661 research outputs found

    Neural correlates of the processing of co-speech gestures

    Get PDF
    In communicative situations, speech is often accompanied by gestures. For example, speakers tend to illustrate certain contents of speech by means of iconic gestures which are hand movements that bear a formal relationship to the contents of speech. The meaning of an iconic gesture is determined both by its form as well as the speech context in which it is performed. Thus, gesture and speech interact in comprehension. Using fMRI, the present study investigated what brain areas are involved in this interaction process. Participants watched videos in which sentences containing an ambiguous word (e.g. She touched the mouse) were accompanied by either a meaningless grooming movement, a gesture supporting the more frequent dominant meaning (e.g. animal) or a gesture supporting the less frequent subordinate meaning (e.g. computer device). We hypothesized that brain areas involved in the interaction of gesture and speech would show greater activation to gesture-supported sentences as compared to sentences accompanied by a meaningless grooming movement. The main results are that when contrasted with grooming, both types of gestures (dominant and subordinate) activated an array of brain regions consisting of the left posterior superior temporal sulcus (STS), the inferior parietal lobule bilaterally and the ventral precentral sulcus bilaterally. Given the crucial role of the STS in audiovisual integration processes, this activation might reflect the interaction between the meaning of gesture and the ambiguous sentence. The activations in inferior frontal and inferior parietal regions may reflect a mechanism of determining the goal of co-speech hand movements through an observation-execution matching process

    Action comprehension: deriving spatial and functional relations.

    Get PDF
    A perceived action can be understood only when information about the action carried out and the objects used are taken into account. It was investigated how spatial and functional information contributes to establishing these relations. Participants observed static frames showing a hand wielding an instrument and a potential target object of the action. The 2 elements could either match or mismatch, spatially or functionally. Participants were required to judge only 1 of the 2 relations while ignoring the other. Both irrelevant spatial and functional mismatches affected judgments of the relevant relation. Moreover, the functional relation provided a context for the judgment of the spatial relation but not vice versa. The results are discussed in respect to recent accounts of action understanding

    Players of Matching Pennies automatically imitate opponents’ gestures against strong incentives

    Get PDF
    There is a large body of evidence of apparently spontaneous mimicry in humans. This phenomenon has been described as "automatic imitation" and attributed to a mirror neuron system, but there is little direct evidence that it is involuntary rather than intentional. Cook et al. supplied the first such evidence in a unique strategic game design that gave all subjects a pecuniary incentive to avoid imitation [Cook R, Bird G, Lünser G, Huck S, Heyes C (2012) Proc Biol Sci 279(1729):780-786]. Subjects played Rock-Paper-Scissors repeatedly in matches between fixed pairs, sometimes with one and sometimes with both subjects blindfolded. The frequency of draws in the blind-blind condition was at chance, but in the blind-sighted condition it was significantly higher, suggesting automatic imitation had occurred. Automatic imitation would raise novel issues concerning how strategic interactions are modeled in game theory and social science; however, inferring automatic imitation requires significant incentives to avoid it, and subjects' incentives were less than 3 US cents per 60-game match. We replaced Cook et al.'s Rock-Paper-Scissors with a Matching Pennies game, which allows far stronger incentives to avoid imitation for some subjects, with equally strong incentives to imitate for others. Our results are important in providing evidence of automatic imitation against significant incentives. That some of our subjects had incentives to imitate also enables us clearly to distinguish intentional responding from automatic imitation, and we find evidence that both occur. Thus, our results strongly confirm the occurrence of automatic imitation, and illuminate the way that automatic and intentional processes interact in a strategic context

    Glofitamab, a Novel, Bivalent CD20-Targeting T-Cell–Engaging Bispecific Antibody, Induces Durable Complete Remissions in Relapsed or Refractory B-Cell Lymphoma: A Phase I Trial

    Get PDF
    Glofitamab; B-Cell Lymphoma; RelapsedGlofitamab; Linfoma de células B; RecaídaGlofitamab; Limfoma de cèl·lules B; RecaigudaPURPOSE Glofitamab is a T-cell–engaging bispecific antibody possessing a novel 2:1 structure with bivalency for CD20 on B cells and monovalency for CD3 on T cells. This phase I study evaluated glofitamab in relapsed or refractory (R/R) B-cell non-Hodgkin lymphoma (B-NHL). Data for single-agent glofitamab, with obinutuzumab pretreatment (Gpt) to reduce toxicity, are presented. METHODS Seven days before the first dose of glofitamab (0.005-30 mg), all patients received 1,000 mg Gpt. Dose-escalation steps were determined using a Bayesian continuous reassessment method with overdose control. Primary end points were safety, pharmacokinetics, and the maximum tolerated dose of glofitamab. RESULTS Following initial single-patient cohorts, 171 patients were treated within conventional multipatient cohorts and received at least one dose of glofitamab. This trial included heavily pretreated patients with R/R B-NHL; most were refractory to prior therapy (155; 90.6%) and had received a median of three prior therapies. One hundred and twenty-seven patients (74.3%) had diffuse large B-cell lymphoma, transformed follicular lymphoma, or other aggressive histology, and the remainder had indolent lymphoma subtypes. Five (2.9%) patients withdrew from treatment because of adverse events. Cytokine release syndrome occurred in 86 of 171 (50.3%) patients (grade 3 or 4: 3.5%); two (1.2%) patients experienced grade 3, transient immune effector cell–associated neurotoxicity syndrome-like symptoms. The overall response rate was 53.8% (complete response [CR], 36.8%) among all doses and 65.7% (CR, 57.1%) in those dosed at the recommended phase II dose. Of 63 patients with CR, 53 (84.1%) have ongoing CR with a maximum of 27.4 months observation. CONCLUSION In patients with predominantly refractory, aggressive B-NHL, glofitamab showed favorable activity with frequent and durable CRs and a predictable and manageable safety profile

    Fast Visuomotor Processing of Redundant Targets: The Role of the Right Temporo-Parietal Junction

    Get PDF
    Parallel processing of multiple sensory stimuli is critical for efficient, successful interaction with the environment. An experimental approach to studying parallel processing in sensorimotor integration is to examine reaction times to multiple copies of the same stimulus. Reaction times to bilateral copies of light flashes are faster than to single, unilateral light flashes. These faster responses may be due to ‘statistical facilitation’ between independent processing streams engaged by the two copies of the light flash. On some trials, however, reaction times are faster than predicted by statistical facilitation. This indicates that a neural ‘coactivation’ of the two processing streams must have occurred. Here we use fMRI to investigate the neural locus of this coactivation. Subjects responded manually to the detection of unilateral light flashes presented to the left or right visual hemifield, and to the detection of bilateral light flashes. We compared the bilateral trials where subjects' reaction times exceeded the limit predicted by statistical facilitation to bilateral trials that did not exceed the limit. Activity in the right temporo-parietal junction was higher in those bilateral trials that showed coactivation than in those that did not. These results suggest the neural coactivation observed in visuomotor integration occurs at a cognitive rather than sensory or motor stage of processing

    Observation of Static Pictures of Dynamic Actions Enhances the Activity of Movement-Related Brain Areas

    Get PDF
    Physiological studies of perfectly still observers have shown interesting correlations between increasing effortfulness of observed actions and increases in heart and respiration rates. Not much is known about the cortical response induced by observing effortful actions. The aim of this study was to investigate the time course and neural correlates of perception of implied motion, by presenting 260 pictures of human actions differing in degrees of dynamism and muscular exertion. ERPs were recorded from 128 sites in young male and female adults engaged in a secondary perceptual task.Our results indicate that even when the stimulus shows no explicit motion, observation of static photographs of human actions with implied motion produces a clear increase in cortical activation, manifest in a long-lasting positivity (LP) between 350–600 ms that is much greater to dynamic than less dynamic actions, especially in men. A swLORETA linear inverse solution computed on the dynamic-minus-static difference wave in the time window 380–430 ms showed that a series of regions was activated, including the right V5/MT, left EBA, left STS (BA38), left premotor (BA6) and motor (BA4) areas, cingulate and IF cortex.Overall, the data suggest that corresponding mirror neurons respond more strongly to implied dynamic than to less dynamic actions. The sex difference might be partially cultural and reflect a preference of young adult males for highly dynamic actions depicting intense muscular activity, or a sporty context
    corecore