3,394 research outputs found

    Combustor concepts for aircraft gas turbine low-power emissions reduction

    Get PDF
    Several combustor concepts were designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the hot wall combustor employs a thermal barrier coating and impingement cooled liners; the recuperative cooling combustor preheats the air before entering the combustion chamber; and the catalytic converter combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultralow levels of unburned hydrocarbons and carbon monoxide emissions can be achieved

    Quantum Logic and the Histories Approach to Quantum Theory

    Full text link
    An extended analysis is made of the Gell-Mann and Hartle axioms for a generalised `histories' approach to quantum theory. Emphasis is placed on finding equivalents of the lattice structure that is employed in standard quantum logic. Particular attention is given to `quasi-temporal' theories in which the notion of time-evolution is less rigid than in conventional Hamiltonian physics; theories of this type are expected to arise naturally in the context of quantum gravity and quantum field theory in a curved space-time. The quasi-temporal structure is coded in a partial semi-group of `temporal supports' that underpins the lattice of history propositions. Non-trivial examples include quantum field theory on a non globally-hyperbolic spacetime, and a simple cobordism approach to a theory of quantum topology. It is shown how the set of history propositions in standard quantum theory can be realised in such a way that each history proposition is represented by a genuine projection operator. This provides valuable insight into the possible lattice structure in general history theories, and also provides a number of potential models for theories of this type.Comment: TP/92-93/39 36 pages + one page of diagrams (I could email Apple laser printer postscript file for anyone who is especially keen

    Multispectral system analysis through modeling and simulation

    Get PDF
    The design and development of multispectral remote sensor systems and associated information extraction techniques should be optimized under the physical and economic constraints encountered and yet be effective over a wide range of scene and environmental conditions. Direct measurement of the full range of conditions to be encountered can be difficult, time consuming, and costly. Simulation of multispectral data by modeling scene, atmosphere, sensor, and data classifier characteristics is set forth as a viable alternative, particularly when coupled with limited sets of empirical measurements. A multispectral system modeling capability is described. Use of the model is illustrated for several applications - interpretation of remotely sensed data from agricultural and forest scenes, evaluating atmospheric effects in LANDSAT data, examining system design and operational configuration, and development of information extraction techniques

    Atmospheric modeling related to Thematic Mapper scan geometry

    Get PDF
    A simulation study was carried out to characterize atmospheric effects in LANDSAT-D Thematic Mapper data. In particular, the objective was to determine if any differences would result from using a linear vs. a conical scanning geometry. Insight also was gained about the overall effect of the atmosphere on Thematic Mapper signals, together with the effects of time of day. An added analysis was made of the geometric potential for direct specular reflections (sun glint). The ERIM multispectral system simulation model was used to compute inband Thematic Mapper radiances, taking into account sensor, atmospheric, and surface characteristics. Separate analyses were carried out for the thermal band and seven bands defined in the reflective spectral region. Reflective-region radiances were computed for 40 deg N, 0 deg, and 40 deg S latitudes; June, Mar., and Dec. days; and 9:30 and 11:00 AM solar times for both linear and conical scan modes. Also, accurate simulations of solar and viewing geometries throughout Thematic Mapper orbits were made. It is shown that the atmosphere plays an important role in determining Thematic Mapper radiances, with atmospheric path radiance being the major component of total radiances for short wavelengths and decreasing in importance as wavelength increases. Path radiance is shown to depend heavily on the direct radiation scattering angle and on haze content. Scan-angle-dependent variations were shown to be substantial, especially for the short-wavelength bands

    Wheat signature modeling and analysis for improved training statistics: Supplement. Simulated LANDSAT wheat radiances and radiance components

    Get PDF
    Simulated scanner system data values generated in support of LACIE (Large Area Crop Inventory Experiment) research and development efforts are presented. Synthetic inband (LANDSAT) wheat radiances and radiance components were computed and are presented for various wheat canopy and atmospheric conditions and scanner view geometries. Values include: (1) inband bidirectional reflectances for seven stages of wheat crop growth; (2) inband atmospheric features; and (3) inband radiances corresponding to the various combinations of wheat canopy and atmospheric conditions. Analyses of these data values are presented in the main report

    Enterprise Budgets for Livestock Businesses that Use National Forest Grazing Land

    Get PDF
    Cow-calf and sheep enterprise inputs, production, costs, and returns are estimated for ranches with Forest Service grazing permits using 1982 as a base year. Budgets represent different cow and sheep herd sizes in National Forests and national Grasslands of United States.Beef cows, sheep costs and returns, Federal rangeland, Livestock Production/Industries,

    Wheat signature modeling and analysis for improved training statistics

    Get PDF
    The author has identified the following significant results. The spectral, spatial, and temporal characteristics of wheat and other signatures in LANDSAT multispectral scanner data were examined through empirical analysis and simulation. Irrigation patterns varied widely within Kansas; 88 percent of wheat acreage in Finney was irrigated and 24 percent in Morton, as opposed to less than 3 percent for western 2/3's of the State. The irrigation practice was definitely correlated with the observed spectral response; wheat variety differences produced observable spectral differences due to leaf coloration and different dates of maturation. Between-field differences were generally greater than within-field differences, and boundary pixels produced spectral features distinct from those within field centers. Multiclass boundary pixels contributed much of the observed bias in proportion estimates. The variability between signatures obtained by different draws of training data decreased as the sample size became larger; also, the resulting signatures became more robust and the particular decision threshold value became less important

    Investigation of spatial misregistration effects in multispectral scanner data

    Get PDF
    The author has identified the following significant results. A model for estimating the expected proportion of multiclass pixels in a scene was generalized and extended to include misregistration effects. Another substantial effort was the development of a simulation model to generate signatures to represent the distributions of signals from misregistered multiclass pixels, based on single class signatures. Spatial misregistration causes an increase in the proportion of multiclass pixels in a scene and a decorrelation between signals in misregistered data channels. The multiclass pixel proportion estimation model indicated that this proportion is strongly dependent on the pixel perimeter and on the ratio of the total perimeter of the fields in the scene to the area of the scene. Test results indicated that expected values computed with this model were similar to empirical measurements made of this proportion in four LACIE data segments

    Theoretical basis for at-many-stations hydraulic geometry

    Get PDF
    Citation: Gleason, C. J., & Wang, J.(2015). Theoretical basis for at-many-stations hydraulic geometry. Geophysical Research Letters, 42(17), 7107-7114. doi:10.1002/2015gl064935At-many-stations hydraulic geometry (AMHG) is a recently discovered set of geomorphic relationships showing that the empirical parameters of at-a-station hydraulic geometry (AHG) are functionally related along a river. This empirical conclusion seemingly refutes previous decades of research defining AHG as spatially independent and site specific. Furthermore, AMHG was the centerpiece of an unprecedented recent methodology that successfully estimated river discharge solely from satellite imagery. Despite these important implications, AMHG has remained an empirical phenomenon without theoretical explanation. Here we provide the mathematical basis for AMHG, showing that it arises when independent AHG curves within a reach intersect near the same values of discharge and width, depth, or velocity. The strength of observed AMHG is determined by the degree of this convergence. Finally, we show that AMHG enables discharge estimation by defining a set of possible estimated discharges that often match true discharges and propose its future interpretation as a fluvial index

    Phenology of Drosophila species across a temperate growing season and implications for behavior

    Get PDF
    Data have been deposited in Dryad, https://doi.org/10.5061/dryad.1bc102k.Drosophila community composition is complex in temperate regions with different abundance of flies and species across the growing season. Monitoring Drosophila populations provides insights into the phenology of both native and invasive species. Over a single growing season, we collected Drosophila at regular intervals and determined the number of individuals of the nine species we found in Kansas, USA. Species varied in their presence and abundance through the growing season with peak diversity occurring after the highest seasonal temperatures. We developed models for the abundance of the most common species, Drosophila melanogaster, D. simulans, D. algonquin, and the recent invasive species, D. suzukii. These models revealed that temperature played the largest role in abundance of each species across the season. For the two most commonly studied species, D. melanogaster and D. simulans, the best models indicate shifted thermal optima compared to laboratory studies, implying that fluctuating temperature may play a greater role in the physiology and ecology of these insects than indicated by laboratory studies, and should be considered in global climate change studies.Kansas State Biology Graduate Student Association Research GrantKU EEB GRF 210508
    corecore