49 research outputs found

    Phase-change meta-photonics

    Get PDF
    We combine phase-change materials and metamaterial arrays (metasurfaces) to create new forms of dynamic, tuneable and reconfigurable photonic devices including ‘perfect’ absorbers, infra-red light modulators, optical beam steerers and enhanced phase-change optoelectronic displays

    Simple technique for determining the refractive index of phase-change materials using near-infrared reflectometry

    Get PDF
    This is the final version. Available on open access from the Optical Society via the DOI in this recordPhase-change materials, such as the well-known ternary alloy Ge2Sb2Te5, are essential to many types of photonic devices, from re-writeable optical disk memories to more recent developments such as phase-change displays, reconfigurable optical metasurfaces, and integrated phase-change photonic devices and systems. The successful design and development of such applications and devices requires accurate knowledge of the complex refractive index of the phase-change material being used. To this end, it is common practice to rely on published experimental refractive index data. However, published values can vary quite significantly for notionally the same composition, no doubt due to variations in fabrication/deposition processes. Rather than rely on published data, a more reliable approach to index determination is to measure the properties of as-fabricated films, and this is usually carried out using specialized and dedicated ellipsometric equipment. In this paper, we propose a simple and effective alternative to ellipsometry, based on spectroscopic reflectance measurements of Fabry–Perot phase-change nanocavities. We describe this alternative approach in detail, apply it to measurement of the complex index of the archetypal phase-change materials Ge2Sb2Te5 and GeTe, and compare the results to those obtained using conventional ellipsometry, where we find good agreement.Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 2020Science and Technology Facilities Council (STFC

    High resolution mapping of a novel late blight resistance gene Rpi-avll, from the wild Bolivian species Solanum avilesii

    Get PDF
    Both Mexico and South America are rich in Solanum species that might be valuable sources of resistance (R) genes to late blight (Phytophthora infestans). Here, we focus on an R gene present in the diploid Bolivian species S. avilesii. The genotype carrying the R gene was resistant to eight out of 10 Phytophthora isolates of various provenances. The identification of a resistant phenotype and the generation of a segregating population allowed the mapping of a single dominant R gene, Rpi-avl1, which is located in an R gene cluster on chromosome 11. This R gene cluster is considered as an R gene “hot spot”, containing R genes to at least five different pathogens. High resolution mapping of the Rpi-avl1 gene revealed a marker co-segregating in 3890 F1 individuals, which may be used for marker assisted selection in breeding programs and for further cloning of Rpi-avl

    The novel gene Ny-1 on potato chromosome IX confers hypersensitive resistance to Potato virus Y and is an alternative to Ry genes in potato breeding for PVY resistance

    Get PDF
    Hypersensitive resistance (HR) is an efficient defense strategy in plants that restricts pathogen growth and can be activated during host as well as non-host interactions. HR involves programmed cell death and manifests itself in tissue collapse at the site of pathogen attack. A novel hypersensitivity gene, Ny-1, for resistance to Potato virus Y (PVY) was revealed in potato cultivar Rywal. This is the first gene that confers HR in potato plants both to common and necrotic strains of PVY. The locus Ny-1 mapped on the short arm of potato chromosome IX, where various resistance genes are clustered in Solanaceous genomes. Expression of HR was temperature-dependent in cv. Rywal. Strains PVYO and PVYN, including subgroups PVYNW and PVYNTN, were effectively localized when plants were grown at 20°C. At 28°C, plants were systemically infected but no symptoms were observed. In field trials, PVY was restricted to the inoculated leaves and PVY-free tubers were produced. Therefore, the gene Ny-1 can be useful for potato breeding as an alternative donor of PVY resistance, because it is efficacious in practice-like resistance conferred by Ry genes

    Evidence that the same structural gene encodes testicular and adrenal 3β-hydroxysteroid dehydrogenase-isomerase

    Full text link
    Thermostability of 3β-hydroxysteroid dehydrogenase-isomerase (3βHSD) activity was examined in testes and adrenal glands from several inbred lines and feral mice. A thermolabile varant of 3βHSD was detected in the feral Brno mice. The thermostability ( t 1/2 ) of 3βHSD was approximately 7 min for both testes and adrenal glands from C57BL/6J mice, compared with 4 min for both tissues from Brno mice. Comparison of testicular and adrenal 3βHSD thermostability in six kinds of mice indicated that the t 1/2 of 3βHSD was correlated in the two tissues and could be classified into two distinct types, thermolabile and thermostable. In contrast, quantitative variants in 3βHSD activity were not correlated in the two tissues. These data are consistent with the hypothesis that testicular and adrenal 3βHSD is encoded by the same structural gene but that expression of 3βHSD activity is independently controlled in testes and adrenal glands.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44154/1/10528_2004_Article_BF00498961.pd

    Choice of the initial antiretroviral treatment for HIV-positive individuals in the era of integrase inhibitors

    Get PDF
    BACKGROUND: We aimed to describe the most frequently prescribed initial antiretroviral therapy (ART) regimens in recent years in HIV-positive persons in the Cohort of the Spanish HIV/AIDS Research Network (CoRIS) and to investigate factors associated with the choice of each regimen. METHODS: We analyzed initial ART regimens prescribed in adults participating in CoRIS from 2014 to 2017. Only regimens prescribed in >5% of patients were considered. We used multivariable multinomial regression to estimate Relative Risk Ratios (RRRs) for the association between sociodemographic and clinical characteristics and the choice of the initial regimen. RESULTS: Among 2874 participants, abacavir(ABC)/lamivudine(3TC)/dolutegavir(DTG) was the most frequently prescribed regimen (32.1%), followed by tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC)/elvitegravir(EVG)/cobicistat(COBI) (14.9%), TDF/FTC/rilpivirine (RPV) (14.0%), tenofovir alafenamide (TAF)/FTC/EVG/COBI (13.7%), TDF/FTC+DTG (10.0%), TDF/FTC+darunavir/ritonavir or darunavir/cobicistat (bDRV) (9.8%) and TDF/FTC+raltegravir (RAL) (5.6%). Compared with ABC/3TC/DTG, starting TDF/FTC/RPV was less likely in patients with CD4100.000 copies/mL. TDF/FTC+DTG was more frequent in those with CD4100.000 copies/mL. TDF/FTC+RAL and TDF/FTC+bDRV were also more frequent among patients with CD4<200 cells//muL and with transmission categories other than men who have sex with men. Compared with ABC/3TC/DTG, the prescription of other initial ART regimens decreased from 2014-2015 to 2016-2017 with the exception of TDF/FTC+DTG. Differences in the choice of the initial ART regimen were observed by hospitals' location. CONCLUSIONS: The choice of initial ART regimens is consistent with Spanish guidelines' recommendations, but is also clearly influenced by physician's perception based on patient's clinical and sociodemographic variables and by the prescribing hospital location

    A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map

    Get PDF
    Mapping resistance genes is usually accomplished by phenotyping a segregating population for the resistance trait and genotyping it using a large number of markers. Most resistance genes are of the NBS-LRR type, of which an increasing number is sequenced. These genes and their analogs (RGAs) are often organized in clusters. Clusters tend to be rather homogenous, viz. containing genes that show high sequence similarity with each other. From many of these clusters the map position is known. In this study we present and test a novel method to quickly identify to which cluster a new resistance gene belongs and to produce markers that can be used for introgression breeding. We used NBS profiling to identify markers in bulked DNA samples prepared from resistant and susceptible genotypes of small segregating populations. Markers co-segregating with resistance can be tested on individual plants and directly used for breeding. To identify the resistance gene cluster a gene belongs to, the fragments were sequenced and the sequences analyzed using bioinformatics tools. Putative map positions arising from this analysis were validated using markers mapped in the segregating population. The versatility of the approach is demonstrated with a number of populations derived from wild Solanum species segregating for P. infestans resistance. Newly identified P. infestans resistance genes originating from S. verrucosum, S. schenckii, and S. capsicibaccatum could be mapped to potato chromosomes 6, 4, and 11, respectively
    corecore