42,360 research outputs found

    Assessment of MISR and MODIS cloud top heights through inter-comparison with a back-scattering lidar at SIRTA

    Get PDF
    One year of back-scattering lidar cloud boundaries and optical depth were analysed for coincident inter-comparison with the latest processed versions of the NASA-TERRA MISR stereo and MODIS CO2-slicing operational cloud top heights. Optically thin clouds were found to be accurately characterised by the MISR cloud top height product as long as no other cloud was present at lower altitude. MODIS cloud top heights were generally found within the cloud extent retrieved by lidar; agreement improved as cloud optical depth increased and when CO2-slicing was the only technique used for the retrieval. The difference between Lidar and MISR cloud top heights was found to lie between −0.1 and 0.4 km for low clouds and between 0.1 and 3.1 km for high clouds. The difference between Lidar and MODIS cloud top heights was found to lie between −1.2 and 1.5 km for low clouds and between −1.4 and 2.7 km for high clouds

    A volume-based hydrodynamic approach to sound wave propagation in a monatomic gas

    Get PDF
    We investigate sound wave propagation in a monatomic gas using a volume-based hydrodynamic model. In Physica A vol 387(24) (2008) pp6079-6094, a microscopic volume-based kinetic approach was proposed by analyzing molecular spatial distributions; this led to a set of hydrodynamic equations incorporating a mass-density diffusion component. Here we find that these new mass-density diffusive flux and volume terms mean that our hydrodynamic model, uniquely, reproduces sound wave phase speed and damping measurements with excellent agreement over the full range of Knudsen number. In the high Knudsen number (high frequency) regime, our volume-based model predictions agree with the plane standing waves observed in the experiments, which existing kinetic and continuum models have great difficulty in capturing. In that regime, our results indicate that the "sound waves" presumed in the experiments may be better thought of as "mass-density waves", rather than the pressure waves of the continuum regime.Comment: Revised to aid clarification (no changes to presented model); typos corrected, figures added, paper title change

    Exploring standardisation and knowledge networking processes in transnational human resource management.

    Get PDF
    Purpose – It is argued that a key step in becoming a “transnational” company is to implement transnational HRM (THRM). However, what is meant by THRM and how can it be assessed? The purpose of this paper is to develop the characteristics of THRM along two dimensions: standardisation and knowledge networking, in contrast to many existing studies which focus on IHRM strategies and structures. Standardisation and knowledge networking are to be examined at both the meta and operational levels. Design/methodology/approach – The paper is based on two case studies of major German MNCs, both with significant operations in Spain and the UK. Data were collected by means of semi-structured interviews with senior managers, HR managers and labour representatives. Findings – The findings show that THRM can be operationalised using knowledge networking and standardisation on a meta level, in terms of principles, and at an operational level in terms of practices. The two firms show differences in the process and intensity of HR knowledge networking which have implications for the level of standardisation, local autonomy and innovation capabilities. The findings also suggests that THRM is more about processes than outcomes. Research limitations/implications – A limitation of this study is that the cases were only drawn from Western Europe. The patterns of THRM structures and processes may differ significantly in MNCs from other regions. Originality/value – This paper extends existing research by exploring international HR beyond strategies and structures and focuses on communication and coordination processes. It advocates a refined view of the transnational firm

    Investigation of marmoset hybrids (Cebuella pygmaea x Callithrix jacchus) and related Callitrichinae (Platyrrhini) by cross-species chromosome painting and comparative genomic hybridization

    Get PDF
    We report on the cytogenetics of twin offspring from an interspecies cross in marmosets (Callitrichinae, Platyrrhini), resulting from a pairing between a female Common marmoset (Callithrix jacchus, 2n = 46) and a male Pygmy marmoset (Cebuella pygmaea, 2n = 44). We analyzed their karyotypes by multi-directional chromosome painting employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. Both hybrid individuals had a karyotype with a diploid chromosome number of 2n = 45. As a complementary tool, interspecies comparative genomic hybridization (iCGH) was performed in order to screen for genomic imbalances between the hybrids and their parental species, and between Callithrix argentata and S. oedipus, respectively. Copyright (C) 2005 S. Karger AG, Basel

    Armazenamento de sementes de mangostão.

    Get PDF
    bitstream/item/34019/1/CPATU-CirTec58.pd

    Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes

    Get PDF
    Highly conductive molecular junctions were formed by direct binding of benzene molecules between two Pt electrodes. Measurements of conductance, isotopic shift in inelastic spectroscopy and shot noise compared with calculations provide indications for a stable molecular junction where the benzene molecule is preserved intact and bonded to the Pt leads via carbon atoms. The junction has a conductance comparable to that for metallic atomic junctions (around 0.1-1 Go), where the conductance and the number of transmission channels are controlled by the molecule's orientation at different inter-electrode distances.Comment: 4 pages, 4 figure

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Emission of Massive Scalar Fields by a Higher-Dimensional Rotating Black-Hole

    Full text link
    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m_\Phi < 1 TeV in the bulk and m_\Phi < 0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 33%) when the mass of the emitted field is taken into account.Comment: 28 pages, 18 figure
    corecore