5,281,449 research outputs found

    Model of supersymmetric quantum field theory with broken parity symmetry

    Get PDF
    Recently, it was observed that self-interacting scalar quantum field theories having a non-Hermitian interaction term of the form g(iϕ)2+δg(i\phi)^{2+\delta}, where δ\delta is a real positive parameter, are physically acceptable in the sense that the energy spectrum is real and bounded below. Such theories possess PT invariance, but they are not symmetric under parity reflection or time reversal separately. This broken parity symmetry is manifested in a nonzero value for , even if δ\delta is an even integer. This paper extends this idea to a two-dimensional supersymmetric quantum field theory whose superpotential is S(ϕ)=ig(iϕ)1+δ{\cal S}(\phi)=-ig(i\phi)^{1+\delta}. The resulting quantum field theory exhibits a broken parity symmetry for all δ>0\delta>0. However, supersymmetry remains unbroken, which is verified by showing that the ground-state energy density vanishes and that the fermion-boson mass ratio is unity.Comment: 20 pages, REVTeX, 11 postscript figure

    Flavor mixing in a Lee-type model

    Full text link
    An exactly solvable Quantum Field Theory (QFT) model of Lee-type is constructed to study how neutrino flavor eigenstates are created through interactions and how the localization properties of neutrinos follows from the parent particle that decays. The two-particle states formed by the neutrino and the accompanying charged lepton can be calculated exactly as well as their creation probabilities. We can show that the coherent creation of neutrino flavor eigenstates follows from the common negligible contribution of neutrino masses to their creation probabilities. On the other hand, it is shown that it is not possible to associate a well defined "flavor" to mixed states of charged leptons.Comment: v2: 25pp in preprint form, typos corrected and references added, one paragraph around Eq.(90) added in conclusion

    Distinguished bases of exceptional modules

    Full text link
    Exceptional modules are tree modules. A tree module usually has many tree bases and the corresponding coefficient quivers may look quite differently. The aim of this note is to introduce a class of exceptional modules which have a distinguished tree basis, we call them radiation modules (generalizing an inductive construction considered already by Kinser). For a Dynkin quiver, nearly all indecomposable representations turn out to be radiation modules, the only exception is the maximal indecomposable module in case E_8. Also, the exceptional representation of the generalized Kronecker quivers are given by radiation modules. Consequently, with the help of Schofield induction one can display all the exceptional modules of an arbitrary quiver in a nice way.Comment: This is a revised and slightly expanded version. Propositions 1 and 2 have been corrected, some examples have been inserte

    Seating tool for preparing molded-plug terminations on FCC

    Get PDF
    Hand-operated tool positions and seats window piece and conductor spacer onto conductors of two stripped cables during process of terminating cables with molded plug. Tool accommodates cables up to 3 in. wide and is used in conjunction with folding tools

    Cotunneling Spectroscopy in Few-Electron Quantum Dots

    Full text link
    Few-electron quantum dots are investigated in the regime of strong tunneling to the leads. Inelastic cotunneling is used to measure the two-electron singlet-triplet splitting above and below a magnetic field driven singlet-triplet transition. Evidence for a non-equilibrium two-electron singlet-triplet Kondo effect is presented. Cotunneling allows orbital correlations and parameters characterizing entanglement of the two-electron singlet ground state to be extracted from dc transport.Comment: related papers available at http://marcuslab.harvard.ed

    Quantum tunneling as a classical anomaly

    Full text link
    Classical mechanics is a singular theory in that real-energy classical particles can never enter classically forbidden regions. However, if one regulates classical mechanics by allowing the energy E of a particle to be complex, the particle exhibits quantum-like behavior: Complex-energy classical particles can travel between classically allowed regions separated by potential barriers. When Im(E) -> 0, the classical tunneling probabilities persist. Hence, one can interpret quantum tunneling as an anomaly. A numerical comparison of complex classical tunneling probabilities with quantum tunneling probabilities leads to the conjecture that as ReE increases, complex classical tunneling probabilities approach the corresponding quantum probabilities. Thus, this work attempts to generalize the Bohr correspondence principle from classically allowed to classically forbidden regions.Comment: 12 pages, 7 figure

    Bi-Directional Relativistic Jets of the Radio Galaxy 1946+708: Constraints on the Hubble Constant

    Get PDF
    We present measurements of bi-directional motions in the jets of the radio galaxy 1946+708 at z=0.101. This is a Compact Symmetric Object with striking S-symmetry. Sensitive 15 GHz observations reveal a compact component at the center of symmetry with a strongly inverted spectrum, that we identify as the core. From five 4.9 GHz observations spread over 4 years we have determined the velocities of four compact jet components. If simple kinematic models can be applied then the inclination of the source and the bulk jet velocity can be directly determined for any assumed value of the Hubble constant. Conversely, the measurements already place constraints on the Hubble constant, and we show how further observations of 1946+708 can yield an increasingly accurate determination of H_0.Comment: in press at ApJ Letters, 12 page LaTex document includes 5 postscript figure

    Detection and Implications of a Time-reversal breaking state in underdoped Cuprates

    Full text link
    We present general symmetry considerations on how a Time-reversal breaking state may be detected by angle-resolved photoemission using circularly polarized photons as has been proposed earlier. Results of recent experiments utilizing the proposal in underdoped cuprates are analysed and found to be consistent in their symmetry and magnitude with a theory of the Copper-Oxides. These togather with evidence for a quantum critical point and marginal Fermi-liquid properties near optimum doping suggest that a valid microscopic theory of the phenomena in the cuprates has been found.Comment: A statement on detecting the Anyon state is added and some typos are subtracte
    corecore