W-divertor during the current rise and current decay: current profile

evolution, plasma controllability issues such as W accumulation in the transient phase

and L-H transition, and consequently to test predictive and interpretative transport

modelling simulations. Flux consumption in this paper is always referring the total flux

consumption, i.e. the sum of the resistive and inductive contribution. This paper also

reports on interpretative and predictive modelling of the experimental results, performed

with the CRONOS suite of codes [8], on the following issues:

(i) the differences between C and Be as main intrinsic impurity, with respect to li
evolution, flux consumption, electron temperature (Te), safety factor (q) profile

evolution and radiation;

(ii) changes in li and flux consumption during Ip RU and RD, e.g. by early transition

into H-mode and maintaining H-mode during Ip RD, and by reducing the elongation

during the Ip RD;

(iii) the maximum W concentration compatible with ohmic or heated Ip RU, without

strongly perturbing li and Te and q profiles.
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In addition, predictive modelling of (iii) is performed for the Ip RU and RD phase of

ITER, using the specifications given by the ITER team.

The paper is organized as follows: Section 2 describes the JET experimental

conditions and the main observations in JET-ILW. Section 3 gives details on the

transport models used for the simulations. Section 4 documents the differences and

similarities between Ip RU in JET-C and JET-ILW. The possibilities for li control

and flux consumption reduction in Ip RU and RD are discussed in section 5. Section

6 presents the role of W in the evolution of the plasma during JET-ILW Ip RU, both

as observed in the experiment and as simulated by predictive modelling; this modelling

has also been performed for ITER. Finally, in section 7 consequences for future ITER

operation are discussed.

2. Experimental set-up and overview of results

The scenario used in the JET experiments was Ip = 2.5 MA, Bt = 2.4 T (corresponding

to q95 ≃ 3) at low triangularity δ ≃ 0.25, low voltage break-down (Eaxis ≃ 0.37 V/m),

early X-point formation at Ip = 0.8 MA, with additional heating (NBI) applied from

plasma current Ip = 1.5 MA. This matches, using the plasma resistivity as guide,

as discussed in [2], the proposed baseline inductive scenario for ITER of 15MA/5.3T

(q95 ≃ 3), X-point formation at ≃ 4 MA and additional heating applied from Ip ≃ 9

MA. This scenario was also used for previous JET-C ITER-like Ip RU studies [2, 3].

Experimental time traces of JET-ILW discharges with ITER-like Ip RU and their JET-C

equivalents, are shown in Fig.1 for the ohmic case; the H-mode Ip RU will be shown in

the next section (Fig.5). The following parameters were varied in the experiments:

• Input power: ohmic, low power L-mode (up to 2.8 MW ICRF) and H-mode (5 MW

NBI) during the Ip RU and RD phases;

• Density: the Greenwald fraction ne/n
Gw
e was varied from 0.2 to 0.4;

• Ip ramp rate: the ramp-up rate used was dIp/dt = 0.36, 0.28 and 0.19 MA/s,

to match the ITER Ip rise phases of 50s, 80s and 100s, respectively. The current

ramp-down rate was varied between -0.14 and -0.5 MA/s along the same guidelines;

• Elongation during Ip RD was reduced from κ ≃ 1.68 (typical value for JET shapes)

to ≃ 1.54 in a few pulses to control the li evolution.

The eXtreme Shape Controller (XSC) including the new Current Limit Avoidance

(CLA) system was used from the X-point formation until the termination of the

discharge in order to achieve good plasma shape control [9] during Ip RU and RD phases.

The current L-H power threshold scaling law [10], used for extrapolations to ITER,

predicts for D, in MW:

Pthr,08 = 0.049Bt
0.80n20

0.72S0.94 (1)

where Bt [T], n20[10
20m−3] and S [m2] are respectively the magnetic field, line-averaged

density, and plasma surface area. Eq.(1) shows that the plasma surface area plays
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Figure 1. Left: Ip, line averaged ne, Te(0) and Te peaking for JET-C pulse 72723

(light cyan) and JET-ILW pulse 83223 (dark red), showing good match. Right: Zeff ,

li, total flux consumption and 〈Te〉 for the same pulses. Note: here and in following

plots dashed lines are from interpretative modelling.

an important role in Pthr, hence that it is important to have a good control of the

plasma shape whilst the plasma current is changing. Compared to the standard JET

Shape Controller (SC, see also [9]), which has been used in the JET-C Ip RU and RD

experiments before [2, 3], the XSC improves the plasma shape control, since it allows to

control (in the least mean square sense) more than 30 plasma shape descriptors, whilst

at most 4 plasma shape descriptors are controlled with SC. During the Ip RU phase

the variation of the plasma surface is ∼ 5% with XSC, whilst it is ∼ 10% with SC.

Furthermore, the XSC improves also the control of plasma shape during disturbances

due to the poloidal β variation induced by the switch-on and switch-off of additional

heating in current rise and decay [11].

As was found in [2, 3], the JET-ILW experiments showed that access to H-mode

early in the ramp-up phase and maintaining H-mode in the ramp-down as long as

possible are instrumental to achieve low internal plasma inductance li (0.7-0.8) and

to minimize flux consumption. Table 1 lists pulse numbers, Ip ramp up rate, heating

powers, electron density (ne), electron temperature (Te), effective charge of the plasma

(Zeff , derived from a single line-of-sight integral of the visible continuum emission)

and li = li(3), as defined in [2], and injected power for both JET-ILW and JET-C

experiments; the quoted values are those obtained at the end of the Ip RU phase. Figure
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2 summarizes the range of plasma inductance at the end of the current rise phase for

JET-ILW and JET-C discharges compared to the ITER allowed range of li. In JET-ILW,

at a given dIp/dt similar variations in li (0.7-0.9) were obtained as in JET-C and are

within the ITER margins; The only exception is the H-mode Ip RU at the highest Ip
ramp rate (0.36 MA/s) where li ≃ 0.62; this case is not present in the JET-C database.

In addition, the measured power threshold Pthr during Ip ramp up was similar to that

obtained in Ip flat top conditions [7], and lower by ∼ 30% than in JET-C and than the

scaling law prediction Pthr,08 [12]. In most discharges no strong W accumulation was

observed. However, in some low density cases (ne/n
Gw
e ∼ 0.2) during the early phase of

the Ip RU strong core radiation due to W influx led to hollow Te profiles [13]. These

results will be discussed more extensively in Section 6.

JET−C JET−ILW req.ITER
0.6

0.7

0.8

0.9

1

1.1

l i(3
)

ohmic
L−mode
H−mode

Figure 2. li ranges obtained at the end of the Ip RU in JET-C and JET-ILW, and

the acceptable li range for ITER.

3. Modelling

Both interpretative and predictive modelling has been performed for a few representative

discharges in JET-C and JET-ILW, both with ohmic and H-mode Ip RU. In the

predictive modelling the evolution of Te and Ti is evolved, using experimental data for

ne and Zeff . The modelling was done with the CRONOS suite of codes [8]. CRONOS

does not use a free-boundary equilibrium solver; however, it can handle time-varying

boundaries, e.g. expanding plasma volume and X-point formation, which is sufficient

for the present analysis. Sawteeth are taken into account in the modelling; the Porcelli

model is used to describe the sawtooth crash [14]. For the predictive modelling the semi-

empirical Bohm-gyroBohm transport model is used (L-mode version, [15]), up to the

edge in the ohmic and L-mode phases, and up to the top of the pedestal (ρ ≃ 0.95) in the

H-mode phase, with experimental edge Te (50-100 eV) and pedestal height, respectively,

as boundary condition. In the past this model has proven to give good reproductions of
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Table 1. Overview of JET-ILW and JET-C (the latter in italics) ITER like Ip RU

experiments. The quoted values are those obtained at the end of the current rise phase.

dis- dIp/dt scenario injected heating Te(0) 〈ne〉 Zeff li(3)

charge [MA/s] power [MW] location [keV] [1019m−3]

83014 0.28 ohmic 0 1.72 4.8 1.24 0.84

83194 0.28 ohmic 0 1.78 7.4 1.16 0.89

83223 0.28 ohmic 0 1.56 8.2 1.15 0.92

83225 0.36 ohmic 0 1.71 7.18 1.12 0.83

83451 0.5 ohmic 0 1.65 8.82 1.04 0.79

83224 0.28 H-mode 5, NBI on-axis 2.71 5.75 1.25 0.69

ILW 83444 0.28 H-mode 5, NBI on-axis 2.0 5.57 1.09 0.70

83445 0.28 H-mode 5, NBI off-axis 1.84 5.83 1.06 0.68

83446 0.28 H-mode 5, NBI on-axis 2.9 3.55 1.09 0.69

83447 0.28 H-mode 5, NBI on-axis 2.5 6.5 1.07 0.72

83449 0.28 L-mode 1.5, RF on-axis 2.7 5.5 1.10 0.82

83450 0.28 L-mode 2.8, RF on-axis 1.84 5.6 1.06 0.82

83226 0.36 H-mode 5, NBI on-axis 2.5 5.73 1.18 0.62

72465 0.19 ohmic 0 2.1 1.5 1.5 1.03

72467 0.28 ohmic 0 2.1 1.5 1.5 0.96

72504 0.28 ohmic 0 1.8 2.3 1.4 0.95

72514 0.28 ohmic 0 2.1 1.5 1.5 0.95

72460 0.36 ohmic 0 2.4 1.1 1.5 0.83

72464 0.36 ohmic 0 2.0 1.6 1.6 0.83

72505 0.28 L-mode 3, RF off-axis 3.2 1.6 2.2 0.97

C 72507 0.28 L-mode 3, RF on-axis 5.6 1.8 1.8 0.81

72506 0.28 L-mode 6, RF on-axis 4.5 1.8 2.8 0.86

72509 0.28 L-mode 5, RF on-axis 6.8 1.8 2.4 0.76

72508 0.28 L-mode 2.2, LHCD on-axis 4.1 1.4 1.8 0.82

72516 0.28 L-mode 4, NBI on-axis 3.6 1.9 1.7 0.87

72511 0.28 H-mode 7, NBI on-axis 4.9 2.1 1.5 0.73

72512 0.28 H-mode 9.8, NBI on-axis 5.0 2.0 1.6 0.68

72517 0.19 L-mode 5.5, NBI on-axis 3.8 1.8 2.0 0.83

the Ip RU phase in JET [4]. It should be noted that first principles models like GLF23

do not reproduce well the ohmic and L-mode Ip RU [4].
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4. Comparison of Ip RU in JET-C and JET-ILW

4.1. Initial phase after plasma breakdown

The much lower recycling with the ILW requires break-down at higher pre-fill pressures

and additional fuelling to maintain the density after break-down. This complicates

low voltage break-down in JET-ILW [16]. Within the limited time allocated to the

ITER-like Ip RU experiments in JET-ILW so far, there was no time to explore reduced

break-down voltage. The more aggressive break-down causes a faster initial Ip rise,

induces n=1 MHD, hence anomalous inward current and heat transport. Therefore,

within 0.5 s after break-down a more peaked Te and higher li are observed in JET-ILW

discharges, compared to JET-C discharges, see Figures 3,4. Low voltage breakdown

with the ILW was successfully optimized after the experiments reported here.
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Figure 3. Te profiles from

Michelson interferometer (ECE)

at 1.4 s (∼ 1 s after break-down)

for the pulses of Fig.1.

Figure 4. Comparison of

initial phase of ohmic Ip RU in

JET-C (JPN 72723, light cyan)

vs. JET-ILW (JPN 83223, dark

red): from top to bottom Vloop,

Ip, n = 1 MHD signal, and li.
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4.2. Ohmic RU

Generally, comparing JET-ILW with JET-C pulses with the same Ip ramp rate, a good

match in li and Te(0) was observed. Yet there are some differences. The main difference

is that Zeff is reduced in JET-ILW [17]. For this reason the current diffusion, as measured

by li, is slower in JET-ILW compared to JET-C. This compensates for the faster li
evolution immediately after BD; consequently after ≃ 5 s li and Te peaking (defined as

Te(0)/〈Te〉) are the same in JET-ILW and JET-C, see Fig.1. There is a slight reduction

in flux consumption in JET-ILW: the effect of lower Zeff is only partially balanced by

the slightly lower 〈Te〉 in the JET-ILW pulses. The modelled current diffusion in the

first 3 seconds is hampered by the poorly defined initial conditions and the poor quality

of the experimental Te data in this phase, both from ECE and LIDAR; after this phase

the experimentally observed current diffusion is well described by the modelled current

diffusion, see Fig.1.

4.3. H-mode RU

In JET-ILW the L-H threshold (Pthr) is reduced compared to JET-C and significantly

below the scaling law prediction (Pthr08) in the density range where the scaling law

prediction is normally valid; we will not further discuss the possible cause of this here,

the reader is referred to [12]. Unfortunately the limited experimental time available did

not allow us to increase the NB power above the JET-C Pthr during Ip RU. Therefore

no good match with JET-C H-mode Ip RU cases could be obtained. In the following we

will compare the JET-ILW H-mode Ip RU case (JPN 83446) with two JET-C pulses: (i)

one H-mode with ∼ double input power (JPN 72512), and (ii) one L-mode with similar

input power (JPN 72516), see Fig.5.

In order to sufficiently screen W influx into the plasma core [18], a high gas puff rate

of typically 5 · 1021 s−1 is applied during H-mode in JET-ILW, whereas in the JET-C

cases the gas puff rate reduced to 0 during H-mode (fuelling by NBI only). This leads to

an increase in ne during H-mode JET-ILW Ip RU by more than a factor of 2. Because

of the higher ne, Te is lower in the JET-ILW case, even lower than in the JET-C L-mode

case, see Fig.5c,d,m,n. There is no significant difference in Te peaking, see Fig.5e,o. The

li reduction achieved with H-mode is the same in JET-ILW and JET-C, although only

half the power was applied in the JET-ILW case, see Fig.5h. Like in the ohmic case, Zeff

is much lower in JET-ILW. The combined effect of lower Zeff and lower 〈Te〉 is that the

flux consumption in the JET-ILW H-mode Ip RU case is slightly higher than in JET-C

H-mode Ip RU, and lower than in JET-C L-mode Ip RU, see Fig.5i,s. The dominant

player here is Zeff ; note that the difference in Zeff between JET-ILW (≃ 1.1) and JET-C

(≃ 2.0) is ∼ 3 times larger than the combined error bar on both Zeff values of ≃ 10%.

Modelling shows that the effect of replacing Zeff in the JET-ILW pulse with the JET-C

Zeff , keeping all other experimental data fixed, is that the flux consumption increases

to the L-mode JET-C case, and also that li increases significantly, see the dashed black

curves in Fig.5r,s.
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Figure 5. Experimental time traces of Ip, PNBI, line averaged ne, Te(0), Te peaking,

〈pe〉, Zeff , li, flux consumption and total radiation for heated Ip RU. Left JET-ILW

H-mode (JPN 83446, dark red) is compared with JET-C H-mode (JPN 72512, light

cyan); the right hand panels compare the same JET-ILW H-mode pulse with JET-C

L-mode (JPN 72516, blue). The vertical dashed lines in panel (b) indicate the

time of the L-H transition. The dashed lines of li and flux consumption are from

interpretative modelling. The dashed black curves in the right hand panels of li and

flux consumption show the effect of Zeff : these curves are the result of interpretative

modelling of JPN 83446 (Zeff ∼ 1.1), however assuming Zeff ∼ 2.0 as in JPN 72516

(see text).

After the L-H transition, both in JET-C and JET-ILW, the plasma enters ELMy

H-mode. However, the ELM characteristics are different in the two cases. In JET-ILW

pulses, after a short initial phase with small ELMs at high frequency, regular type-I
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ELMS set in with ELM frequency (fELMs) ∼ 20 Hz. In contrast, in JET-C Ip RU

type-III ELMs are present with fELMs ∼ 300 Hz, see Fig.6.
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Right: pe at the top of the pedestal as function of time for the same discharges, with

the same colour coding.
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Also the pedestal Te and ne evolution during H-mode Ip RU in JET-ILW is different

from the evolution in JET-C. Due to the stronger gas puff in the JET-ILW case, as

reported in the previous section, at the top of the pedestal neis much higher (and

increases during the Ip RU), and Te (and Ti, not shown here) is much lower, see Fig.7a.

As a consequence, pe at the top of the pedestal is on average the same in JET-ILW as

compared to JET-C, see Fig.7b. The same difference is observed during the flat-top

[18].

4.4. Thermal transport

Predictive modelling has been performed for a few representative discharges in JET-C

and JET-ILW, both with ohmic and H-mode Ip RU. Time traces of Te(0), q(0) and

the IPB98 H-mode factor (HIPB98, [19]) are given in Fig.8, showing good agreement

between experiment and modelling results. In Fig.9 the measured and modelled Te

profiles are compared, both halfway and at the end of the Ip RU, both for the ohmic

and H-mode case. The fact that the modelling is equally satisfactory for JET-C and

JET-ILW indicates that there is no fundamental difference in the thermal transport,

apart from the different pedestal evolution (where higher ne compensates for lower Te

in JET-ILW) discussed before.

5. li control and flux consumption reduction in Ip RU and RD

Control of li and limitation of flux consumption during Ip RU and RD is crucial for

ITER operation. In Fig.10 we show three experimental results, supported with data

from interpretative modelling:

• li during Ip RU can be controlled and flux consumption reduced by early transition

to H-mode, see Fig.10a.

• Similarly sustained H-mode during Ip RD keeps li and flux consumption low, see

Fig.10b.

• In fast ohmic Ip RD elongation reduction prevents uncontrolled rise of li, see

Fig.10c. This is important for ITER when in an emergency case fast current

termination is needed and additional heating is unavailable. ITER modelling has

shown that this concept indeed is a viable option for ITER [20].

In [2] feedback control on input power was used to demonstrate active control of li; this

was not repeated for JET-ILW Ip RU discharges.

6. Role of W in JET-ILW Ip RU

6.1. Experimental observations

The amount of W sputtering from the divertor plates is mainly determined by the

divertor temperature (Te,div). Langmuir probe measurements show that the inter-ELM
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Figure 8. Comparison of Te(0), q(0)and HIPB98 from experiment (full lines) and

from predictive modelling using the Bohm-gyroBohm model (dashed lines), for ohmic

(left) and H-mode Ip RU for JET-C (light cyan) and JET-ILW (dark red). Data from

JPN 72723 (ohmic, JET-C), 72512 (H-mode, JET-C), 83223 (ohmic, JET-ILW)

and 83224 (H-mode, JET-ILW).

Te,div during H-mode Ip RU in the experiments under consideration is similar to Te,div

during ohmic Ip RU, ∼ 5 eV. This low Te,div during H-mode Ip RU is caused by the

strong applied fuelling. However, Te,div in H-mode Ip RU during ELMs is much higher

(∼ 100 eV). This causes transiently strongly increased W influx in JET-ILW H-mode

Ip RU [21], and hence enhanced core radiation compared to the ohmic phase, see lowest

panels of Fig.5. Tomographic reconstruction of SXR emissivity shows that the core

radiation is strongly peaked during H-mode Ip RU, with central value a factor ≃ 30

higher than in an ohmic pulse, see Fig.11. However, the sawteeth, when present,

periodically suppress the central peaking.

It is estimated that >≃ 90% of the core SXR emission in JET-ILW discharges

comes from W radiation (the remaining fraction mainly comes from Ni) [22]. Using this

assumption, the local W concentration nW/ne can be calculated from the local Te, ne

and SXR emissivity [23]. The SXR signal in ohmic pulses is too low for this W density

calculation, hence in the following only the H-mode pulses are analyzed. The left hand

panels of Fig.12 show time traces of SXR radiation and calculated W concentration at

various radii for JPN 83224, showing the effect of a sawtooth crash on the central W

density. The right hand panels of Fig.12 show profiles of SXR radiation and nW/ne

12
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Figure 11. Tomographic reconstruction of SXR emissivity at the end of the ramp-

up for a JET-ILW ohmic (JPN 83223, left) and H-mode (83224, right) case. The

JET vessel (cyan), LCF (magenta) and a number of flux surfaces (yellow) are also

shown. The shown color bar is valid for both plots; the unit is kW/m3. Note that the
10log of the emissivity is plotted. The emissivity in the H-mode case is much more

peaked, and is a factor ∼ 30 higher in the centre, compared to the ohmic case.

before and after sawtooth crashes.

It should be noted that the W density can also be determined via JETTO/SANCO

[24] impurity transport simulations, where the W influx and W transport coefficients

are adjusted iteratively such that the predicted SXR emission matches the measured

line integrated emission from three SXR cameras. It has been shown that this method

yields similar nW profiles [25].

In a few cases a so-called W-event occurred: a sudden influx of W, causing increased

core radiation and thus increased central nW/ne; an example of this is shown in Fig.13

(W-event at 5.5 s). In such cases the radiation temporarily becomes the dominant term

in the local power balance in the centre of the plasma, thus leading to a net energy sink

in the centre. This in turn leads to a reduction of core Te, and finally to a hollow Te

profile. Sawteeth disappear, as well as the sawtooth induced W removal from the core,

leading to an even more peaked W profile. After such an event, the plasma remains in a

stable non-sawtoothing regime with peaked W profile and hollow Te profile, see Fig.14

(and the hollow Te profile shown in Fig.16). The li evolution is hardly affected, as the

profile changes only occur in a small plasma volume.
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Figure 12. SXR radiation (upper panels) and derived W concentration (lower

panels) of JPN 83224. Left upper panel: time traces of SXR radiation around

a sawtooth collapse: inside separatrix (light cyan), inside ρ = 0.4 (dark green),

inside ρ = 0.15 (orange). Left lower panel: W concentration at ρ = 0, 0.3, 0.45

(orange, dark green, light cyan). Right panels: profiles of SXR emissivity (upper)

and W profiles (lower) just before (orange) and just after (dark green) sawtooth crash.

Typical error bars are indicated.

6.2. Predictive modelling

Predictive modelling was performed with CRONOS to assess the effect of W radiation on

the discharge evolution, and more specifically to assess the critical nW/ne above which

the plasma bifurcates into a non-sawtoothing regime with a hollow Te profile. This

was done both for ohmic Ip RU (not shown here) and during H-mode Ip RU, assuming

both flat and peaked nW/ne profiles. The nW/ne scan in H-mode was based on JPN

83224, i.e. NBI was switched on at 4 s and the experimental ne of this pulse was used.

The transport modelling was performed as outlined in Section 3. The W radiation was

calculated using atomic physics data from [23]; the predictions of this model only slightly

deviate from the simple average ion model [26]. As for Zeff , for the reference run without

W the experimental line averaged Zeff was assumed, independent of radius, with Be as

only impurity. Subsequently, increasing nW/ne fractions were added, without changing

the Be concentration, thus leading to a modest increase of Zeff , but significant increase

in core radiation.

A low nW/ne concentration of 10−5 was assumed in the ohmic phase, as observed

in the experiments; in the H-mode phase higher nW/ne concentrations were assumed,

up to 2 · 10−4. When flat nW/ne is assumed, increasing nW/ne from 10−5 to 10−4 leads

to lower Te and an enhanced flux consumption; however, the li evolution and q profile

are nearly unchanged, see Fig.15.
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Figure 13. Comparison of JPN 83224 (full lines) and 83444 (dashed lines), the

latter showing a W event. Left upper panel: time traces of SXR radiation inside

ρ = 1, 0.4 and 0.15 (light cyan, dark green, orange); in black the total radiated

power. Left lower panel: nW/ne at ρ = 0, 0.3, 0.45 (orange, dark green, light cyan).

Right panels: profiles of SXR emissivity and W profiles at selected time slices around

t = 6 s, showing continuous peaking of radiation and W concentration for JPN 83444,

whereas the peaking is interrupted by the sawteeth for JPN 83224.

The behaviour with peaked nW/ne is completely different: here a transition to a

non-sawtoothing regime with a hollow Te profile and reversed magnetic shear is observed

above a critical central nW/ne ∼ 10−4, see Fig.16. It should be noted that the case with

nW/ne(0) = 10−4 (green dashed line) is just at the margin: it has a few sawteeth

and then has q > 1. This critical nW/ne for the peaked case agrees very well with

the experimental findings as described in the previous subsection, see Fig. 13. The

modelling confirms the experimental observation that the li evolution is hardly affected;

only with a much higher central nW/ne of order 10−4, one sees a significant reduction

of li.

6.3. Extrapolation to ITER

In ITER W radiation will be different than in current devices. Because of the higher

Te in ITER, the W radiation peak will move (far) off axis. An example of this is shown

in Fig.17. This will strongly modify the effect of W influx on the discharge evolution.

Instead of hollow Te and reversed shear, one might expect the opposite, i.e. very peaked

Te and in extreme cases an effective shrinking of the plasma column.

We have thus modelled the effect of W radiation for an ITER case, under conditions

of ohmic, L-mode and H-mode Ip RU and assuming both flat and peaked nW/ne. Some

simulations were post-processed by the FREEBIE code [27] to compute the currents in
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Figure 14. Time traces of Ip, PNBI, Te(0), 〈ne〉 and li for JPN 83224 (light cyan)

and 83444 (dark red). Although central Te is strongly reduced in pulse 83444, li is not

affected.

the PF coils, allowing to check that the designed scenario stays within the CS and PF

coils operational limits.

Full results of this modelling will be published in a forthcoming paper [28]. Here

only a brief summary is given. For the case of flat nW/ne the simulations show that

an ohmic Ip RU in ITER can only tolerate a W concentration of order 10−4. Indeed

the effect is a peaking of the Te profile, resulting in unacceptably high li up to more

than 1.5. Off-axis ECRH can counteract this: when 20 MW of off-axis ECRH power

is applied from early in the Ip RU, the critical W concentration is increased by a

factor of ≃ 4. Because of the low radiation of W at the high core Te expected in

ITER, a peaked W radiation profile will only occur in case of strongly peaked nW/ne,

nW/ne(0)/nW/ne(ρ = 0.5) >≃ 5. A hollow Te profile during the ohmic ITER Ip RU

can be expected only when nW/ne is extremely peaked and nW/ne ≃ 3 · 10−4.

7. Conclusions, Discussion and Outlook

Initial JET-ILW ITER-like Ip RU and RD experiments have allowed gaining useful

insight for ITER. Despite changes to the plasma composition in going from JET-C

to JET-ILW, the main results obtained in the JET-C experiments are preserved; in
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(8 s).

particular a similar range in li is achieved. Zeff is significantly lower in JET-ILW

discharges, compared to JET-C; this leads to a slower current diffusion and slightly

lower flux consumption in JET-ILW. As was already seen in JET-C, with H-mode

Ip RU and sustained H-mode far into Ip RD, li can be kept within acceptable ITER-

limits, and strong reduction of flux consumption is obtained.

A new element, and key for ITER, is the role of W in the discharge evolution. The

effect of W on Zeff is small; even when nW/ne = 10−4, its contribution to Zeff is only

0.16. However, during H-mode Ip RU nW/ne can peak strongly, and core W radiation is

in these cases significant. Sawteeth suppress the nW/ne peaking, and keep W radiation

under control. In some cases a sudden extra W influx leads to enhanced radiation;

the plasma then tends to bifurcate into a non-sawtoothing regime with hollow Te and

reversed magnetic shear. Once the plasma has entered such regime, it is hard to recover

to the usual (sawtoothing) regime, and similar incidents during the flat-top have shown

that this event may eventually lead to a disruption [29]. This also implies that control

of W influx is even more important for advanced scenarios, which are sawtooth free.

Indeed, in Ip RU experiments for the hybrid scenario, which are typically sawtooth-free,

there are many cases with strong W peaking and strongly hollow Te profiles [13].

Future JET ITER-like Ip RU and RD experiments will explore ramp rates different

from the standard 0.28 MA/s. Moreover, in order to have a better match with JET-C
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Figure 16. Same plots as Fig.15, now assuming peaked nW/ne. For comparison

also experimental time traces of Te(0) are plotted: blue/green dashed dotted lines for

JPN 83224/83444. The measured Te profile (from ECE) at 8 s of JPN 83444 is

plotted as well (black dashed dotted line), showing a moderate hollowness for JPN

83444, in good agreement with the modelled profile with the same nW/ne (dotted

green curve).

experiments, H-mode Ip RU and RD will be performed at enhanced NBI power.

Predictive modelling has assessed the role of W radiation in the discharge evolution.

It was shown that a flat nW/ne is not very harmful to the stability of the discharge, as

q profile and li are not affected. Peaked nW/ne was shown to lead to a non-sawtoothing

regime with hollow Te and reversed magnetic shear above a critical central value of

≃ 10−4, in very good agreement with the experimental findings.

To avoid deleterious W peaking in H-mode ITER pulses, it might be essential to

have a sawtoothing plasma or to apply significant central (electron) heating. The latter

has proven to be an effective tool to enhance turbulent transport and even to reverse

the sign of the convective impurity transport in e.g. AUG [30], and may be essential

for advanced (sawtooth-free) scenarios. It should be noted that neoclassical inward

convection is the most important W transport term when ne is peaked [25]. These

requirements are likely to put extra constraints on the ITER operational space or the

range of plasma operating scenarios that can be used.

For a more realistic assessment of the role of W in the discharge evolution, the

assumed nW/ne profiles should be replaced by calculated profiles. For this purpose

a simple (semi-empirical) transport model for W would be needed to be built into a
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Figure 17. Left: radiation per m3 for Bremsstrahlung and Be, C and W impurities

at the given concentrations, as function of Te. Right: radial profile of radiation per

m3 for the same impurities, in the last phase of a typical ohmic ITER Ip RU, showing

far off-axis peaking of W radiation. Two profiles are given for the W radiation, based

on [26] (labelled AIM) and [23] (labelled Puett). Parameters: Ip = 10 MA, Te(0)

= 6 keV, ne(0) = 2.5 · 1019m−3, Zeff = 1.8, only impurities assumed are Be with

nBe/ne = 0.06 and W with nW/ne = 2.3 10−5.

transport code. It has been shown that core W transport is predominantly neoclassical

[25], so a first ansatz could be to take into account only neoclassical W transport.
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