216 research outputs found

    A two-dimensional mixing length theory of convective transport

    Full text link
    The helioseismic observations of the internal rotation profile of the Sun raise questions about the two-dimensional (2D) nature of the transport of angular momentum in stars. Here we derive a convective prescription for axisymmetric (2D) stellar evolution models. We describe the small scale motions by a spectrum of unstable linear modes in a Boussinesq fluid. Our saturation prescription makes use of the angular dependence of the linear dispersion relation to estimate the anisotropy of convective velocities. We are then able to provide closed form expressions for the thermal and angular momentum fluxes with only one free parameter, the mixing length. We illustrate our prescription for slow rotation, to first order in the rotation rate. In this limit, the thermodynamical variables are spherically symetric, while the angular momentum depends both on radius and latitude. We obtain a closed set of equations for stellar evolution, with a self-consistent description for the transport of angular momentum in convective regions. We derive the linear coefficients which link the angular momentum flux to the rotation rate (Λ\Lambda- effect) and its gradient (α\alpha-effect). We compare our results to former relevant numerical work.Comment: MNRAS accepted, 10 pages, 1 figure, version prior to language editio

    The C-flash and the ignition conditions of type Ia supernovae

    Full text link
    Thanks to a stellar evolution code able to compute through the C-flash we link the binary population synthesis of single degenerate progenitors of type Ia supernovae (SNe Ia) to their physical condition at the time of ignition. We show that there is a large range of possible ignition densities and we detail how their probability distribution depends on the accretion properties. The low density peak of this distribution qualitatively reminds of the clustering of the luminosities of Branch-normal SNe Ia. We tighten the possible range of initial physical conditions for explosion models: they form a one-parameter family, independent of the metallicity. We discuss how these results may be modified if we were to relax our hypothesis of a permanent Hachisu wind or if we were to include electron captures.Comment: 10 pages, 14 figures, MNRAS accepte

    Theoretical study of Acousto-optical coherence tomography using random phase jumps on US and light

    Get PDF
    Acousto-Optical Coherence Tomography (AOCT) is variant of Acousto Optic Imaging (called also ultrasonic modulation imaging) that makes possible to get z resolution with acoustic and optic Continuous Wave (CW) beams. We describe here theoretically the AOCT e ect, and we show that the Acousto Optic tagged photons remains coherent if they are generated within a speci c z region of the sample. We quantify the z selectivity for both the tagged photon eld, and for the M. Lesa re et al. photorefractive signal

    Detection of the tagged or untagged photons in acousto-optic imaging of thick highly scattering media by photorefractive adaptive holography

    Full text link
    We propose an original adaptive wavefront holographic setup based on the photorefractive effect (PR), to make real-time measurements of acousto-optic signals in thick scattering media, with a high flux collection at high rates for breast tumor detection. We describe here our present state of art and understanding on the problem of breast imaging with PR detection of the acousto-optic signal

    Contact dynamics in a gently vibrated granular pile

    Full text link
    We use multi-speckle diffusive wave spectroscopy (MSDWS) to probe the micron-scale dynamics of a granular pile submitted to discrete gentle taps. The typical time-scale between plastic events is found to increase dramatically with the number of applied taps. Furthermore, this microscopic dynamics weakly depends on the solid fraction of the sample. This process is strongly analogous to the aging phenomenon observed in thermal glassy systems. We propose a heuristic model where this slowing down mechanism is associated with a slow evolution of the distribution of the contact forces between particles. This model accounts for the main features of the observed dynamics.Comment: 4 pages, 4 figure

    Sulphur-bearing molecules in diffuse molecular clouds: new results from SOFIA/GREAT and the IRAM 30 m telescope

    Full text link
    We have observed five sulphur-bearing molecules in foreground diffuse molecular clouds lying along the sight-lines to five bright continuum sources. We have used the GREAT instrument on SOFIA to observe the 1383 GHz 2Π3/2J=5/23/2^2\Pi_{3/2} J=5/2-3/2 transitions of SH towards the star-forming regions W31C, G29.96-0.02, G34.3+0.1, W49N and W51, detecting foreground absorption towards all five sources; and the EMIR receivers on the IRAM 30m telescope at Pico Veleta to detect the H2_2S 1(10)-1(01), CS J=2-1 and SO 3(2)-2(1) transitions. In nine foreground absorption components detected towards these sources, the inferred column densities of the four detected molecules showed relatively constant ratios, with N(SH)/N(H2_2S) in the range 1.1 - 3.0, N(CS)/N(H2_2S) in the range 0.32 - 0.61, and N(SO)/N(H2_2S) in the range 0.08 - 0.30. The observed SH/H2_2 ratios - in the range (0.5-2.6) ×108\times 10^{-8} - indicate that SH (and other sulphur-bearing molecules) account for << 1% of the gas-phase sulphur nuclei. The observed abundances of sulphur-bearing molecules, however, greatly exceed those predicted by standard models of cold diffuse molecular clouds, providing further evidence for the enhancement of endothermic reaction rates by elevated temperatures or ion-neutral drift. We have considered the observed abundance ratios in the context of shock and turbulent dissipation region (TDR) models. Using the TDR model, we find that the turbulent energy available at large scale in the diffuse ISM is sufficient to explain the observed column densities of SH and CS. Standard shock and TDR models, however, fail to reproduce the column densities of H2_2S and SO by a factor of about 10; more elaborate shock models - in which account is taken of the velocity drift, relative to H2_2, of SH molecules produced by the dissociative recombination of H3_3S+^+ - reduce this discrepancy to a factor ~ 3.Comment: 30 pages, accepted for publication in A&

    3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy

    Get PDF
    We used three-dimensional (3-D) images of snow microstructure to carry out numerical estimations of the full tensor of the intrinsic permeability of snow (&lt;b&gt;K&lt;/b&gt;). This study was performed on 35 snow samples, spanning a wide range of seasonal snow types. For several snow samples, a significant anisotropy of permeability was detected and is consistent with that observed for the effective thermal conductivity obtained from the same samples. The anisotropy coefficient, defined as the ratio of the vertical over the horizontal components of &lt;b&gt;K&lt;/b&gt;, ranges from 0.74 for a sample of decomposing precipitation particles collected in the field to 1.66 for a depth hoar specimen. Because the permeability is related to a characteristic length, we introduced a dimensionless tensor &lt;b&gt;K&lt;/b&gt;*=&lt;b&gt;K&lt;/b&gt;/&lt;i&gt;r&lt;/i&gt;&lt;sub&gt;es&lt;/sub&gt;&lt;sup&gt;2&lt;/sup&gt;, where the equivalent sphere radius of ice grains (&lt;i&gt;r&lt;/i&gt;&lt;sub&gt;es&lt;/sub&gt;) is computed from the specific surface area of snow (SSA) and the ice density (&amp;rho;&lt;sub&gt;i&lt;/sub&gt;) as follows: &lt;i&gt;r&lt;/i&gt;&lt;sub&gt;es&lt;/sub&gt;=3/(SSA&amp;times;&amp;rho;&lt;sub&gt;i&lt;/sub&gt;. We define &lt;i&gt;K&lt;/i&gt; and &lt;i&gt;K&lt;/i&gt;* as the average of the diagonal components of &lt;b&gt;K&lt;/b&gt; and &lt;b&gt;K&lt;/b&gt;*, respectively. The 35 values of &lt;i&gt;K&lt;/i&gt;* were fitted to snow density (&amp;rho;&lt;sub&gt;s&lt;/sub&gt;) and provide the following regression: &lt;i&gt;K&lt;/i&gt; = (3.0 &amp;pm; 0.3) &lt;i&gt;r&lt;/i&gt;&lt;sub&gt;es&lt;/sub&gt;&lt;sup&gt;2&lt;/sup&gt; exp((&amp;minus;0.0130 &amp;pm; 0.0003)&amp;rho;&lt;sub&gt;s&lt;/sub&gt;). We noted that the anisotropy of permeability does not affect significantly the proposed equation. This regression curve was applied to several independent datasets from the literature and compared to other existing regression curves or analytical models. The results show that it is probably the best currently available simple relationship linking the average value of permeability, &lt;i&gt;K&lt;/i&gt;, to snow density and specific surface area

    The Double Pulsar J0737--3039: Testing the Neutron Star Equation of State

    Full text link
    The double pulsar J0737--3039 has become an important astrophysical laboratory for testing fundamental physics. Here we demonstrate that the low measured mass of Pulsar B can be used to constrain the equation of state of neutron star matter {\em under the assumption} that it formed in an electron-capture supernova. We show that the observed orbital parameters as well as the likely evolutionary history of the system support such a hypothesis and discuss future refinements that will improve the constraints this test may provide.Comment: 8 pages, 3 figures, to be published in MNRA

    Delayed Decision-making in Real-time Beatbox Percussion Classification

    Get PDF
    This is an electronic version of an article published in Journal of New Music Research, 39(3), 203-213, 2010. doi:10.1080/09298215.2010.512979. Journal of New Music Research is available online at: www.tandfonline.com/openurl?genre=article&issn=1744-5027&volume=39&issue=3&spage=20
    corecore