32,404 research outputs found

    Computer aided processing using laser measurements

    Get PDF
    The challenge exists of processing the STS and its cargo through KSC facilities in the most timely and cost effective manner possible. To do this a 3-D computer graphics data base was established into which was entered the STS, payloads, and KSC facilities. The facility drawing data are enhanced by laser theodolite measurements into an as-built configuration. Elements of the data base were combined to study orbiter/facility interfaces payload/facility access problems and design/arrangement of various GSE to support processing requirements. With timely analysis/design utilizing the 3-D computer graphics system, costly delays can be avoided. Better methodology can be analyzed to determine procedures for cost avoidance

    Versatile Control System for Automated Single-Molecule Optical Tweezers Investigations

    Get PDF
    We present a versatile control system to automate single-molecule biophysics experiments. This method combines low-level controls into various functional, user-configurable modules, which can be scripted in a domain-specific instruction language. The ease with which the high-level parameters can be changed accelerates the development of a durable experiment for the perishable single-molecule samples. Once the experimental parameters are tuned, the control system can be used to repeatedly manipulate other single molecules in the same way, which is necessary to accumulate the statistics needed to report results from single-molecule studies. This system has been implemented for an optical tweezers instrument for single-molecule manipulations, with real-time point-by-point feedback at a loop rate of 10-20 kHz

    Hypersonic airframe structures: Technology needs and flight test requirements

    Get PDF
    Hypersonic vehicles, that may be produced by the year 2000, were identified. Candidate thermal/structural concepts that merit consideration for these vehicles were described. The current status of analytical methods, materials, manufacturing techniques, and conceptual developments pertaining to these concepts were reviewed. Guidelines establishing meaningful technology goals were defined and twenty-eight specific technology needs were identified. The extent to which these technology needs can be satisfied, using existing capabilities and facilities without the benefit of a hypersonic research aircraft, was assessed. The role that a research aircraft can fill in advancing this technology was discussed and a flight test program was outlined. Research aircraft thermal/structural design philosophy was also discussed. Programs, integrating technology advancements with the projected vehicle needs, were presented. Program options were provided to reflect various scheduling and cost possibilities

    Baryon number and strangeness: signals of a deconfined antecedent

    Full text link
    The correlation between baryon number and strangeness is used to discern the nature of the deconfined matter produced at vanishing chemical potential in high-energy nuclear collisions at the BNL RHIC. Comparisons of results of various phenomenological models with correlations extracted from lattice QCD calculations suggest that a quasi-particle picture applies. At finite baryon densities, such as those encountered at the CERN SPS, it is demonstrated that the presence of a first-order phase transition and the accompanying development of spinodal decomposition would significantly enhance the number of strangeness carriers and the associated fluctuations.Comment: 10 pages, 4 figures, latex, to appear in the proceedings of the Workshop on Correlations and Fluctuations in Relativistic Nuclear collisions, (MIT, April 21-23,2005

    Highlights of the Beam Energy Scan from STAR

    Full text link
    The first part of the beam energy scan (BES) program at RHIC was successfully completed in the years 2010 and 2011. First STAR results from particle yield measurements are in good agreement with previously published data from SPS and AGS experiments whereas other results like azimuthal HBT and K/Ď€K/\pi event-by-event fluctuations differ at some energies. In addition, new observations like the centrality dependence of chemical freeze-out parameters (TchT_{\rm{ch}} and ÎĽB\mu_{B}) or the smoothly increasing difference with decreasing energy in the elliptic flow v2v_{2} between particles and corresponding anti-particles, are discussed.Comment: CPOD 2011 proceedings, 5 pages, 4 figure

    Influence of firing mechanisms on gain modulation

    Full text link
    We studied the impact of a dynamical threshold on the f-I curve-the relationship between the input and the firing rate of a neuron-in the presence of background synaptic inputs. First, we found that, while the leaky integrate-and-fire model cannot reproduce the f-I curve of a cortical neuron, the leaky integrate-and-fire model with dynamical threshold can reproduce it very well. Second, we found that the dynamical threshold modulates the onset and the asymptotic behavior of the f-I curve. These results suggest that a cortical neuron has an adaptation mechanism and that the dynamical threshold has some significance for the computational properties of a neuron.Comment: 7 pages, 4 figures, conference proceeding

    Thermal Hadron Production in High Energy Heavy Ion Collisions

    Full text link
    We provide a method to test if hadrons produced in high energy heavy ion collisions were emitted at freeze-out from an equilibrium hadron gas. Our considerations are based on an ideal gas at fixed temperature TfT_f, baryon number density nBn_B, and vanishing total strangeness. The constituents of this gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay according to the experimentally observed branching ratios. The ratios of the various resulting hadron production rates are tabulated as functions of TfT_f and nBn_B. These tables can be used for the equilibration analysis of any heavy ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92 and Bielefeld preprint BI-TP 92/0

    Renormalization of the electron-phonon coupling in the one-band Hubbard model

    Get PDF
    We investigate the effect of electronic correlations on the coupling of electrons to Holstein phonons in the one-band Hubbard model. We calculate the static electron-phonon vertex within linear response of Kotliar-Ruckenstein slave-bosons in the paramagnetic saddle-point approximation. Within this approach the on-site Coulomb interaction U strongly suppresses the coupling to Holstein phonons at low temperatures. Moreover the vertex function does not show particularly strong forward scattering. Going to larger temperatures kT\sim t we find that after an initial decrease with U, the electron-phonon coupling starts to increase with U, confirming a recent result of Cerruti, Cappelluti, and Pietronero. We show that this behavior is related to an unusual reentrant behavior from a phase separated to a paramagnetic state upon decreasing the temperature.Comment: 4 pages, 6 figure

    On the temperature dependence of correlation functions in the space like direction in hot QCD

    Full text link
    We study the temperature dependence of quark antiquark correlations in the space like direction. In particular, we predict the temperature dependence of space like Bethe-Salpeter amplitudes using recent Lattice gauge data for the space like string potential. We also investigate the effect of the space like string potential on the screening mass and discuss possible corrections which may arise when working with point sources.Comment: 15 pages 8 figures (not included, will be sent on request), (SUNY-NTG-94-3
    • …
    corecore