5 research outputs found

    COCAP : a carbon dioxide analyser for small unmanned aircraft systems

    Get PDF
    Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 mu mol mol(-1) or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.Peer reviewe

    Surface Modifications by Field Induced Diffusion

    Get PDF
    By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages

    Large-Scale Production of Nanographite by Tube-Shear Exfoliation in Water

    No full text
    The number of applications based on graphene, few-layer graphene, and nanographite is rapidly increasing. A large-scale process for production of these materials is critically needed to achieve cost-effective commercial products. Here, we present a novel process to mechanically exfoliate industrial quantities of nanographite from graphite in an aqueous environment with low energy consumption and at controlled shear conditions. This process, based on hydrodynamic tube shearing, produced nanometer-thick and micrometer-wide flakes of nanographite with a production rate exceeding 500 gh-1 with an energy consumption about 10 Whg-1. In addition, to facilitate large-area coating, we show that the nanographite can be mixed with nanofibrillated cellulose in the process to form highly conductive, robust and environmentally friendly composites. This composite has a sheet resistance below 1.75 Ω/sq and an electrical resistivity of 1.39×10-4 Ωm and may find use in several applications, from supercapacitors and batteries to printed electronics and solar cells. A batch of 100 liter was processed in less than 4 hours. The design of the process allow scaling to even larger volumes and the low energy consumption indicates a low-cost process.KEP

    Exfoliated MoS2 in Water without Additives

    No full text
    Many solution processing methods of exfoliation of layered materials have been studied during the last few years; most of them are based on organic solvents or rely on surfactants andother funtionalization agents. Pure water should be an ideal solvent, however, it is generallybelieved, based on solubility theories that stable dispersions of water could not be achievedand systematic studies are lacking. Here we describe the use of water as a solvent and thestabilization process involved therein. We introduce an exfoliation method of molybdenumdisulfide (MoS2) in pure water at high concentration (i.e., 0.14±0.01 g L−1). This was achieved by thinning the bulk MoS2by mechanical exfoliation between sand papers and dis-persing it by liquid exfoliation through probe sonication in water. We observed thin MoS2nanosheets in water characterized by TEM, AFM and SEM images. The dimensions of thenanosheets were around 200 nm, the same range obtained in organic solvents. Electropho-retic mobility measurements indicated that electrical charges may be responsible for the sta-bilization of the dispersions. A probability decay equation was proposed to compare thestability of these dispersions with the ones reported in the literature. Water can be used as asolvent to disperse nanosheets and although the stability of the dispersions may not be ashigh as in organic solvents, the present method could be employed for a number of applications where the dispersions can be produced on site and organic solvents are not desirable.Paper Solar Cell
    corecore