23,132 research outputs found
Current limiting remote power control module
The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately
The Transition Town Network: a review of current evolutions and renaissance
The Transition Network started as a movement with Transition Totnes (Devon, UK) in late 2005, with Rob Hopkins as its founder. To date it has grown to encompass 313 official Transition Network initiatives spread across the world from the UK (with roughly 50% of all initiatives) to the USA, Canada, Italy, Japan, Germany, Ireland, New Zealand, Chile, the Netherlands, Brazil and so on (Transition Network, 2010a). For any social movement, this could most certainly be described as something of a success and warrants a closer examination. Indeed, the aim of this profile is to explore the movement's aims and modus operandi, the problematics it has faced and how it is now evolving. The profile draws on my auto-ethnographic encounters with the movement in Transition Nottingham and at the recent Transition Network Conference 2010, whilst also being grounded in the material made publically available on the Transition Network and Transition Culture websites (see Transition Network, 2010b and Transition Culture, 2010a)
Probabilistic structural analysis methods of hot engine structures
Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework
K+A Galaxies as the Aftermath of Gas-Rich Mergers: Simulating the Evolution of Galaxies as Seen by Spectroscopic Surveys
Models of poststarburst (or "K+A") galaxies are constructed by combining
fully three-dimensional hydrodynamic simulations of galaxy mergers with
radiative transfer calculations of dust attenuation. Spectral line catalogs are
generated automatically from moderate-resolution optical spectra calculated as
a function of merger progress in each of a large suite of simulations. The
mass, gas fraction, orbital parameters, and mass ratio of the merging galaxies
are varied systematically, showing that the lifetime and properties of the K+A
phase are strong functions of merger scenario. K+A durations are generally less
than ~0.1-0.3 Gyr, significantly shorter than the commonly assumed 1 Gyr, which
is obtained only in rare cases, owing to a wide variation in star formation
histories resulting from different orbital and progenitor configurations.
Combined with empirical merger rates, the model lifetimes predict
rapidly-rising K+A fractions as a function of redshift that are consistent with
results of large spectroscopic surveys, resolving tension between the observed
K+A abundance and that predicted when one assumes the K+A duration is the
lifetime of A stars (~1 Gyr). The effects of dust attenuation, viewing angle,
and aperture bias on our models are analyzed. In some cases, the K+A features
are longer-lived and more pronounced when AGN feedback removes dust from the
center, uncovering the young stars formed during the burst. In this picture,
the K+A phase begins during or shortly after the bright starburst/AGN phase in
violent mergers, and thus offers a unique opportunity to study the effects of
quasar and star formation feedback on the gas reservoir and evolution of the
remnant. Analytic fitting formulae are provided for the estimates of K+A
incidence as a function of merger scenario.Comment: 26 pages, 13 figures; ApJ; minor changes to reflect accepted versio
A unique set of micromechanics equations for high temperature metal matrix composites
A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated
Nonlinear structural analysis for fiber-reinforced superalloy turbine blades
A computational capability for predicting the nonlinear thermomechanical structural response of fiber-reinforced superalloy (FRS) turbine blades is described. This capability is embedded in a special purpose computer code (COBSTRAN) developed at the NASA Lewis Research Center. Special features of this computational capability include accounting for: fiber/matrix reaction, nonlinear and anisotropic material behavior, complex stress distribution due to local and global heterogeneity, and residual stresses due to initial fabrication and/or inelastic behavior during subsequent missions. Numerical results are presented from analyses of a hypothetical FRS turbine blade subjected to a fabrication process and subsequent mission cycle. The results demonstrate the capabilities of this computational tool to; predict local stress/strain response and capture trends of local nonlinear and anisotropic material behavior, relate the effects of this local behavior to the global response of a multilayered fiber-composite turbine blade, and trace material history from fabrication through successive missions
Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high temperature metal matrix composites
A set of thermoviscoplastic nonlinear constitutive relationships (1VP-NCR) is presented. The set was developed for application to high temperature metal matrix composites (HT-MMC) and is applicable to thermal and mechanical properties. Formulation of the TVP-NCR is based at the micromechanics level. The TVP-NCR are of simple form and readily integrated into nonlinear composite structural analysis. It is shown that the set of TVP-NCR is computationally effective. The set directly predicts complex materials behavior at all levels of the composite simulation, from the constituent materials, through the several levels of composite mechanics, and up to the global response of complex HT-MMC structural components
Recommended from our members
Firebreak (SPUR) project report: young people's views on healthy and abusive relationships
A hedonic model of lamb carcass attributes
Lamb carcass value is widely reported to be a function of lean meat yield, which is the relationship between muscle, fat and bone. Five retailers and five wholesalers assessed 47 lamb carcasses from diverse genotypes and scored seven attributes. A hedonic model reveals that conformation attributes were more highly valued (16 c/kg) relative to yield characteristics (4 c/kg). Meat colour and fat distribution were significant for retailers, but less important for wholesalers. Genotype was not a strong indicator of conformation. Eye muscle area and depth were correlated with Fat C; however, these were not significant. These results indicate that carcass conformation, meat colour and fat distribution should be incorporated into carcass grading models.Hedonic, lamb, conformation and meat value, attributes, Livestock Production/Industries,
Advanced underwater lift device
Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications
- …