40 research outputs found
Emission of monoterpenes from European beech (<i>Fagus</i><i> sylvatica</i> L.) as a function of light and temperature
International audienceUsing a dynamic branch enclosure technique European beech (Fagus sylvatica L.) was characterised as a strong emitter of monoterpenes, with sabinene being the predominant compound released. Since monoterpene emission was demonstrated to be a function of light and temperature, application of light and temperature dependent algorithms resulted in reasonable agreement with the measured data. Furthermore, during high temperature periods the depression of net CO2 exchange during midday (midday depression) was accompanied by a depression of monoterpene emission on one occasion. The species dependent standard emission factor and the light and temperature regulated release of monoterpenes is of crucial importance for European VOC emissions. All measurements were performed within the framework of the ECHO project (Emission and CHemical transformation of biogenic volatile Organic compounds) during two intensive field campaigns in the summers of 2002 and 2003
Significant light and temperature dependent monoterpene emissions from European beech (fagus sylvatiga L.) and their potential impact on the European VOC budget
By using a dynamic branch enclosure system the emission of monoterpenes from European beech (Fagus sylvatica L.) was investigated during two consecutive summer vegetation periods in the years of 2002 and 2003 in Germany. All measurements were performed under field conditions within the framework of the ECHO project (Emission and Chemical Transformation of Biogenic Volatile Organic Compounds, AFO 2000). European beech was characterized as a substantial emitter of monoterpenes, with sabinene being the predominant compound released. The monoterpene emission from European beech was shown to be a function of light and temperature and agreed well to emission algorithms that consider a light and temperature dependent release of volatile organics. Standard emission factors that were measured from these sunlit leaves of European beech ranged up to 4–13 µg g-1 h-1 (normalized to 1000 µmol m-2 s-1, 30°C) in the years of 2003 and 2002, respectively. The nighttime emission of monoterpene compounds was negligible. Also the artificial darkening of the sunlit branch during daylight conditions led to an immediate cessation of monoterpene emission. European beech is the dominating deciduous tree species in Europe. To demonstrate the effect of an updated monoterpene emission factor for European beech in combination with the consideration of a light and temperature dependent monoterpene emission, we applied a species based model simulation on a European scale. With respect to conventional estimates of the European volatile organic compound budget, the latter simulation resulted in relative increases of 16% by taking solely this tree species into account. On local scales these increases exceeded even more than 100% depending on the respective vegetation area coverage of European beec