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Abstract

We investigate sound wave propagation in a monatomic gas using a volume-based hydrodynamic

model. In reference [1], a microscopic volume-based kinetic approach was proposed by analyzing

molecular spatial distributions; this led to a set of hydrodynamic equations incorporating a mass-

density diffusion component. Here we find that these new mass-density diffusive flux and volume

terms mean that our hydrodynamic model, uniquely, reproduces sound wave phase speed and

damping measurements with excellent agreement over the full range of Knudsen number. In the

high Knudsen number (high frequency) regime, our volume-based model predictions agree with the

plane standing waves observed in the experiments, which existing kinetic and continuum models

have great difficulty in capturing. In that regime, our results indicate that the “sound waves”

presumed in the experiments may be better thought of as “mass-density waves”, rather than the

pressure waves of the continuum regime.
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I. INTRODUCTION

One of the assumptions underpinning the conventional Navier-Stokes-Fourier set of equa-

tions is that of local thermodynamic equilibrium. This assumption allows the representa-

tion of thermodynamic variables (e.g. temperature, density, pressure) as locally constant

at a given time and position, and the use of equations of state. The assumption that mi-

croscopic relaxation processes are not of concern is, however, inadequate in flows where

the microscopic relaxation time is comparable to the characteristic time of evolution of the

macroscopic field variables. In the kinetic theory of dilute gases, such flows are identified

with high Knudsen numbers (conventionally defined as a ratio of the average time between

molecule/molecule collisions to a macroscopic characteristic time of the flow, however see

[2]). Experimental observations of sound wave propagation at high Knudsen number chal-

lenge many continuum hydrodynamics and kinetic theory models [3–6]; it is well-known that

the Navier-Stokes-Fourier model fails to predict sound wave propagation at high Knudsen

number. Another problem arises in the so-called “heat conduction paradox”, according to

which an unphysical infinite speed of thermal wave propagation is predicted by the energy

equation closed with Fourier’s law.

Generally, techniques for investigating gas flows in which the Navier-Stokes-Fourier model

is inadequate are based on approximate solutions to the Boltzmann dilute gas kinetic equa-

tion, for which a wide number of mathematical methods are found in the literature [4].

Regarding the specific problem of predicting sound wave propagation in monatomic gases in

the high Knudsen number regime, many of these Boltzmann based approximations fail, as

does Navier-Stokes-Fourier [4–8]. While a few have shown some agreement with experiments

[9, 10], detailed analysis makes any conclusion far from clear-cut [4, 11–13]. For example,

if the experimental set-up is configured to measure propagations of plane harmonic waves

[9], Boltzmann kinetic models predict unconventional pressure fields, even though the phase

speeds and damping coefficients do agree with the experimental data [10]. Recently de-

veloped continuum models also show discrepancies in these predictions, particularly in the
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damping [11, 14].

The unphysical predictions of the conventional Navier-Stokes-Fourier model have been

investigated in terms of the “heat conduction paradox”. Early investigations criticized the

expression of Fourier’s law, suggesting instead that the heat flux expression should be trans-

formed from the parabolic form of the heat conduction equation to a simple hyperbolic

equation with a finite speed of propagation. While the original demonstration by Cattaneo

[15] has a flaw [16], a Cattaneo-Vermot heat flux has been formalized more elegantly using

fading memory theory (which essentially aims to remove the local equilibrium assumption).

Variants and generalizations have been proposed, and compatibility with the second law

of thermodynamics has been assessed [17, 18]. However, these investigations concentrate

on modifications to the simple heat conduction equation; they are not, to our knowledge,

developed within the framework of complete fluid dynamic equations and a full dispersion

analysis.

In this paper we investigate hydrodynamic models in which the assumptions limiting

the application of the conventional Navier-Stokes-Fourier model are clearly released; this is

therefore outside the framework of pure approximation solutions to the Boltzmann kinetic

equation. In previous work, we proposed releasing the local equilibrium assumption by

including the spatial distributions of molecules within the kinetic description [1]. While our

description was motivated by an unusual volume diffusion claimed by Brenner [19, 20], it

has been recently pointed out that the original Brenner modification does not predict sound

wave speeds correctly [21, 22].

Here we show that our volume-based hydrodynamic model can reproduce the experimen-

tal sound wave propagation data from ref. [6] with excellent agreement. Moreover, our model

offers a more reliable explanation of the experiments, which were designed to range up to

the free molecular regime in which there are no collisions between molecules and therefore

the definition of sound as a pressure wave becomes problematic.

This paper starts with a summary of our volume model that incorporates effects from

microscopic spatial distributions of the gaseous molecules. Subsequently, a linear stability
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analysis of the model equations is performed, and the predicted dispersion and damping

compared with experiments.

II. SUMMARY OF THE VOLUME-BASED HYDRODYNAMIC DESCRIPTION

The traditional single particle distribution function used in the Boltzmann kinetic equa-

tion for a monatomic gas attributes no particular importance to the spatial arrangements

of molecules. An average number of molecules is associated with a position X and a ve-

locity �. In order to account for microscopic spatial fluctuations, due to non-uniformity in

molecular spatial configurations, we have considered within the set of microscopic variables

the microscopic free volume, v, around each gaseous molecule. A single particle distribution

function f(t, X, �, v) is then defined to describe the probability that a molecule at a given

time t is located in the vicinity of position X , has its velocity in the vicinity of �, and has

around it a microscopic free space given by the additional variable v.

A Boltzmann-like kinetic equation for f(t, X, �, v) is then derived as [1]:

∂f

∂t
+ (� ⋅ ∇)f +W

∂f

∂v
=

∫ ∫

(f+f+

1 − ff1)��rd!d�1, (1)

in which the term on the right-hand-side is the hard sphere molecule collision integral;

f = f(t, X, �, v) and f1 = f(t, X, �1, v1) refer to post-collision molecules, f+ = f(t, X, �+, v+)

and f+

1 = f(t, X, �+1 , v
+

1 ) refer to pre-collision molecules, �r = � − �1 is the molecule relative

velocity, � the collision differential cross section, d! an element of solid angle. On the left-

hand-side appears a new term involving W , which arises primarily from the introduction of

the new variable v into the distribution function. In the derivation of equation (1), molecular

exchanges of momentum through interactions have been assumed to be independent of their

spatial configurations.

Three contributions to the time variations of f(t, X, �, v) are seen within equation (1).

Molecular free-stream motions are given by the second term on the left-hand-side. The

third term on the left-hand-side arises from effects of molecular interactions on their spatial

distributions. Finally, the collision integral is the traditional momentum exchange between
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molecules that provides changes in molecular velocities. These latter two terms infer that

the real molecular potential interactions are represented in this kinetic model by two sepa-

rate actions: intermolecular force effects on spatial distributions, and collisional effects on

molecular velocities.

A. Molecular average properties

As f(t, X, �, v) is defined as a probability density function, we have a normalization factor,

An(t, X) =

∫

+∞

−∞

∫

+∞

0

f(t, X, �, v)dvd� . (2)

The mean value, Q̄(t, X), of a gas property Q is then defined by,

Q̄(t, X) =
1

An(t, X)

∫

+∞

−∞

∫

+∞

0

Qf(t, X, �, v)dvd� . (3)

The local average of v is therefore the local mean free volume v̄(t, X) around each gaseous

molecule, i.e.

v̄(t, X) =
1

An(t, X)

∫

+∞

−∞

∫

+∞

0

vf(t, X, �, v)dvd� . (4)

From this mean value of the volume around a molecule, we define the mass-density in the

vicinity of position X through:

�̄(t, X) =
M

v̄(t, X)
, (5)

where M is the molecular mass. Two mean velocities are defined using two different weight-

ing values: the local mean mass-velocity, Um(t, X), is given through

An(t, X)Um(t, X) =

∫ ∫

�f(t, X, �, v)d�dv, (6)

and a local mean volume-velocity, Uv(t, X), by using the microscopic free volume as the

weighting,

v̄(t, X)An(t, X)Uv(t, X) =

∫ ∫

v�f(t, X, �, v)d�dv. (7)

The two definitions Uv and Um coincide if v is a constant, i.e. in a homogeneous medium

where density is constant throughout. It can be shown that the difference between these

two velocities, Uv − Um = v̄−1Jv, behaves like a mass-density diffusion [1].

5



B. A volume-based hydrodynamic set of equations

Hydrodynamic equations are derived as conservation equations obtained from the ki-

netic equation, accounting for a reclassification of convective/diffusive fluxes required by the

appearance of the two different velocities. The set of equations is obtained [1]:

Continuity

DAn

Dt
= −An∇ ⋅ Um , (8)

Mass-density

An

Dv̄

Dt
= −∇ ⋅ [AnJv] + AnW, (9)

Momentum

An

DUm

Dt
= −∇ ⋅An

(

P′ − 1

v̄2
JvJv

)

, (10)

Energy

An

D

Dt

[

1

2
U2

m + e′in −
1

2v̄2
J2

v

]

= −∇ ⋅ An

[(

P′ − 1

v̄2
JvJv

)

⋅ Um

]

(11)

−∇ ⋅ An

[

q′ +
1

v̄
P′ ⋅ Jv +

1

v̄

(

e′in −
1

v̄2
J2

v

)

Jv

]

.

where we denote the material derivative D/Dt ≡ ∂/∂t + Um ⋅ ∇. The flow variables are:

the probability density An (which is, however, not a physical property), the mass-density �̄,

the mass-velocity Um, and the internal energy e′in.

Following, provisionally, the classical phenomenological Fick’s law for a diffusive flux, the

model may be closed by the constitutive relations:

MP′
ij

v̄
= p′�ij − �′

(

∂Uvi

∂Xj

+
∂Uvj

∂Xi

)

+ �′
∂Uvk

∂Xk

�ij , (12)

Mq′

v̄
= −�′

ℎ∇T ′ , (13)

Jv = −�m∇v̄ , (14)
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in which we have defined Me′in = (3/2)kT ′ with T ′ being the kinetic temperature, or p′ =

(2/3)�̄e′in with p′ being the kinetic pressure, and Uv = Um + v̄−1Jv. The coefficients �′, �′
ℎ,

�′ and �m are, respectively, dynamic viscosity, heat conductivity, bulk viscosity, and the

mass-density diffusion coefficient. As the kinetic pressure p′ is defined by the trace of the

pressure tensor we also have 2

3
�′ − �′ = 0.

Previous volume diffusion hydrodynamic models have been based on separating the mean

velocity in the conventional mass conservation equation (continuity equation), from the mean

velocity in the Navier-Stokes momentum equation via Newton’s viscosity law [20]. This has

proven controversial [23] — problems in differentiating the mass-flux from the momentum

density, and in conserving angular momentum when the velocity on the left-hand-side of the

Navier-Stokes equation is substituted for, have been raised. In our approach, however, a

mass flux is given by �̄Uv from the mass-density equation (9), and involves the same velocity,

Uv = Um+ v̄−1Jv, as in Newton’s viscosity law (equation 12). Meanwhile, the velocity on the

left-hand-side of the new momentum equation (10) remains the conventional mass velocity

Um (following Newton’s second law). Consequently the two flaws mentioned in connection

with volume-based hydrodynamics in reference [23] are not present in our set of equations

(8)–(14).

C. The localized rate of change of volume, W

A consequence of our localized microscopic volume description is the appearance of W ,

the time rate of change of microscopic volume. Although this term could be proposed

using details of the interactions between particles, here we instead test a phenomenological

expansion of W = �v/�t as a function of the fluid macroscopic thermodynamic variables.

First we relate variations of the microscopic v to variation of its macroscopic average v̄,

through a relaxation approximation:

�v

�t
=

d

dt

(

v̄ + �s
dv̄

dt

)

. (15)
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The derivative �/�t refers to the time rate of change of microscopic properties while d/dt

refers to the time rate of change of macroscopic properties, with �s a relaxation time. Ex-

panding dv̄ as a function of thermodynamic variables we have:

1

v̄
W = �

dT ′

dt
+ ��s

d2T ′

dt2
− �

dp′

dt
− �s

d2p′

dt2
, (16)

where �, �, �,  are the gas expansion and compressibility coefficients given by,

� =

(

1

v̄

∂v̄

∂T ′

)

p′

, � = −
(

1

v̄

∂v̄

∂p′

)

T ′

, (17)

and

� =

(

1

v̄

∂2v̄

∂T ′2

)

p′

,  = −
(

1

v̄

∂2v̄

∂p′2

)

T ′

. (18)

In our description local thermodynamic equilibrium is not required. Relations Me′in =

(3/2)kT ′ and p′ = (2/3)�̄e′in define the temperature and pressure (following their classical

definitions in kinetic theory), therefore there is a reciprocal relation between temperature

and pressure, p′ = kT ′/v̄, by construction without further assumption. If the perfect gas

(equilibrium) equation of state is enforced, and we confuse �v/�t with dv̄/dt in equation

(16), then the gas expansion and compressibility coefficients in equations (17) are the ideal

gas coefficients, i.e. � = 1/T ′ and � = 1/p′, and the second order contributions vanish from

equation (16). But as we are not restricting ourselves to local thermodynamic equilibrium,

a departure from these ideal coefficients may be expected.

Now we turn to investigate sound dispersion using both the first and the second order

approximations to W given in equation (16).

III. LINEAR STABILITY ANALYSIS AND SOUND WAVE PROPAGATION

A. Linearized one-dimensional equations

We consider our hydrodynamic model in a one-dimensional flow configuration. An equi-

librium ground state is defined by the flow variables A0
n, �̄

0, T 0, p0 = R�̄0T 0, U0
m = U0

v = 0,

with R the specific gas constant. Then a perturbation from this ground state is introduced
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as follows:

An = A0

n(1 + A∗
n), �̄ = �̄0(1 + �∗), T ′ = T 0(1 + T ∗), (19)

Um = U∗
m

√
RT 0, p′ = p0(1 + p∗),

where the asterisked variables represent dimensionless quantities. The perturbation of the

volume velocity is specified through the relationship Uv = Um+v̄−1Jv. Linearizing p
′ = kT ′/v̄

gives p∗ = �∗ + T ∗. The dimensionless space and time variables are given by,

x = Lx∗, t =
L√
RT 0

t∗ = �t∗, (20)

with � = L/
√
RT 0. The dimensionless linearized equations, including the general expression

for W in equation (16), can therefore be written:

Continuity

∂A∗
n

∂t∗
+

∂U∗
m

∂x∗
= 0 , (21)

Mass-density

(1− �∗)
∂�∗

∂t∗
− �∗

m

∂2�∗

∂x∗2
+ (�∗ − �∗)

∂T ∗

∂t∗
− ∗∂

2�∗

∂t∗2
+ (�∗ − ∗)

∂2T ∗

∂t∗2
= 0, (22)

Momentum

∂U∗
m

∂t∗
− 4

3
�∗∂

2U∗
m

∂x∗2
+

∂A∗
n

∂x∗
+

∂T ∗

∂x∗
− 4

3
�∗�∗

m

∂3�∗

∂x∗3
= 0, (23)

Energy

∂T ∗

∂t∗
+

2

3

∂U∗
m

∂x∗
− 2

3
�∗
ℎ

∂2T ∗

∂x∗2
+

5

3
�∗
m

∂2�∗

∂x∗2
= 0 , (24)

where the different dimensionless transport coefficients are given through:

�′ = �̄0L
√
RT 0�∗, �m = L

√
RT 0�∗

m, �′
ℎ =

L�̄0(
√
RT 0)3

T 0
�∗
ℎ, (25)

and

� =
1

T 0
�∗, � =

1

p0
�∗, � =

1

T 0
�∗,  =

1

p0
�∗. (26)
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Note that the dimensionless transport coefficients in equations (25) follow from the dimen-

sionless form of the hydrodynamic set of equations. Instead of using these dimensionless

coefficients, however, it may be more convenient to use conventional parameters, i.e. the

Knudsen number Kn, the Prandtl number Pr, and an additional parameter Sc that involves

the mass-density diffusivity. These are given by (denoting �0 = �̄0L
√
RT 0):

Kn =
�′
√
RT 0

p0L
≡ �∗,

1

Sc

=
�m�̄0

�0
≡ �∗

m,
1

Pr

=
2

5

�′
ℎ

R�0
≡ 2

5
�∗
ℎ. (27)

We assume the disturbances A∗
n, �

∗, T ∗ and U∗
m to be wave functions of the form:

�∗ = �∗
a exp [i (!t

∗ −Kx∗)] , (28)

where ! is the complex wave frequency, K is the complex wave number, and �∗
a is the

complex amplitude, so that:

∂�∗

∂t∗
= i!�∗,

∂2�∗

∂t∗2
= −!2�∗,

∂�∗

∂x∗
= −iK�∗,

∂2�∗

∂x∗2
= −K2�∗,

∂3�∗

∂x∗3
= iK3�∗.

The linearized hydrodynamic set of equations then yields the homogeneous system,

Ξ(!,K)×

⎧















⎨















⎩

A∗
n

�∗

T ∗

U∗
m

⎫















⎬















⎭

= 0, (29)

where

Ξ(!,K) =

⎧















⎨















⎩

i! 0 0 −iK

0 �∗
mK

2 + i!(1− �∗)− ∗!2 i!(�∗ − �∗) + (�∗ − ∗)!2 0

0 −5

3
K2�∗

m
2

3
�∗
ℎK

2 + i! −2

3
iK

−iK −4

3
iK3�∗�∗

m −iK 4

3
�∗K2 + i!

⎫















⎬















⎭

.

(30)
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The corresponding dispersion relation, obtained when the determinant of Ξ(!,K) is zero, is

[

20i!KnK
4

9Pr

+
5K4

3Pr

+
5

3
i!K2 − 4

3
!2KnK

2 − 5!2K2

3Pr

− iw3

]

×
[

−∗!2 + i (1− �∗)! +
K2

Sc

]

−
[

(�∗ − ∗)!2 + i (�∗ − �∗)w
]

×
[

−4i!KnK
4

3Sc

− 5K4

3Sc

+
5!2K2

3Sc

]

= 0. (31)

B. Dispersion and damping predictions compared with experiment

When analyzing the dispersion and stability characteristics of our model, we compare our

results for sound propagation in argon gas with experimental data from reference [6].

Choosing the harmonic wave expression (28) is in line with previous analysis of this

problem, and the dimensionless phase speed Υl, and dimensionless spatial damping Λl, are

then commonly defined by [5, 6, 11]:

1

Υl

=

√

5

3

Re[K]

!
, Λl = −

√

5

3

Im[K]

!
. (32)

Setting the Knudsen number Kn, defined in equation (27), to 1 makes our analysis agree

with that of Greenspan [5], in which variations of frequency ! are interpreted as variations

of Knudsen number (the limitations of this particular interpretation are outlined in the

Appendix to this present paper). Although more recent experimental data with a different

analysis exists, we choose this approach first in order to make comparisons with previously

published works [5, 6, 8, 11].

We also note here that a solution to a dispersion relation such as equation (31) consists

of various discontinuous solutions generating a number of modes; one of these is expected

to correspond to the sound mode. In this paper, we include in our results figures all modes,

for the sake of a complete analysis.

Linear stability criteria are as follows [22]: for the set of equations to be time stable,

!(K) as a root of the dispersion relation (31) should satisfy Im[!(K)] ≥ 0 for all K real.

On the other hand, the set of equations will be stable in space if K(!) as a root of the

dispersion relation satisfies Im[K(!)]×Re[K(!)] < 0 for all ! ≥ 0.
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1. A first order approximation to W : �∗ = ∗ = 0

First we set �∗ = ∗ = 0, that is, W is approximated only by the first order terms in

equation (16). For �∗ = �∗ = 1 the dispersion and stability characteristics of our model

correspond to those of the Navier-Stokes-Fourier model. The equations are also stable in

both time and space. Figure 1 shows both the inverse phase speed and the damping as a

function of inverse frequency (i.e. inverse Knudsen number), compared with experimental

data [6]. Navier-Stokes-Fourier has only two modes: one mode fits the phase speed and

damping measurements at low Knudsen number, but has an infinite speed of propagation

for high Knudsen number. The second mode shows an infinite inverse phase speed at low

Knudsen number, and is interpreted as the heat mode [6, 10].

Departures from these predictions are expected for our volume-based hydrodynamic

model when �∗ ∕= �∗. We find that the model is stable, in the case of a first order ap-

proximation to W , if �∗ and �∗ are both simultaneously smaller than one, or �∗ ≥ 1 and

�∗ ≤ 0.5, approximately; this is illustrated in Figure 2. Comparison of the dispersion with

experiments shows globally the same results as in the Navier-Stokes-Fourier case. But, as

seen in figure 3 where we have �∗ = 0.28, �∗ = 0.48 and Sc = 0.9, the agreement with the

low frequency regime is improved, particularly in the damping coefficient. Both the phase

speed and the damping are adequately predicted up to Kn = 1, whereas the damping was

predicted only up to Kn = 0.3 by Navier-Stokes-Fourier alone (figure 1(b)).

Figure 3 also shows that there are now three modes, two of which display transient

diffusion behaviour (i.e. high damping in low frequency regimes). While one of these should

be considered as the heat mode, as previously, the other should be attributed to transient

mass-density diffusion, as introduced by our new volume-based description (in addition to

the heat diffusion). This new mode is the most affected by the mass-density diffusivity, i.e.,

by Sc. The high frequency regime is still incorrectly predicted by the sound mode, as in the

case of Navier-Stokes-Fourier. Later we will see that the infinite speed of propagation and

zero damping in the high frequency regime can all be removed with the inclusion of the new
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mass-density mode.

2. A second order approximation to W , �∗ = �∗ = 0

Now we set, �∗ = �∗ = 0, that is, W is given by an expression with only the second order

terms of equation (16). In this case, we observe that the set of volume-based equations has

a wider range of stability, provided 0 ≤ ∗ − �∗ ≤ 1.3 approximately (see figure 4). Figure

5 shows that the phase speed prediction of one of the modes now agrees perfectly with

experiment, in both the low and the high frequency regimes. This mode actually corresponds

to the pressure mode, and it merges into the new mass-density mode in the high frequency

regime. For comparison, in figure 6 this physical mode is plotted with the experimental

data and results from two recent continuum models derived as approximation solutions to

the Boltzmann equation [11, 14]. We observe that our volume model is competitive with

the best of these two models. Our new model has the best damping coefficient predictions

in the low Knudsen number regime, and we note an unphysical negative damping coefficient

predicted by the second order model of Spiegel and Thiffeault [14].

In our investigations, our choice of the values of different coefficients in the volume model

has been primarily motivated by finding the best agreement with the experimental data.

However, coefficient Sc, set to 0.9 for figure 3, agrees with an interpretation of Sc as a

Schmidt number with a value of 5/6 for monatomic hard sphere molecular gases; a value of

0.75 has been used for the dispersion analysis in reference [21]. While the stability depends on

the expression of W , our volume-based set of equations seems to remain stable for whatever

value the Schmidt number is set to, i.e., whatever the mass-density diffusivity.

The dimensionless expansion and compressibility coefficients we obtained depart from

their (equilibrium state) ideal gas values of 1. These departures from ideality may be

attributable to real gas effects now incorporated in our volume-based description. Similar

results to those presented in our figures are also obtained with other combinations of the

various coefficients. For example, �∗ = 0.3, �∗ = 0.7 and Sc = 3.33 give the same results as
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in figure 3. This recalls experimental reports that different gases can produce similar results

[5, 6]. In any case, the various coefficients in our volume model leave room to incorporate

the various properties of the gas under investigation.

C. A prediction of the damping coefficient in the high frequency regime

In figures 1(b), 3(b) and 5(b), the predicted damping coefficient tends to zero as the

Knudsen number becomes large. This is a very common result when using continuum

models, as seen on figure 6. Problems have also been pointed out in comparisons with

experiments in this regime [3, 4]. Therefore, researchers have argued on the basis of spectral

analysis that continuum models based on a finite set of partial differential equations cannot

capture this branch of the graph [11]. In any case, interpreting sound waves in terms of

pressure waves and momentum exchanges between (only) molecules during collisions should

be expected to lead to vanishing damping as intermolecular collisions are no longer the

dominant phenomena in the very high Knudsen number regime [7, 9].

We now consider earlier comments by some investigators [9, 24] who, analyzing the exper-

imental set-up, suggested that a model to predict this sound dispersion must have a Knud-

sen number expression and a dimensional analysis that reflects the distinction between the

molecule/molecule collision-dominated regime and the molecule/surface collision-dominated

regime.

In the experimental set-up the gas was placed between source and receiver then disturbed

by a plane harmonic sound wave with a fixed frequency at the source [6, 9, 25]. The pri-

mary variable parameter in the experiments was the distance between the source and the

receiver. At very low pressures, the molecule/molecule collisions that predominate in a high

pressure (or continuum) regime, become negligible, and molecular collisions with surfaces

dominate. In this situation, the microscopic collision length scale becomes the distance trav-

eled by molecules to reach the surfaces — no longer the mean free path that is the length

scale in the continuum regime. Accordingly, Schotter [9], who also reported similar data
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to Greenspan, Meyer and Sessler, presents a different dimensional analysis, introducing two

different microscopic times leading to two different Knudsen number expressions. The first

of these corresponds to a pressure-based intermolecular collision time, and is the same defini-

tion as in references [5, 6]. The second microscopic time is independent of molecule/molecule

momentum transfers and instead characterizes the frequency of collisions with the surfaces.

As we show explicitly in the Appendix, Greenspan’s dimensionless quantities in equation

(32), and the accompanying interpretation of frequency as a (conventional) Knudsen number,

are founded on molecule/molecule collisions and so become inappropriate at high Knudsen

number where these types of collisions are no longer the principal momentum transfer mech-

anism (see also reference [24]). A dimensional analysis using the separation distance between

the surfaces leads to a different expression for the dimensional damping coefficient in a low

pressure gas, which is also, conversely, invalid for high pressure cases (i.e. at low conven-

tional Knudsen number). This second expression may also be derived using the following

observation.

In section IIIA we performed a dimensional analysis, and introduced equation (28) which

assumes the harmonic wave form. As the set of partial differential equations is linearized and

dimensionless, characteristic time and length scales have therefore been introduced before

equation (28). A better way of expressing the harmonic wave is in a completely dimensionless

form, i.e.,

�∗ = �∗
a exp [i (!

∗t∗ −K∗x∗)] , (33)

where !∗ and K∗ are, respectively, the dimensionless complex wave frequency and dimen-

sionless wave number. Moreover, !∗ = !� and K∗ = LK, with � and L the characteristic

time and length previously introduced in equation (20). The constant coefficient
√

5/3, from

the adiabatic exponent of a monatomic gas, could be simply incorporated in the definition

of the reference speed and is not here the main issue. The dimensionless phase speed and

dimensionless spatial damping coefficient are therefore:

1

Υℎ
=

√

5

3

Re[K∗]

!∗
, Λℎ = −

√

5

3
Im[K∗] , (34)
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and we observe that while the dimensionless phase speed remains the same as previously,

the dimensionless damping coefficient is different (see equation 32): it does not contain the

frequency.

In figure 7 we plot the dimensionless damping coefficient by our new hydrodynamic model,

but using the redefined expressions in equation (34) (and using same coefficients Sc, �
∗ and

∗ as in figure 5). It is seen that our model reproduces the high frequency branch, with

the correct asymptotic value of the damping. In addition, this is represented by the new

mass-density mode, not the classical pressure mode which instead diverges. Broadly, this

curve catches the shape and the shallow maximum around Kn ≈ 1. The agreement is not so

good by Kn = 1, and becomes somewhat inaccurate for low Knudsen numbers, as expected.

In summary, expressions (32) and (34) are each compatible with different Knudsen num-

ber regimes and are both required for a proper interpretation of the experimental results.

Our volume-based hydrodynamic model has been shown, therefore, to predict both the low

and the high frequency branch of the damping coefficient well, while the inverse phase speed

is always well-predicted.

In his experiments, Schotter [9] reported plane standing waves for all Knudsen numbers.

Because of difficulties surrounding the predictions of the high Knudsen number branch, other

researchers assumed, however, that a plane wave analysis could not capture this regime

[3, 7, 11]. In our analysis, mass-density and pressure fields are plane harmonic and therefore

agree also with Schotter’s experimental observation. We also confirm the unusual (i.e. non-

pressure-wave) characteristics of sound waves in this regime because our good predictions

here are provided by our model’s mass-density diffusion terms. This is illustrated in figure

8, where the two different modes fitting the experimental damping data in the low and the

high frequency regimes are both plotted.

Finally, even with the modified definitions of equation (34), the Navier-Stokes-Fourier

model gives at 1/Kn = 0.01 a value of the damping which is 30 times the experimental

value of approximately 0.2. So the conventional model still provides incorrect predictions.
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IV. DISCUSSION

Predicting sound wave phase speed and damping is a challenge both for kinetic models

derived from the Boltzmann dilute gas equation and for continuum fluid hydrodynamics

[4]. The few kinetic models [7, 10, 12] that agree with the experimental data over the

entire range of Knudsen number suffer three major criticisms. First, questions often arise

about the compatibility of kinetic boundary value problems with experimental measurement

[3, 4]. Second, the kinetic models predict non-standard pressure fields [10]; in contrast,

experiments have been based on harmonic pressure waves, and indicate a plane standing

wave existing in the gas medium at all Knudsen numbers during measurement. Third, the

different mechanisms of momentum transfer in the high pressure and the low pressure cases

are not always compatible with the kinetic model predictions [4, 10, 24]. A final issue, often

raised with continuum fluid models beyond Navier-Stokes-Fourier, is the appearance of a

large number of modes so it is not always easy to identify the mode that should describe

the sound wave.

Our figures 5 and 7 show that the continuum-based model considered in this paper re-

produces the experiments over the range of Knudsen number without the difficulties listed

above. In these figures there are only three distinct modes to be associated with pressure,

temperature and mass-density in a given regime. In our understanding, pressure and mass-

density disturbances are distinct plane harmonic waves that dominate in different Knudsen

number regimes (see figure 8). The existence of a mass-density wave explains the plane

standing wave observed in experiments in the high Knudsen number regime; this mode is

non-existent in conventional fluid dynamic equations as there is no explicit mass-density dif-

fusion (or mass-density wave propagation). The agreement between our theoretical damping

results and experiment can be fully explained in terms of two mean-free-paths inherent in

the experimental set-up; one mean free path is founded on the standard kinetic pressure and

molecular collisions, and the other founded on the separation distances of the solid surfaces.

The latter also underlines the fundamental basis of our new approach itself: the variation
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of the surface position is easily associated with variation of the volume between molecules.

Our prediction of the high Knudsen number regime is possible only if we adopt the

second-order expression for W given in equation (16). This shows that this regime is best

described by microscopic structure evolutions, and not macroscopic average thermodynamic

property evolutions; therefore there is no localized thermodynamic equilibrium in this case.

Indeed, in equation (15) the time rate of change of the microscopic volume v is represented

by the sum of the time rate of change of the average value v̄ and the change in its random

component, which is approximated using a relaxation time. Consequently, the second-order

terms involved in equation (16) can be considered expressions of the random component

of the microscopic volume evolutions. (A representation of microscopic structure, as in

equation (15), is common in “fading memory” concepts, where it is given generally as a

convolution function [16, 17].)

V. CONCLUSION

The starting point of our volume-based hydrodynamic model is the representation of

the fluid mass-density within conventional continuum fluid mechanics and kinetic theory

[26]. In this paper, we have seen that a volume-modified hydrodynamic model can achieve

surprisingly good results for sound wave dispersion in monatomic gases. This problematic

gas flow in the non-continuum regime has previously been classified as non-predictable using

a continuum-based description. Moreover, our volume-based hydrodynamics offers a more

plausible interpretation of the experimental data than some previous kinetic results.

We therefore propose the volume-based model for further investigations. First, more

sophisticated constructions of the new volume variation terms involved in the description

are required, as results suggest some sensitivities to their formulation. Second, further

application should be made to other flows and heat transfer configurations where the clas-

sical continuum models become inadequate. For example, investigating heat transfer in the

transition regime, where the dependency of heat conductivity on the Knudsen number or
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pressure, and the definition of heat flux, are still unresolved problems [27].
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Analysis of Greenspan’s interpretation of Knudsen number variations

This is a boundary value problem, with w positive real, and K = (Kr + iKi) a complex

number. A plane harmonic wave �(t, x) is written with dimensional variables as

�(t, x) = exp [i (!t− (Kr + iKi)x)] . (35)

We seek dimensionless expressions for the phase speed and damping. First, equation (35) is

rewritten,

�(t, x) = exp

[

i!

(

t− Kr

!
x

)]

exp

[(

Ki

!

)

!x

]

. (36)

The experimental set-up infers a fixed frequency, we [5, 6, 9]. Suppose that the gas has well-

defined microscopic time and length scales, � and L, respectively, which therefore specify a

microscopic speed C0. We may then define dimensionless frequency, time and length as

! = !e!
∗, t = �t∗ =

L

C0

t∗, x = Lx∗. (37)

Using these definitions, equation (36) becomes,

�(t, x) = exp

[

i!∗!e�

(

t∗ − Kr

!
C0x

∗

)]

exp

[

C0

Ki

!
!∗!e�x

∗

]

. (38)

Away from any gas/surface interaction, the mean free time describing the average collision

time between two molecules is well-defined. We may therefore choose � to be the time

between successive molecular collisions. In such a case, and with !e defining the flow macro-

scopic time scale, we have a Knudsen number Kn = !e� . Subsequently, equation (38)
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yields,

�(t, x) = exp

[

i!∗Kn

(

t∗ − Kr

!
C0x

∗

)]

exp

[

C0

Ki

!
!∗Knx∗

]

. (39)

We therefore have a dimensionless inverse speed C0Kr/! and a dimensionless damping

coefficient −C0Ki/!. Meanwhile, the dimensionless frequency is a product: !∗Kn. This

means that for a fixed value of Kn, the Knudsen number is a simple scaling factor for the

dimensionless frequency. Conversely, a fixed value of the dimensionless frequency is a simple

scaling factor for the Knudsen number. Consequently, and for this particular configuration,

one may absorb the factor Kn into !∗ and interpret the variation of their product as either

Knudsen number or dimensionless frequency variations.

However, this description relies on the definition of the microscopic time � as the time

between molecule/molecule collisions. If this microscopic time is physically undefined, or

becomes large, then equation (39) and the interpretation that follows it becomes invalid

because the product !∗Kn is indeterminate. This is the case when the gas is confined

between two surfaces so that collisions between molecules are no longer the most important

mechanism of momentum transfer from one surface to the other, and instead the interactions

of the molecules directly with the two surfaces (the source and receiver in the experiments)

is.

In Greenspan’s work, which has been followed by several authors, the non-

dimensionalisation starts with a reference speed, denoted v0 = w/�0, which in our notation

corresponds to w/C0, assuming an approximation of the dispersion at high pressure. Then

the intermolecular collision mean time � is determined assuming Maxwell molecules. The

dimensionless sound speed and damping are given as they appear through equation (39)

while the inverse of the product !∗Kn is referred to as “Reynold’s number” .

In any case, one can see easily from the expression C0Ki/! that for all theories predicting

a finite value of the damping this dimensionless expression should give zero damping for !

tending to infinity. So, the expression, at first glance, is not even a well-indicated form to

compare between different theoretical results in this field. A different analysis is therefore

required.

22



Returning to equation (35), for high Knudsen numbers let us assume that the separation

distance between the two surfaces, L, is the relevant microscopic parameter. With a C0 that

may be the thermal speed (or any other characteristic molecular speed), the average time

spent travelling between the surfaces is now associated with � [9]. As there are, on average,

no intermolecular collisions in that period we expect the wave propagation to become inde-

pendent of the conventional Knudsen number beyond a certain limit. Equation (35) is then

written,

�(t, x) = exp [i (!�t∗ − L(Kr + iKi)x
∗)] , (40)

which implies !∗ = !� , K∗ = LK, and the dimensionless sound speed and damping are

given, respectively, by !∗/K∗
r and −K∗

i , which are the expressions we defined in equation

(33) (allowing for the constant coefficient
√

5/3). Moreover, this dimensionless phase speed

and damping are independent of the dimensional frequency ! and so independent of !e.

Although our corrected dimensional analysis seems to work with the data in reference

[6], further verifications with other experiments using reliable dimensionless parameters are

necessary. It is also worth noting that the failure of Greenspan’s analysis at high frequencies

means that a high conventional Knudsen number does not necessarily mean a high frequency,

and vice versa. In Figure 7, ! is strictly speaking referring to a separation-distance-based

Knudsen number, not the real dimensional frequency — as we have shown through equation

(40).

We have not compared our theoretical results with the more recent experimental data

by Schotter [9]. This is because, while Schotter differentiated between two microscopic

time scales, he defined the dimensionless parameters as in Greenspan’s analysis, i.e., a

dimensionless damping coefficient that depends on the frequency over the full regime. He

reported different plots for different separation distances.
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(a) Normalized inverse phase speed varying with !−1
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(b) Normalized damping coefficient varying with !−1

FIG. 1: Comparison of our volume-based dispersion predictions with experiments, with W repre-

sented by a first order approximation, and using the definitions in equation (32). Experimental

data are represented by the discrete squares. With �∗ = �∗ = 1 the dispersion relation is the same

as for the Navier-Stokes-Fourier model.
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(a) Temporal stability; �∗ = 0.28, �∗ = 0.48, Sc = 0.9
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(b) Spatial stability; �∗ = 0.28, �∗ = 0.48, Sc = 0.9

FIG. 2: Stability analysis of our volume-based hydrodynamic equations, with W described by a

first order approximation only. Our equations are stable in both space and time if (�∗ ≤ 1, �∗ ≤ 1)

or (�∗ ≥ 1, �∗ ≤ 0.5)

26



0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

Ω
-1

¡
l-

1

(a) Normalized inverse phase speed varying with !−1; �∗ = 0.28, �∗ = 0.48, Sc = 0.9
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(b) Normalized damping coefficient varying with !−1; �∗ = 0.28 and �∗ = 0.48,

Sc = 0.9

FIG. 3: Comparisons of our volume-based dispersion predictions with experiments, with W repre-

sented by a first order approximation, and using the definitions in equation (32). Experimental data

are represented by the discrete squares. Note the improvement on damping predictions compared

to figure 1.
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(a) Temporal stability; �∗ = 0.28, ∗ = 0.48, Sc = 0.14
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(b) Spatial stability; �∗ = 0.28, ∗ = 0.48, Sc = 0.14

FIG. 4: Stability analysis of our volume-based hydrodynamic equations, with W described by a

second order approximation only. Our equations are stable in both space and time if 0 ≤ ∗−�∗ ≤

1.3.
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(a) Normalized inverse phase speed varying with !−1; �∗ = 0.28, ∗ = 0.48, Sc = 0.14
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(b) Normalized damping coefficient varying with !−1; �∗ = 0.28, ∗ = 0.48, Sc = 0.14

FIG. 5: Comparison of our volume-based dispersion predictions with experiments, with W de-

scribed by a second order approximation, and using equation (32). Experimental data are repre-

sented by the discrete squares. Note the agreement with the phase speed for all Knudsen numbers.

29



10
−2

10
−1

10
0

10
1

0.4

0.6

0.8

1

Inverse Knudsen number

N
o
rm

a
li
ze

d
in

v
er

se
p
h
a
se

sp
ee

d

 

 

experiments
Spiegel & Thiffeault 2003
Dellar 2007
present model

(a) Inverse phase speed compared with other models
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(b) Damping coefficient compared with other models

FIG. 6: Comparison of our volume based-model (as in figure 5) with two other recent models

[11, 14], and argon gas experimental data [6].
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FIG. 7: Damping coefficient predictions with W described by a second order approximation, and

using the definitions in equation (34); �∗ = 0.28, ∗ = 0.48, Sc = 0.14. Note the agreement with

one of the modes at high Knudsen numbers.
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FIG. 8: The two different natures of the sound mode, illustrated by the two different modes fitting

experimental damping in different Knudsen number regimes.
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