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ABSTRACT

Winning an Independence Achievement Game

by

Mark Christopher Taylor

The game ”Generalized Kayles (or Independence Achievement)” is played by two

players A and B on an arbitrary graph G. The players alternate removing a vertex
and its neighbors from G, the winner being the last player with a nonempty set from

which to choose. In this thesis, we present winning strategies for some paths.
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1 Introduction

1.1 Graph Theory

For notation and graph theory terminology we in general follow [3] or [5]. Specifically,

let G = (V, E) be a graph with vertex set V of order n and edge set E, and let v be a

vertex in V . The edge e = {u, v} is said to join the vertices u and v. If e = {u, v} is

an edge of a graph G, then we say that u and v are adjacent vertices. The order of

G, denoted n, is the cardinality of its vertex set. For example, in Figure 1, the order

of the graph would be n = 4 and, the vertex d is adjacent to b and c. For any vertex

v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E}, and its

closed neighborhood is the set N [v] = N(v) ∪ {v}. For instance, in Figure 1, the

open and closed neighborhoods of a are as follows.

N(a) = {b, c}

N [a] = {a, b, c}

✉

✉

✉

✉

b

d

a

c

G :

Figure 1: Example 1.

1



The degree of a vertex v is the number of edges incident with v, denoted deg v.

A vertex with degree 1 is called an end-vertex, while a vertex adjacent to an end-

vertex is called a support vertex. Notice, in Figure 2 there are two end-vertices,

namely h and p. There are also two support vertices, namely i and o.

✉✉✉ ✉ ✉ ✉✉✉ ✉

h i l o pj nk m

G :

Figure 2: Example 2.

Two vertices that are not adjacent in a graph G are said to be independent.

A vertex v in a graph G is said to dominate itself and each of its neighbors, that

is, v dominates the vertices in its closed neighborhood. A set S of vertices of G is a

dominating set of G if every vertex of G is dominated by at least one vertex of S.

A set S of vertices in a graph G is called an independent dominating set of G if

S is both an independent and a dominating set of G.

In graph theory, much time is spent studying properties of certain families of

graphs. (Families are collections of graphs which may vary in order and size, but all

have the same basic structure.) There are several different families of graphs that we

consider, and we will briefly describe a few of them.

1) Let u and v be (not necessarily distinct) vertices of a graph G. A u − v path of

G is a finite, alternating sequence

u = u0, e1, u1, e2, ..., uk−1, ek, uk = v

2



of vertices and edges, beginning with vertex u and ending with vertex v such that

ei = ui−1ui for i = 1, 2, ..., k, and no vertex is repeated. The number k is called the

length of the path, and a trivial path is one which contains no edges, that is, k = 0.

A path on n vertices is denoted Pn. An example of the path P9 is shown in Figure 2.

2) A cycle on n vertices, denoted Cn is a path that starts and ends at the same vertex

An example of the cycle C4 is shown in Figure 1.

3) A graph is said to be complete if every pair of its vertices are adjacent. A complete

graph is denoted Kn. An example of the complete graph K4 is shown in Figure 3.

✉

✉

✉

✉

❅
❅

❅
❅

❅
❅❅

�
�

�
�

�
��

G :

Figure 3: A complete graph on four vertices.

4) For this family, we use the definition and terminology from [5]. The n-cube or

hypercube, denoted Qn, can be considered to be the graph whose vertices are la-

beled by binary n-tuples and such that two vertices are adjacent if and only if their

corresponding n-tuples differ at precisely one coordinate. The hypercube Q3 is shown

in Figure 4.
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✉

✉

✉

✉

✉

✉ ✉

✉

�
�

��

❅
❅

❅❅

❅
❅

❅❅

�
�

��

G :

Figure 4: Hypercube, Q3.

5) A bipartite graph is a graph with the property that the V (G) can be partitioned

into two subsets V1 and V2 such that every element of E(G) joins a vertex of V1 to a

vertex of V2. A complete bipartite graph G is a bipartite graph having the added

property that for all u ∈ V1 and v ∈ V2, then uv ∈ E(G). If |V1| = r and |V2| = s, then

the complete bipartite graph is denoted Kr,s. An example of the complete bipartite

graph K2,3 is shown in Figure 5.

✉

✉

✉

✉

✉

✏✏✏✏✏

�����

✏✏✏✏✏

�����

❅
❅

❅
❅

❅

�
�

�
�

�

Figure 5: A complete bipartite graph K2,3.
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Now we have explained some basic definitions and graphs that will be helpful in

understanding the later material. In the next sections, additional definitions will be

given as needed.
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1.2 Independent Achievement Game

The game we considered consists of two players A and B, who alternate moves on a

graph G. On each move Player A or B selects a vertex that is not already selected.

Once a vertex is selected no others in its closed neighborhood can be selected, i.e., the

selected vertices must form an independent set. For example, in Figure 6 below if the

vertex s is selected, then the vertices r and t can no longer be selected.

✉✉✉ ✉. . .

tr

. . .

s u

Figure 6: Example 3.

The object of the game is to be the player to make the last move. The last

player to select a vertex wins. Thus the player selecting a vertex that completes an

independent dominating set (of selected vertices) wins the game. We assume that

each player makes the best move possible.

First let’s consider playing the game on a complete graph. It is clear from Figure 7

below that Player A will always win on this family of graphs. Once any vertex is

selected, all others are in its closed neighborhood. Therefore there is only one move

for any complete graph.

6



✉

✉ ✉

✉ ✉

�
�

��

❅
❅

❅❅

✁
✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆
❆❆

✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

Figure 7: A complete graph on five vertices.

Next let’s consider playing on a hypercube Qn. Once Player A selects the first

vertex, then Player B will always select the antipodal vertex of the one selected. For

example, in Figure 8, if Player A was to select the vertex j, then Player B would

select the vertex p. Basically Player B uses a reflective strategy. Since there is always

an even number of moves when playing on a hypercube, Player B will always win.

✉

✉

✉

✉

✉

✉ ✉

✉

�
�

��

❅
❅

❅❅

❅
❅

❅❅

�
�

��
j k

l m

n
o

p

q
G :

Figure 8: Hypercube, Q3.
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Next let’s consider playing on a complete bipartite Kr,s.

Theorem 1 Player A wins on a Kr,s if and only if one of r or s is odd.

Proof. Note that if Player A selects a vertex from a partite set, then the vertices

of the other partite are eliminated from play (because they are in the neighborhood

of the selected vertex).

Hence by selecting a vertex Player A determines the number of moves in the game.

If one of r or s is odd, then Player A will select a vertex in the odd partite set. Since

there is an odd number of moves, Player A will win. On the other hand if both r and

s are even, no matter from which set A chooses, the number of moves in the game is

even, resulting in a win for Player B.✷

Notice in Figure 9, if Player A selects the vertex a, then Player B must select from

either vertex b or c. Thus leaving the final vertex for Player A.

✉

✉

✉

✉

✉

✉

�
�

�
�

�
��

❍❍❍❍❍❍❍✟✟✟✟✟✟✟

❅
❅

❅
❅

❅
❅❅

✟✟✟✟✟✟✟

❍❍❍❍❍❍❍
a

b

c

d

e

f

Figure 9: A complete bipartite graph K3,3.
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This game was first introduced in [1]. The authors focused on the graphs con-

taining no cycle of length seven or smaller. They presented a characterization of the

collection of graphs in which every maximal independent set of vertices is maximum.

They also stated that for an arbitrary graph a winning strategy is ”very difficult” to

determine.

The game was also mentioned in [2]. The authors refer to the game as ”Generalized

Kayles”. They stated that the problem of whether the first player could force a win is

PSPACE-complete [6]. Their results were focused on characterizing the parity graphs

of girth greater than five in such a way as to show that those graphs can be recognized

in polynomial time.

In the next chapter, we use the terminology ”results in a subgraph . . . ” to indicate

the subgraph induced by the vertices available to be chosen after a given move.

9



2 Results

In this chapter, I present results that I obtained for paths. First we will focus on all

paths that are odd in length. It turns out there is a strategy that will work for all

odd paths.

Theorem 2 Player A wins on all odd paths P2k+1, k ≥ 0.

Proof. Let the vertices be labeled v1, v2, ..., v2k+1, k ≥ 0. Player A will select the

center vertex, namely vertex vk+1. Once A has selected the center vertex, he mirrors

Player B’s remaining moves until A wins. More precisely, for i = 1, 2, ..., k, if B

chooses vertex vk+1+i (respectively, vk+1−i) then A selects vertex vk+1−i (respectively,

vk+1+i). Since there will always be an even number of moves after A selects the center

vertex, Player A will win on any odd path. ✷

For example, consider the following path P9.

✉✉✉ ✉ ✉ ✉✉✉ ✉

v1 v2 v5 v8 v9v3 v7

Figure 10: A path on nine vertices.

Notice that after Player A selects the vertex v5, Player B must select from v1, v2, v3,

v7, v8, or v9. It is easy to see that Player A will win by following the strategy given

in Theorem 2.

10



One might think that since all of the paths odd in length were classified easily, it

would be just as easy to give winning strategies for the remaining paths. However,

the classification of even paths is much more difficult. As of yet we have been unable

to determine a strategy for the paths even in length. The P2 is trivial since it will

always be won by Player A with the first move. Hence we consider paths of even

order at least four. Let P2k be labeled v1, v2, ..., v2k.

Lemma 3 If the path P2k is won by Player B, then the path P2k+2 will be won by

Player A.

Proof. Suppose we have a path P2k+2 and Player B wins on the path P2k. Player

A will select the vertex v1. This will result in Player B selecting first on a path P2k.

Since the path P2k is won by the second player, Player A will win on a path P2k+2.✷

Theorem 4 Player B wins on the P4.

Proof. No matter which vertex Player A selects to begin the game, there is only one

more move left with Player B selecting. Therefore Player B wins on a P4. ✷

✉✉✉ ✉

v1 v2 v3 v4

Figure 11: A path on four vertices.
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When we considered the P6, we found that there are only two distinct winning

strategies for Player A.

Theorem 5 Player A wins on the P6 and there are exactly two strategies for winning.

Proof. (Strategy 1)

By Lemma 3, Player A can guarantee a win by selecting vertex v1.

(Strategy 2)

Player A can guarantee a win by selecting vertex v3. Notice this results in two

disjoint paths, each with only one move. Therefore when Player B selects from one

of the paths, he leaves one move for Player A. Thus A wins on a P6 with this strategy.

By investigation of all possibilities, it is a simple exercise to show that these are

the only two strategies.✷

✉✉✉ ✉✉ ✉

v1 v2 v3 v4 v5 v6

Figure 12: A path on six vertices.

The next path we considered was similar to the P4, in the fact that Player B will win

no matter what Player A does, so Player A cannot guarantee a win.

Theorem 6 Player B wins on a P8.

Proof. By symmetry, Player A has only four distinct choices to begin the game.

Thus we must consider four different selections of Player A’s first move.

12



Case 1. Suppose A selects the vertex v1. This results in Player B selecting first

on a P6. From the previous strategies for a P6 we know that B would be able to

guarantee a win. Therefore Player B will win on a P8 if Player A begins with vertex

v1.

Case 2. Suppose Player A selects the vertex v2. This results in a P5, with Player

B making the next move. This would guarantee a win for B according to Theorem 2.

Therefore Player B will win on a P8 if Player A begins with vertex v2.

Case 3. Suppose Player A selects the vertex v3. This results in two disjoint paths

a P1 and a P4. Thus there are a total of 3 moves remaining. Regardless of which

vertex B selects, there will be exactly 2 moves remaining. Therefore Player B will

win on a P8 if Player A begins with vertex v3.

Case 4. Suppose Player A selects the vertex v4. This results once again in two

disjoint paths a P2 and a P3. Player B will next select an end-vertex of the P3, namely

the vertex v6 or v8. This will leave a P1 and a P2. Therefore there are only 2 moves

remaining with Player A selecting next. Thus Player B will win on a P8 if Player A

begins with vertex v4.✷

✉✉✉ ✉✉✉ ✉ ✉

v1 v2 v3 v4 v5 v6 v7 v8

Figure 13: A path on eight vertices.
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The next path we considered was similar to the P6, in the fact that Player A has

two distinct strategies to guarantee a win.

Theorem 7 Player A wins on the P10 and there are at least two strategies for win-

ning.

Proof. (Strategy 1)

Player A can guarantee a win by selecting vertex v1. Notice this results in a P8 with

Player B now selecting. By Lemma 3, A wins on a P10 with this strategy.

(Strategy 2)

Player A can guarantee a win by selecting vertex v3. Notice this results in two disjoint

paths, a P1 and P6. Player B cannot select v1 because this would result in Player A

selecting first on a P6, and from Theorem 5 it is clear A would win. Therefore Player

B must select from the resulting P6. Again from symmetry, we know that Player B

has three choices for his next move. This means we must consider three cases:

Case 1. Suppose Player B selects the vertex v5. This results in two disjoint paths,

a P1 and a P4. From the strategy in Theorem 6 Case 3, the first player selecting on

this configuration wins. Since it is Player A’s turn, he would win on a P10 with this

strategy.

Case 2. Suppose Player B selects the vertex v6. This results in two disjoint paths,

a P1 and a P3. Player A would then select one of the end-vertices of the P3. This

results in only two moves remaining with Player B selecting first. Therefore A wins

on a P10 with this strategy.

14



Case 3. Suppose Player B selects the vertex v7. This results in three disjoint

paths each with only one move. Since Player A is selecting and there are only three

moves remaining, he wins on a P10 with this strategy.

Thus Player A can guarantee a victory on a P10 by using one of these two strategies.

✷

✉✉✉ ✉✉✉ ✉ ✉ ✉✉

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 14: A path on ten vertices.

On the next path P12, Player A once again has a definite strategy to guarantee a

win.

Theorem 8 Player A wins on the P12.

Proof. Player A will begin by selecting vertex v4. Notice this results in two

disjoint paths, a P2 and P7. Player B cannot select v1 or v2 because this would result

in Player A selecting first on a P7, and from Theorem 2 it is clear A would win. That

leaves, by symmetry, only four vertices from which Player B must select. Thus we

have four cases to consider.

Case 1. Suppose Player B selects the vertex v6. Player A would then select the

vertex v9 with his second move. This results in only two moves remaining. Since

15



Player B must select next, Player A will win on a P12 with this strategy.

Case 2. Suppose Player B selects the vertex v7. Player A would then select the

vertex v10 with his second move. This results in only two moves remaining. Since

Player B must select next, Player A will win on a P12 with this strategy.

Case 3. Suppose Player B selects the vertex v8. Player A would then select the

vertex v11 with his second move. This results in only two moves remaining. Since

Player B must select next, Player A will win on a P12 with this strategy.

Case 4. Suppose Player B selects the vertex v9. This results in three disjoint

paths each with only one move. Since Player A is selecting and there is only three

moves remaining, he wins on a P12 with this strategy.

Therefore Player A will always win on the path P12.✷

✉✉✉ ✉✉✉ ✉ ✉ ✉✉ ✉ ✉

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Figure 15: A path on twelve vertices.

The next path we considered was similar to both P4 and P8, in the fact that Player

A cannot guarantee a victory.

Theorem 9 Player B wins on a P14.

Proof. By symmetry, Player A has seven distinct choices to begin the game. Thus

we must consider seven different selections of Player A’s first move.

16



Case 1. Suppose A selects the vertex v1. This results in Player B selecting first

on a P12. From the previous strategy for a P12 we know that B would be able to

guarantee a win. Therefore Player B will win on a P14 if Player A begins with vertex

v1.

Case 2. Suppose Player A selects the vertex v2. This results in a P11, with Player

B making the next move. This would guarantee a win for B according to Theorem 2.

Therefore Player B will win on a P14 if Player A begins with vertex v2.

Case 3. Suppose Player A selects the vertex v3. This results in 2 disjoint paths

a P1 and a P10. Player B will then select the vertex v6. This results in two disjoint

paths a P1 and a P7. Player A could not select v1 because it would result in an odd

path with Player B selecting. Because of symmetry Player A has four distinct choices

for the next move. We must consider all four selections. Case 3a. Suppose Player

A selects vertex v8 with his second move. Player B will then select the vertex v11

with his second move. This results in two disjoint paths a P1 and a P2. Thus there

are only two moves remaining with Player A selecting. Therefore Player B will win

on a P14 if this strategy is used. Case 3b. Suppose Player A selects vertex v9 with

his second move. Player B will then select the vertex v11 with his second move. This

results in two disjoint paths a P1 and a P2. Thus there are only two moves remaining

with Player A selecting. Therefore Player B will win on a P14 if this strategy is used.

Case 3c. Suppose Player A selects vertex v10. Player B will then select the vertex

v13 with his second move. This results in two disjoint P1’s. Thus there are only two

moves remaining with Player A selecting. Therefore Player B will win on a P14 if

this strategy is used. Case 3d. Suppose Player A selects vertex v11. This results in

17



three disjoint paths each with only one move. Since Player B is selecting and there

are exactly three moves remaining, he wins on a P14 with this strategy.

Case 4. Suppose Player A selects the vertex v4. Player B will then select the

vertex v6. This results in almost the same configuration as in Case 3. In fact, it does

result in the same number of remaining moves. Therefore Player B will win with this

strategy by the same argument in Case 3.

Case 5. Suppose Player A selects the vertex v5. Player B will then select the

vertex v2. This results in a P8 with Player A selecting next. From the Theorem 6 we

know Player B will win with this strategy on a P14.

Case 6. Suppose Player A selects the vertex v6. Player B will then select the

vertex v3. This results in the exact configuration as in Case 3. Therefore from

previous arguments we know Player B will win on a P14 with this strategy.

Case 7. Suppose Player A selects the vertex v7. Player B will then select the

vertex v4. This results in two disjoint paths a P2 and a P6. Thus, there are four distinct

moves for Player A’s next selection. We must consider all four choices. Case 7a.

Suppose Player A selects the vertex v1 (respectively, v2) with his second move. This

results in Player B selecting first on a P6. From Theorem 5 we know Player B would

win. Case 7b. Suppose Player A selects the vertex v9 with his second move. This

results in two disjoint paths a P2 and a P4. Thus there are only three moves remaining.

Since Player B is next to select, he wins with this strategy on a P14. Case 7c. Suppose

Player A selects the vertex v10 with his second move. This results in two disjoint paths

a P2 and a P3. Player B would then select one of the end-vertices of the P3 (either

vertex v12 or v14). This results in only two moves remaining with Player A selecting

18



first. Therefore B wins on a P14 with this strategy. Case 7d. Suppose Player A

selects vertex v11 with his second move. This results in three disjoint paths each

with only one move. Since Player B is selecting and there are exactly three moves

remaining, he wins on a P14 with this strategy.

Therefore Player B will always win on a P14. ✷

✉✉✉ ✉✉✉ ✉ ✉ ✉✉ ✉ ✉✉ ✉

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

Figure 16: A path on fourteen vertices.

By Lemma 3, we have the following Corollary.

Corollary 10 Player A wins on P16.

19



Our results so far

Path Winner

P2 A

P4 B

P6 A

P8 B

P10 A

P12 A

P14 B

P16 A

P18 A ?

Of course, it would be nice to settle this problem for paths. However, the problem

is extremely difficult. Once the strategies are clear for all paths, then the strategies

for all cycles will be known as well. Is there a clear pattern for paths in which

Player B will always win? How about other families of graphs with this achievement

game? Hopefully we can continue to find strategies for not only paths, but many

other graphs.
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