7,170 research outputs found

    Method and apparatus for producing microshells

    Get PDF
    A method is described for forming hollow particles, or shells, of extremely small size. The shell material is heated to a molten temperature in the presence of a gas that is at least moderately soluble in the shell material, to form a solution of the molten shell material and the soluble gas. The solution is atomized to form a multiplicity of separate droplets that are cooled while in free fall. Cooling of a droplet from the outside traps the desolved gas and forces it to form a gas bubble at the center of the droplet which now forms a gas filled shell. The shell is reheated and then cooled in free fall, in an environment having a lower pressure than the gas pressure in the shell. This causes expansion of the shell and the formation of a shell having a small wall thickness compared to its diameter

    Winning an Independence Achievement Game.

    Get PDF
    The game Generalized Kayles (or Independence Achievement) is played by two players A and B on an arbitrary graph G. The players alternate removing a vertex and its neighbors from G, the winner being the last player with a nonempty set from which to choose. In this thesis, we present winning strategies for some paths

    On the nonlinear influence of Reserve Bank of Australia interventions on exchange rates

    Get PDF
    This paper applies nonlinear econometric models to empirically investigate the effectiveness of the Reserve Bank of Australia (RBA) exchange rate policy. First, results from a STARTZ model are provided revealing nonlinear mean reversion of the Australian dollar exchange rate in the sense that mean reversion increases with the degree of exchange rate misalignment. Second, a STR-GARCH model suggests that RBA interventions account for this result by strengthening foreign exchange traders' confidence in fundamental analysis. This in line with the so-called coordination channel of intervention effectiveness. --Foreign exchange intervention,market microstructure,smooth transition,nonlinear mean reversion

    The Transition between Nonorthogonal Polarization Modes in PSR B2016+28 at 1404 MHz

    Full text link
    Polarization observations of the radio emission from PSR B2016+28 at 1404 MHz reveal properties that are consistent with two, very different, interpretations of the pulsar's viewing geometry. The pulsar's average polarization properties show a rapid change in position angle (PA) near the pulse center, suggesting that the observer's sightline nearly intersects the star's magnetic pole. But single pulse, polarization observations of the pulsar show nearly orthogonal modes of polarization following relatively flat and parallel PA trajectories across the pulse, suggesting that the sightline is far from the pole. Additionally, PA histograms reveal a "modal connecting bridge", of unknown origin, joining the modal PA trajectories over much of the pulse and following the rapid PA change shown in the average data. The nonorthogonality of polarization modes is incorporated in a statistical model of radio polarization to account for the deviations from mode orthogonality that are observed in the pulsar. The model is used to interpret the rapid PA change and modal connecting bridge as a longitudinally-resolved transition between modes of nonorthogonal polarization. Thus, the modal PA trajectories are argued to reflect the pulsar's true viewing geometry. This interpretation is consistent with the pulsar's morphological classification, preserves the Radhakrishnan & Cooke model of pulsar radio emission, and avoids the complication that the modal connecting bridge might be produced by some other emission mechanism. The statistical model's ability to simulate the rich variety of polarization properties observed in the emission lends additional support to the model's applicability and its underlying assumption that the polarization modes occur simultaneously.Comment: Accepted for publication in Ap

    Depletion of atmospheric nitrate and chloride as a consequence of the Toba Volcanic Eruption

    Get PDF
    Continuous measurements of SO42− and electrical conductivity (ECM) along the GISP2 ice core record the Toba mega‐eruption at a depth 2590.95 to 2091.25 m (71,000±5000 years ago). Major chemical species were analyzed at a resolution of 1 cm per sample for this section. An ∌6‐year long period with extremely high volcanic SO42− coincident with a 94% depletion of nitrate and 63% depletion of chloride is observed at the depth of the Toba horizon. Such a reduction of chloride in a volcanic layer preserved in an ice core has not been observed in any previous studies. The nearly complete depletion of nitrate (to 5 ppb) encountered at the Toba level is the lowest value in the entire ∌250,000 years of the GISP2 ice core record. We propose possible mechanisms to explain the depletion of nitrate and chloride resulting from this mega‐eruption

    Volcanic aerosol records and tephrochronology of the Summit, Greenland, ice cores

    Get PDF
    The recently collected Greenland Ice Sheet Project 2 (GISP2) and Greenland Ice Core Project ice cores from Summit, Greenland, provide lengthy and highly resolved records of the deposition of both the aerosol (H2SO4) and silicate (tephra) components of past volcanism. Both types of data are very beneficial in developing the hemispheric to global chronology of explosive volcanism and evaluating the entire volcanism‐climate system. The continuous time series of volcanic SO42− for the last 110,000 years show a strong relationship between periods of increased volcanism and periods of climatic change. The greatest number of volcanic SO42− signals, many of very high magnitude, occur during and after the final stages of deglaciation (6000–17,000 years ago), possibly reflecting the increased crustal stresses that occur with changing volumes of continental ice sheets and with the subsequent changes in the volume of water in ocean basins (sea level change). The increase in the number of volcanic SO42− signals at 27,000–36,000 and 79,000–85,000 years ago may be related to initial ice sheet growth prior to the glacial maximum and prior to the beginning of the last period of glaciation, respectively. A comparison of the electrical conductivity of the GISP2 core with that of the volcanic SO42− record for the Holocene indicates that only about half of the larger volcanic signals are coincident in the two records. Other volcanic acids besides H2SO4 and other SO42− sources can complicate the comparisons, although the threshold level picked to make such comparisons is especially critical. Tephra has been found in both cores with a composition similar to that originating from the Vatnaöldur eruption that produced the Settlement Layer in Iceland (mid‐A.D. 870s), from the Icelandic eruption that produced the Saksunarvatn ash (∌10,300 years ago), and from the Icelandic eruption(s) that produced the Z2 ash zone in North Atlantic marine cores (∌52,700 years ago). The presence of these layers provides absolute time lines for correlation between the two cores and for correlation with proxy records from marine sediment cores and terrestrial deposits containing these same tephras. The presence of both rhyolitic and basaltic shards in the Z2 ash in theGISP2 core and the composition of the basaltic grains lend support to multiple Icelandic sources (Torfajökull area and Katla) for the Z2 layer. Deposition of the Z2 layer occurs at the beginning of a stadial event, further reflecting the possibility of a volcanic triggering by the effects of changing climatic conditions
    • 

    corecore